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1. Introduction

Cities are economic dynamos. They are hubs of innovation and breeding grounds for
new industries. Highly skilled workers, entrepreneurs, and scientists congregate in cities,
to take advantage of the efficiencies of thick markets and the externalities associated
with agglomerations. In 2010, the 27 cities in the top decile accounted for 47% of US
population, 54% of output, and 65% of patents (the data are discussed below). Cities are
often referred to as “engines of economic growth."

In this paper we quantitatively evaluate this idea. Our approach follows the analysis
of the role of railroads in US economic growth of (Fogel, 1964). Prior to Fogel’s work it
had widely been noted that by the late 19th century, railroads were carrying the vast bulk
of inter-regional trade, which was in turn a vital driver of growth. The natural conclusion
was that railroads were thus a necessary contributor to that growth. Fogel’s innovation
was to note that even though railroads were in practice the dominant carrier or freight, in
a world where railroads did not exist, it would have been possible for that same freight
traffic to flow, only at higher cost – which he showed by constructing the transit network
that could have existed in such a case. Analogously, we would like to ask how much
slower US economic growth would have been, or how much poorer the country would
be today, if the large cities in in which so much economic activity takes place today had
not existed. This question cannot be answered simply by observing how much output is
produced in cities or how much inventive activity takes place there. Had the cities not
existed, much of the benefit of agglomeration would have been lost, but there still would
have been skilled workers, entrepreneurs, new ideas waiting to be discovered, and so on.

Our main tools for pursuing this agenda will be explicit estimates of agglomeration
effects in two specific dimension: total factor productivity and the productivity of
invention. The former is a static effect that makes production in larger cities more
efficient. The latter works dynamically, speeding productivity growth in larger cities. We
begin with existing estimates of the magnitudes of these effects. Using a straightforward
growth model, we consider counterfactual scenarios where the degree of agglomeration –
specifically, the size of the largest cities – differs from the historically observed path. The
gap between income (or growth) in the counterfactual relative to the historical baseline
is our measure of the growth effects of cities.

Our approach follows the literature on growth accounting that began with Solow
(1957). This approach takes as given growth in population, human capital, and physical
capital as well as, in our case, the size distribution of cities. This contrasts with the full
general equilibrium approach that is more common in the urban literature. The general
equilibrium approach is more explicit about the drivers of the size distribution of cities,
but requires strong assumptions. Our growth accounting approach requires remarkably
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weak assumptions and allows an immediate mapping from data to results. For example,
the analysis in Duranton and Puga (2019) is based on a general equilibrium model that
features agglomeration effects on both labor productivity and human capital accumula-
tion, an urban rent gradient, commuting costs, and politically-determined restrictions on
development. Counterfactual city size distribution can then be generated by considering
exogenous alternations to city planning restrictions. However, in this paper, the major
driver of long-run growth, which is technological change, is completely exogenous. By
contrast, our analysis considers the effect of the city size distribution and technological
change.

The rest of this paper is organized as follows. Section 2 describes the data on
city-level population, output, and patents that we use, and presents an overview of
their contemporary and historical relationship. Section 3 introduces our counterfactual
approach to assessing the importance of agglomeration and applies it to study the effect
of agglomeration statically on total factor productivity in the cross section of cities. We
specifically consider counterfactual scenarios in which agglomerations in the US are lim-
ited in population to one million, one hundred thousand, or fifty thousand individuals.
Section 4 then takes the same approach to study technological progress, specifically using
data on MSA-level patents to assess the impact of agglomeration on inventive activity at
a point in time. In Section 5, we then cumulate differences in inventive activity between
our counterfactual and the baseline of the actual development of the US, to calculate
the reduction in TFP that would have resulted from limitations on city sizes. Section 6

concludes.

2. A First Look at the Data

We investigate how the distribution of city sizes affects aggregate output via two mecha-
nisms that operate at the city level. The first is a static agglomeration effect that leads to
increases in city level productivity as city size increases. The second is a similar increase
in the productivity of cities at research as city size increases. Because research output
improves economy wide productivity, scale effects in city level research productivity
increase economy wide productivity, an effect that compounds over time. To set the
stage for this investigation, we present data on the cross sectional relationship between
city size, as measured by population, city output, and research, as measured by patents.

For our cities, we consider a set of 275 constant boundary MSAs in the continental US
defined to the same boundaries as Duranton and Puga (2019), along with a single rural
area that aggregates all non-metropolitan counties. We construct decadal population
data by combining population data in replication files from Duranton and Puga (2019)
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with 1900-1990 county population data from Forstall and NBER (1995). This results in an
MSA by decade panel of MSA population stretching from 1850 to 2010, with 1860-1890

missing.1

We measure output using the county level output data from the BEA (US-
DOC/BEA/RD, 2023), and aggregate counties to MSAs. These data are available begin-
ning in 2000.2 We rely on the CUSP data (Berkes, 2018), to measure patents. These data
report on all patents issued by the US Patent office from 1836 to 2015 along with the year
of issue and county of residence for all listed inventors. Using these data, and pro-rating
patents with multiple inventors, we construct county-by-year counts of patents. Because
MSAs are defined as collections of counties, we can easily aggregate to counts of patents
produced in each MSA during each decade, e.g. 1900-1909, from 1850 to 2010.

Figure 1(a) is a histogram of population, output, and patents across cities for the year
2010. Cities are grouped in deciles by population, and we include an eleventh non-MSA
category. The figure shows the importance of large cities. San Antonio, with a population
of 1.99 million, is the smallest MSA in the top decile. In total, the top decile of cities
accounted for 47% of population, 54% of output, and 65% of patents. Non-metropolitan
counties accounted for 19% of population, 14% of output and 6% of patents. Large cities
have higher per-capita output and patent production than small cities. Non-metropolitan
counties are less productive than cities.

Figures 1(b) and 1(c) repeat the analysis of Figure 1(a) for the years 1900 and 1950.
Because the BEA output data is not available until 2000, we impute 1900 and 1950 output
levels from 2000 output and contemporaneous population using equation (13) below. The
concentration of patenting in the largest decile of cities is less pronounced in 1900 and
1950 than in 2010. In 1900 there is also a significant over-representation of patents in the
second largest decile of cities. The under representation of non-MSA areas in patenting
is more pronounced in the earlier years.

Figure 2 describes correlations in our data. Panel (a) plots the relationship between
the log of output and the log of population for 2010. The tight linear relationship of the
logs implies an elasticity of output per capita with respect to population of 8%. This
is slightly larger than the 13% elasticity reported by Glaeser and Gottlieb (2009) for the
same regression using data for 2000 and slightly different MSA definitions.

Panels (b-d) describe the relationship between the log of MSA patents and log popu-
lation for 2010, 1950 and 1900. Three features of these plots seem noteworthy. First, the
relationship between patenting and city size in 2010 is much noisier than it is for output.

1Our sample of MSAs decreases slightly in the early part of our sample. This largely reflects the fact that
some had not yet joined the union and so census data and county boundaries do not exist. For example,
Arizona, New Mexico and Oklahoma all joined the US after 1900.

2The BEA productivity data does not report for the two counties that make up the Danville, VA MSA,
and so the BEA data describes 274 MSAs instead of 275.
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Second, the relationship between city size and patenting is much steeper than for output.
The slope of the patents versus population regression line in 2010 is 1.45 versus 1.08 for
output in panel (a). Third, the relationship between patenting and city size becomes
much flatter as we go back in time. The slope of the regression lines in 1950 and 1900 are
1.35 and 1.11. versus 1.45 in 2010.

Finally panel (d) plots the log of patents against the log of output. In light of results
so far, the fact that that slope of the best-fit line is greater than one is unsurprising. More
interesting is that the relationship between output and patents is quite noisy. MSAs that
produce more output tend to produce more patents, but there are also MSAs that are
quite specialized in one or the other.
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Figure 1: Distribution of population, output and patents by city size in 1900, 1950 and
2010
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Note: (a) Share of population, patents and total output by deciles of city size and rural
status for 2010. (b) Same as (a) but for 1950 and population is imputed using the logic
described in equation 13. (c) Same as (b) but for 1900. In each panel, black bar is
population share, gray bar is output share, and white bar is patent share. Population,
output and patents are all concentrated in the largest cities. Patenting is more
concentrated than output, and output is more concentrated than population. Big cities
become progressively more important over time.
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Figure 2: Joint distribution of output, patents and city size.
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Note: Each panel shows a scatter plot and OLS regression line. (a) ln(Output) vs.
ln(Population) 2010; β = 1.08, s.e. = 0.013. (b) ln(Patents) vs. ln(Population) 2010;
β = 1.41, s.e. = 0.053. (c) ln(Patents) vs. ln(Population) 1950; β = 1.35, s.e. = 0.046. (d)
ln(Patents) vs. ln(Population) 1900; β = 1.11, s.e. = 0.041. (e) ln(Patents) vs. ln(Output)
2010; β = 1.29, s.e. = 0.047. Outputs and patents both increase with city size. The
relationship between patents and population is noisier than between output and
population, and becomes weaker as we go back in time. Patents and output are also
strongly related, though some cities are quite specialized in output or patents.
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3. Agglomeration and TFP in a Cross Section

We would like to calculate the total value of of output for a counterfactual version of the
US in which certain cities are constrained to be smaller than they are.

We treat MSAs as the real world analog of our theoretical cities, and index them by
i = 1,...,N . Yit denotes output of city i in decade t, Lit population, Kit physical capital, ℓYit
the fraction of the labor force engaged in the production of output, hYit the human capital
of workers engaged in producing output, and Ait is city-level productivity in producing
output. We assume that an MSA transforms inputs into outputs according to

Yit = Ait (Kit)
γ
(
hYitℓ

Y
itLit

)1−γ
. (1)

We are interested in understanding how important are changes in the sizes of cities for
aggregate output. To proceed, we decompose Ait into three components: a time specific
national component common to all cities, Āt, a city specific agglomeration effect that
depends on population, Ãit, and city-decade specific idiosyncratic term, Âit:

Ait = ÂitĀtÃit. (2)

Finally, we assume agglomeration economies in the production of output depend on city
population according to,

Ãit = LσA
it . (3)

This production technology nests those commonly used to study systems of cities, e.g.,
Desmet and Rossi-Hansberg (2013), Duranton and Puga (2019).

We assume that physical capital is freely mobile among cities, to equalize its marginal
product. This implies that,

Yit
Kit

=
Yt
Kt

for all i (4)

Substituting (4) into the production function (1) and rearranging, we have

Yit = A
1/(1−γ)
it

(
Kt

Yt

)γ/(1−γ)

hYitℓ
Y
itLit (5)

Summing over all cities, we get aggregate output,

Yt =

(
Kt

Yt

)γ/1−γ

∑
i

A
1/(1−γ)
it hYitℓ

Y
itLit. (6)

We would like to compare the observed, or ‘base’ case, to an alternative where some
cities take counterfactual sizes. When necessary, we indicate the value of variable X in
the two cases with superscripts, Xbase and Xalt.
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We assume that the aggregate ratio of capital to output, K/Y , is invariant across cases.
There are two foundations for this assumption. First, if capital is accumulated with a
fixed investment rate, as in Solow, the the capital to output ratio is constant along any
balanced growth path.3 Assuming a constant capital to output ratio is convenient for our
analysis. However, the stronger assumption that our economy is on a balanced growth
path and the saving rate is fixed also solves a conceptual problem. We expect a change
in city level productivity to affect income and hence capital accumulation. This raises the
possibility that a change in city size affects the level of output indirectly through the level
of capital. The assumption that the capital labor ratio is fixed accounts for this possibility.
There is also empirical evidence for a constant capital labor ratio

We restrict attention to alternative cases where a city’s population is unchanged but
the size of the urban scale effect on productivity (Ã) is reduced to that of a smaller
city. All other characteristics of the city, hit, ℓYit , and the time-city specific dimension of
productivity, Âit, remain constant. We can also imagine this occurring if the observed

population of the city Lbase
it is divided into Lbase

it
Lmax

daughter cities, each with population
Lmax, with human capital equally divided among them, and with all of the daughter
cities having the same values of Âit and ℓYit as the original city. We also assume that
non-metropolitan output does not change between realized and counterfactual cases.

Restricting attention to this particular class of counterfactuals is important for two
reasons. First, as we will see, it is convenient for our analysis. Second, it relieves us of
the problem of measuring hit, ℓYit , and the time-city specific dimension of productivity,
Âit, each of which poses difficult econometric problems.4

Because congestion effects are not part of the production process of equation (1), and
because production in the absence of the agglomeration effect is CRS, perfect mobility
of all factors of production would lead to an equilibrium in which all production took
place in the city with the highest value of Âit. We are implicitly considering equilibrium
population levels that are partly determined by an unspecified congestion process.

With these assumptions in place, we can use (6) to compare aggregate output in
economies with different values of A. Multiplying each term in the sum on the right

hand side of (6) by
(
Abase
it

Abase
it

)1/(1−γ)
we have

Y alt
t =

(
Kt

Yt

)γ/1−γ

∑
i

(Abase
it )1/(1−γ)hYitℓ

Y
itLit

(
Aalt
it

Abase
it

)1/(1−γ)

3See Romer (2012).
4Estimates city-specific productivity in producing output, for example, face a series of econometric

problems. Does a particular city produce high output relative to its measured human capital because it
has a high idiosyncratic productivity due to location or institutions, or because we do not measure the
quality of human capital? This problem will recur in our analysis of city level research productivity.
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= ∑
i

Y base
it

(
Aalt
it

Abase
it

)1/(1−γ)

Dividing by Y base
t gives

Y alt
t

Y base
t

= ∑
i

Y base
it

Y base
t

(
Aalt
it

Abase
it

)1/(1−γ)

(7)

Equation (7) is central to our analysis. It allows us to calculate the change in output
relative to the observed base case, using only information on realized city level output,
realized city level productivity, and counterfactual city level productivity.

We would like to evaluate the effect on the output of a particular city of constraining
its productivity to the that of a city of size no greater than Lmax. Because city size enters
a city’s TFP, Ait, only through the static scale effect of equation (3), the ratio of observed
to counterfactual city productivity is,

Aalt
it

Abase
it

= min

(
1,
(
Lmax

Lit

)σA
)

. (8)

Using equation (8) and (7) together, we can evaluate aggregate output for a counter-
factual system of cities in which all cities with population about the threshold level Lmax

have their productivity reduced to that of a city of the threshold size. The resulting
change in aggregate output is,

Y alt
t

Y base
t

= ∑
i

Y base
it

Y base
t

min

(
1,
(
Lmax

Lit

)σA/(1−γ)
)

. (9)

In equation (9) we see the advantage of restricting attention to our particular coun-
terfactuals. For these counterfactuals we can evaluate the change in aggregate output
without measures of city-specific physical and human capital or of the other parts of city
productivity term, Âit and Āt. We require only city population and output.

A Human capital extension

The fact that people are more productive in big cities, as we see in figure 2(a), is a robust
finding of the empirical literature on agglomeration economies. A more difficult question
has been estimating the share of the raw correlation that should be attributed scale effects
and the share due to the sorting of more productive people into bigger cities.

The initial approach to this problem was to estimate the relationship between city size
and wages conditional on individual characteristics, e.g., Combes et al. (2008) or Glaeser
and Gottlieb (2008). Including individual characteristics typically reduces the slope of
log wage versus log city size by one third to one half, and the resulting residual slope is
interpreted as the causal effect of city size on the level of productivity.
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More recent research (De la Roca and Puga (2017) and Duranton and Puga (2023))
follows workers over time and finds that the productivity of a worker increases more
rapidly in bigger cities. An effort to account for differences in worker productivity across
cities suggests that most of the difference can be accounted for by variance in the rate of
worker productivity growth as city size varies.

This has two implications. First, the relationship between output and city size that
we see in the raw data, e.g., figure 2, is actually close to the causal effect. Second,
that the relationship between city size and the level of productivity operates through
two channels, a productivity effect like the one we describe above, and a human capital
production effect. We here extend our model to include the second of these effects.

We assume that human capital is a function of city-decade specific inputs (years of
education and their quality), which we denote Sit. We further allow the Mincerian return
to these inputs, denoted ϕit to vary at the city-decade level. Finally, we allow an urban
scale effect similar to the one for producing output, represented by the parameter σh :

hYit = exp(ϕitSit)L
σh
it , (10)

Next, we use equation (6) to write aggregate output for a counterfactual case where
city size is capped at Lmax and multiply the right hand side by(

Abase
it

Abase
it

)1/(1−γ)
hY ,base
it

hY ,base
it

. (11)

Following the same logic that leads from equation (6) to (9), we arrive at the correspond-
ing expression for aggregate output when human capital production is subject to scale
effects,

Y alt
t

Y base
t

= ∑
i

Y base
it

Y base
t

min

(
1,
(
Lmax

Lit

) σA
1−γ+σh

)
. (12)

Comparing equation (12) to equation (9), we see that the two expressions are identical
save for the interpretation and magnitude of the exponent on the term

(
Lmax
Lit

)
. Therefore,

for the purpose of evaluating counterfactual scenarios, we evaluate the model with or
without scale effects in the production of human capital by varying the magnitude and
interpretation of this exponent.

B Parameterization

Throughout, we set the capital share of output, γ = 0.33, which is standard in the growth
literature.

A key parameter in this analysis is σA, which measures agglomeration benefits in
productivity. To estimate σA one must distinguish between the quantity of interest, pure
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effect of scale, and; the propensity of more productive people to sort into cities, the pos-
sibility that people accumulate human capital more quickly in cities, and the possibility
that people accumulate at places that are intrinsically productive. The literature has
proposed a variety of solutions to these problems (see Rosenthal and Strange (2004) and
Combes and Gobillon (2015) for surveys). Regardless of technique and setting, estimates
usually fall between 3% and 10%. Table 1 lists six prominent, relevant estimates.

It is common to estimate agglomeration economies from the relationship between
wage and city size or density; wage data is easily available and is easily linked to
measures of human capital.5 Each of Combes et al. (2008), De la Roca and Puga (2017)
and Duranton and Puga (2023) relies on a panel of individual workers to examine the
relationship between wages and city size. In French data, Combes et al. (2008) find that
on average a worker’s wage increases by about 5.1% when city size doubles. After con-
trolling for individual fixed effects, this drops to about 3.7%, suggesting that σA = 3.7%
with the 1.2% difference due the sorting of more productive workers into larger cities.
Using Spanish data, De la Roca and Puga (2017) conduct a similar exercise and finds
that on average a worker’s wage increases by about 5.1% when city size doubles. After
controlling for individual fixed effects, this drops to about 2.2%. Unlike, Combes et al.
(2008), however, De la Roca and Puga (2017) attribute the 2.9% difference to more rapid
accumulation of human capital in larger cities rather than sorting. Duranton and Puga
(2023) replicate De la Roca and Puga (2017) for the panel of US workers described by
the NLSY79 and find that on average a worker’s wage increases by 7.6% when city size
doubles. This drops to 4.4% after controlling for individual fixed effects, with the 3.1%
difference attributed to more rapid human capital accumulation in larger cities.

While the individual level data employed in Combes et al. (2008), De la Roca and
Puga (2017) and Duranton and Puga (2023) allows the state of the art decomposition
of scale effects into human capital/sorting and pure scale effects, they are based on
French, Spanish and the highly selected NLSY sample of US workers. Like this paper,
the other three papers in table 1 are based on representative samples of US data. Glaeser
and Gottlieb (2008) looks at the relationship between wages and city size using a large
cross-section of US workers. They estimate σA = 4.1%. While they cannot control
for individual fixed effects in their cross-sectional data, they experiment widely with
econometric technique and find little variation in this estimate. Ciccone and Hall (1996)
is an early effort to estimate σA and does so indirectly using US state (not city) level data
on output and population density. They estimate that σA = 5.2%. Glaeser and Gottlieb
(2009) estimates the relationship between city level output and population using data on

5We note that the literature is generally careful to distinguish between the effects of city size and city
density on productivity. To simplify our analysis, we abstract from this distinction and treat the two
concepts as interchangeable.
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Table 1: Estimates of σA
σA σh Source Data
3.7% 1.2% Combes et al. (2008) French, Ind. wages, 1976-98
2.2% 2.9% De la Roca and Puga (2017) Spanish, Ind. wages, 2004-9
4.5% 3.1% Duranton and Puga (2023) US, Ind. wages, ca. 1979-2020
4.1% . Glaeser and Gottlieb (2008) US, Ind. wages, 2000
5.2% . Ciccone and Hall (1996) US, State output, 1988
13% . Glaeser and Gottlieb (2009) US, MSA output, 2000

Note: Various estimates of the static scale effect, σA and the human capital scale effect, σh
from the literature.

US cities in 2000, and finds that output increases by 13% when city size doubles. This
estimate does not correct for the possibility of sorting or more rapid urban human capital
accumulation in cities.

We consider three values of σA in our calculations, 4%, 8% and 12%. These values
approximately bound the estimates reported in table 1. Our preferred estimate for the
pure scale effect is σA = 4%. To allow for the possibility of more rapid urban human
capital accumulation, we (like Duranton and Puga (2023)) consider σA = 8% for our
baseline estimates. To check robustness, we also consider σA = 12%, which we regard as
close to the largest defensible estimate of this parameter.

To evaluate equation (9) we use the data on city level output and population described
above.

We first evaluate the static effect of agglomeration for data from the year 2010. In
addition to our baseline value of σA = 0.08, we also consider σA = 0.04 and 0.12. We also
consider three possible values of maximum city size, Lmax: 1,000,000, 100,000, and 50,000.
Note that even our mildest comparative static, capping city size at 1,000,000 involves a
catastrophic reorganization of the economy. The smallest US city with a population above
1m in 2010 was Fresno CA, the 52nd largest MSA in country. A cap of 100,000 would
require reorganizing 261 MSAs,while the cap of 50,000 affects every MSA.

Table 2 presents results. Rows report the value of equation (9), the ratio of counter-
factual to realized aggregate output, as the strength of static agglomeration economies
increase. Columns describe different counterfactual systems of cities. Moving from
column 1 to 3, we consider systems of cities in which cities are constrained to be smaller
and agglomeration economies are less important. We see that counterfactual output is
94% of realized output when cities are allowed to be as large as 1m and agglomeration
economies take their smallest value. This share declines to 88% when the strength of
agglomeration economies is largest. It is only when we consider the large values of σA
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Table 2: Output in 2010 for three counterfactual size caps and values of σA.
σA Lmax = 1m Lmax = 100k Lmax = 50k

0.04 0.94 0.84 0.82
0.08 0.88 0.72 0.68
0.12 0.83 0.62 0.57

Note: Each cell reports the share of total output relative totals reported in the 2010 BEA
data, for a particular cap on city size and value of σA. For the purpose of this
calculation,the rural population is treated as an extra MSA whose output is constant
across scenarios and capital share of output, γ, is equal to 0.33.

and restrict cities to be no larger than 50 or 100k that we begin to see 30 to 40% declines in
output. With this said, if we consider has increased by about a factor of 13 since 1900, and
rely on central estimates of σA that are no larger than 8%, then it seems hard to conclude
that agglomeration economies are more than a moderately important contributor to the
overall increase in output over this period.

These results can be extended historically, although with some difficulty. The BEA
data on MSA output begins in to 2000 and so we must impute historical values. To do
this, we assume all quantities in the production function take their 2000 values except
population, which takes its realized value for each decade. In this case, we can impute
each city’s output as

Y base,2000
it ≡= Y base

it

(
Lit

Li2000

)1−γ+σA

. (13)

We perform this calculation using the BEA data for 2000 and our population data from
1850 to 2020, and figure 1 reports imputed output levels for 1950 and 1900 when γ = 0.33
and σA = 0.08.

Given imputed levels of output from equation (13), we can calculate the hypothetical
output that would result from imposing a cap on city size using equation (9), just as we
did for measured 2010 output data in table 2. Figure 3 presents these results. Recalling
that restricting populations to 1m requires that we reorganize the largest 52 cities in the
country, it is only with catastrophic reorganizations of the economy that we see large
effects on output in Table 2 and Figure 3. If we allow cities as large as 1m and a central
estimate of σA of 8%, the effects on output are about 6%, about half again as large as the
2008 financial crisis. Even our most extreme counterfactual, where we reduce all cities to
50k, and consider σA at the upper end of plausible estimates, we reduce output by about
40%, not quite as large as the current gap between the US and France.
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Figure 3: Share of total output produced under three hypothetical city networks, imputed
baseline output
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Note: Counterfactual output as a fraction of actual outcome when city sizes are capped
at 1m (squares), 100k (diamonds), and 50k (circle). Calculations are based on city output
imputed from the BEA data for 2000 and population data, and assume σA = 0.08 and
γ = 0.33.

4. Productivity Growth

The analysis of the previous section takes the city invariant component of TFP, Āt as
given. We now turn to this parameter, and in particular to the effect of agglomeration
on the speed of technological progress. This channel obviously has the potential to
produce a much larger effect on current output than the channel of static productivity
from agglomeration, because improvements in technology accumulate over time.

We proceed in parallel with our approach in the previous section, although as will be
seen we have to make adjustments to deal with the dynamics of technological change.

Define Rt as research output at time t. The use of this new terminology is required
because research output will not map directly into the speed of technological progress.
Specifically, as will be seen in Section 4, the speed of technological progress depends on
both research output and the level of technology itself. However, at a given point in time,
we assume that cross-sectional variation in research output among cities will produce
proportional variation in patents per city. Specifically, defining Pit as patents, we assume
that6

6Bloom et al. (2020) stress that the relationship between patents, on the one hand, and productive ideas,
on the other, is unlikely to be stable over time. Among the reasons for this are changes in what can be
patented. In our setting, this instability would be reflected in a changing value of µt that relates patents
to research output. In the application below, we do not assume that µt is constant. Rather, our only
assumption is that cross-city variation in patents at a point in time is proportional to cross-city variation in
research output.
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Pit = µtRit (14)

Research output in a city depends on the size of the research labor force, its human
capital, hRit , and a city-decade research productivity multiplier, Bit, according to the
function,7

Rit = Bith
R
it(1 − ℓYit )Lit. (15)

Summing over cities within a year, we have aggregate research output,

Rt =
N

∑
i=1

Bith
R
it(1 − ℓYit )Lit. (16)

City-decade research productivity can be decomposed into three components: a time
specific national component common to all cities, B̄t; a city specific agglomeration effect
that depends on population, B̃it; and, a city-decade specific idiosyncratic term, B̂it. More
formally,

Bit = B̂itB̄tB̃it. (17)

We model the scale effect in producing research output in the same way we did for
output, but with a different value of returns to scale parameter,

B̃it = LσB
it . (18)

We do not restrict the relationship between city-specific output productivity (the Âits)
and city-specific research productivity (the B̂its). Places can be good at one but not the
other. We also do not restrict the relationship between the quality of human capital used
to producing output, hYit and that used in producing research, hRit . For example, two
cities might have the same numbers of Ph.D.s working in production, while they have
radically different numbers of Ph.D.s working in research.

As in the previous section, we consider the thought experiment of having the urban
scale effect on research productivity B̃it take the value that would hold if the city were
constrained to maximum size Lmax. To evaluate the resulting change in counterfactual
research output, we use the same argument that we used in our analysis of counterfactual
output, adjusting for the fact that capital does not play a role in the production of research
output.

This argument proceeds in four steps. First, use (16) to write aggregate research

output for the counterfactual case. Second, multiply the right hand side by Bbase
it

Bbase
it

. Third,
rearrange and use equations (17) and (18) to get

Ralt
t = ∑

i

Rbase
it min

(
1,
(
Lmax

Lit

)σB
)

. (19)

7To simplify the model, we assume that physical capital is not used for the production of research
output.
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Finally, divide both sides by Rbase
t to get

Ralt
t

Rbase
t

= ∑
i

Rbase
it

Rbase
t

min

(
1,
(
Lmax

Lit

)σB
)

. (20)

Recalling our assumption (in equation (14)) that observed patents are proportional to
research output within each decade, we can evaluate equation (20) by replacing research
output with patents .

A Research output in a cross section

We begin by considering the effect of limiting city sizes at a point in time, holding
constant the time-specific component of research output, B̄ constant. As our measure
of research output, we use patents at the MSA level.

It is worth pointing out that this approach to examining the effect of limiting city sizes
on research productivity represents something of an extreme case. To see why, consider
the case in which there is a city of two million people, of whom 20,000 are engaged
in R&D. Agglomeration effects in research presumably depend on the number of other
researchers in a city, rather than the number of people overall. Thus one could imagine
splitting the parent city into two daughter cities, each with one million people, but with
one daughter city containing all 20,000 researchers. In that case, research output would
not fall at all. By contrast, in dividing up the resources devoted to R&D proportionally
with population, we have made the assumption that maximizes the effect of limiting
agglomeration in research productivity.

The key parameter required for our calculation is σB , the effect of city size on research
productivity. A large literature establishes that, for people working in knowledge inten-
sive activities, proximity to other people working in similar industries has important
effects on productivity, and also the the benefits of proximity fall off rapidly with
distance. For example; Arzaghi and Henderson (2008) show that a few hundred meters
of distance from an incumbent firm has a large impact in the location choice of an entrant;
Carlino and Kerr (2015) use results in Rosenthal and Strange (2003) to calculate that the
benefits of proximity decrease about five times more quickly with distance for software
production than for metal fabrication. There is also evidence that inventive or innovative
activity is much more likely to cluster together than it would if firms chose locations at
random, e.g. Inoue et al. (2019). For a useful survey of both literatures, see Carlino and
Kerr (2015) and Kerr and Kominers (2015). These papers strongly suggest the existence
of scale effects, and suggest that they are more important for innovation and invention
than for most other types of economic activity.

These papers are less helpful for thinking about how scale effects vary with the size
of a cluster or a city. Atkin et al. (2022a) takes a useful step in this direction. This paper
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estimates the effect of face-to-face contact, measured by cellphone proximity, on patent
citations. A back of the envelope calculation based on these estimates suggests that 25%
reduction in workforce would cause a 17% decline in citations. Averaging, this gives
an elasticity of about 0.8. This is a huge effect, but calculated indirectly and based on
a sample of tech workers in Silicon Valley. Carlino et al. (2007) applies more directly
to our case. This paper estimates a cross-sectional regression of patents per person on
employment density in US MSAs around 2000. They find that doubling employment
density increases patents per person by 17-20%. Finally, Moretti (2021), constructs a
panel of US inventors and their patenting activity by year, sector, and BEA economic
area (slightly larger than an MSA). Controlling for inventor fixed effects, this paper
estimates that doubling the number of inventors in the same year-sector-cluster increases
an inventors productivity by 5% to 9%, depending on specification.

Summing up, patenting seems to increase with city size at least as rapidly as does
output or wages, and probably more quickly. Moretti (2021) is the only estimate based
on disaggregated panel data, and suggests values of σB ∈ [0.05,0.09]. Carlino et al. (2007)
uses only cross-sectional data and so is less able to address reverse causation and sorting
than Moretti (2021), but suggests σB ∈ [0.17,0.20]. Atkin et al. (2022b) suggests a still
larger estimate, but is based on a highly selected sample where the effects would be
expected to be large. For our baseline calculation, we consider the preferred estimate of
σB = 6% from Moretti (2021), and also consider the much larger value σB = 20%.

Table 3 shows national research output for 2020 in the alternative case where cities are
limited in size relative to the base case of observed research output. We consider a range
of values of Lmax as in table 2. When scale economies in patenting are set at our base-case
value of σB = .06 and we cap city size at one million, research output falls by only 7%
relative to baseline. This magnitude is similar the static urban scale effect on output
production shown in table 2 if we used a similar value of σA. We find this surprising. If,
as we had expected, patenting were more concentrated in larger cities than output, then
reducing the opportunity for agglomeration economies to operate by restricting city size
would be more harmful to patenting than output. Larger declines in aggregate patenting
are possible, but require the catastrophic counterfactual changes associated with Lmax

equal to 100k or 50k, or the Carlino et al. (2007) value of σB estimated on cross-sectional
data rather than than the smaller value derived from panel data. In the most extreme
case, where we consider the largest plausible value of σB and cap city size at 50k, the
output of patents falls by 48%.

We can also examine the evolution of research output over time. For this purpose, we
restrict attention to our baseline value of σB = 0.06 and calculate how patenting changes
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Table 3: Patents during 2000-9 for three counterfactual size caps and values of σB .
σB Lmax = 1m Lmax = 100k Lmax = 50k

0.06 0.93 0.83 0.80
0.20 0.82 0.58 0.52

Note: Each cell reports the share of total patents during 2000-2009 relative totals reported
in the CUSP data Berkes (2018), for a particular cap on city size and value of σB . For the
purpose of this calculation,the rural population is treated as an extra MSA whose patents
are constant across scenarios.

Figure 4: Share of total patents produced under three hypothetical city networks
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Note: Counterfactual patents as a fraction of actual patents reported in CUSP when city
sizes are capped at 1m (squares), 100k (diamonds), and 50k(circles). Calculations
assume σB = 0.06.

in each of our three counterfactual systems of cities in each decade for which we have
both population and patent data. Figure 4 presents our results. This figure corresponds
closely to figure 3, which reports changes in aggregate output for different networks over
time, except that figure 3 is based on imputed output levels for the observed system of
cities, while figure 4 does require this imputation.

5. From Research Output to the Speed of Technological Progress

Our goal is to calculate how the speed of technological progress would differ if the US
were less urbanized. An immediate issue that arises is how to think about the rest of
the world. In practice, ideas easily cross borders, and so if there were less effective R&D
taking place in the US, the decline in research productivity would to a large extent simply
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Table 4: Āalt/Ābase for Lmax = 1,000,000
Parameters σB = .06 σB = .20

λ = 1 and β = 3.1 .979 .935
λ = .75 and β = 2.4 .980 .939
λ = 1 and β = 0 .924 .790

Note: Each cell reports the ratio of the time-specific component of aggregate productivity,
Ā, for the year 2010 in the case where maximum city size is limited to one million,
relative to the base case in which city size is not limited.

be made up by a larger fraction of innovation taking place abroad. (maybe cite recent
Bloom, Jones, etc. paper here).

One way of dealing with this issue would be to assume that the same restriction on
agglomeration that we impose on the US was imposed on the whole world. Using global
data on city populations and research output, we could then perform an analysis of the
effect of this size restriction. Unfortunately, data on city research output at the global
level is not available. As an alternative, we make the assumption technological progress
in the US results only from R&D in the US. Another set of assumptions that would
produce the same result would be that new technologies flow freely across borders and
that the reduction in R&D input that take place in the rest of the world is of the same
magnitude as that in the US. We view this as a reasonable approximation.

Bloom et al. (2020) empirically explore the relationship between productivity growth
and aggregate R&D in the US over the period 1930-2015. Adapting their formulation of
the research production function to our notation:8

dln(Ā)

dt
= αRλ

t Ā
−β
t (21)

The parameter λ captures the “stepping on toes” effect, whereby a the speed of techno-
logical progress may not scale linearly with research output. The parameter β captures
the extent to which ideas become harder to find as more of them have been discovered.
They take as their baseline assumption λ = 1 (no stepping on toes effect), and under this
assumption estimate that β = 3.1 As alternative they consider λ = 3/4, in which case they
estimate that β = 2.4 In the analysis that follows, we use both pairs of parameterizations.
(Along balanced growth paths, the ratio of the growth rate of productivity to the growth
rate of research output is determined solely by the ratio of λ to β. However, we will be
looking along transition paths where the both parameter values matter independently.

We want to derive the time path of the city-invariant component of productivity Āt

under the assumption that city sizes were limited.

8In Bloom et al. (2020), the input into research is the number of researchers. We replace that with our
measure of research output adjusted for the impact of urban scale effects.
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Consider a set of observed values of Ābase in the baseline case where city sizes where
not restricted – that is, what actually happened. Call these Ābase

1 , Ābase
2 , ... We want to

derive an alternative pathway of this component of productivity, Āalt in the case where
city sizes were restricted. These are Āalt

1 , Āalt
2 , .... We assume that in period one, the level

of Ā in the two scenarios were equal.
The time periods that we examine will be decades. We take the discrete version of the

equation for technological progress, and further substitute our variable for city-invariant
productivity, Ā, as the measure of technology:

∆Āt/Āt = αRλ
t Ā

−β
t (22)

Rewriting this separately for the base and alternative cases,

Ābase
t = Ābase

t−1 + α(Rbase
t−1 )

λ(Ābase
t−1 )

1−β (23)

Āalt
t = Āalt

t−1 + α(Ralt
t−1)

λ(Āalt
t−1)

1−β (24)

To calculate the path of Ā in the alternative case, we proceed as follows. In the base
case, given a series of values for Ābase

t we can back out a series for Rbase
t . Equation (20)

then gives us the ratio of research output in the alternative case where city sizes are
restricted relative to the base case where they are not. 9 This allows us to produce a
series for Ralt

t . Under the assumption that Abase,0 = Aalt,0, we can then generate a full
time series for Ā in the alternative case relative to the base case, by forward iteration of
equation (??).

Figure 5 shows the result of this calculation. In addition to the two sets of parameters
considered by Bloom et al. (2020), (λ = 1, β = 3.1) and (λ = .75, β = 2.4), we also
consider a “naive" parameterization of λ = 1, β = 0, which would imply that both the
stepping on toes effect and the negative effect of current technology on the ease of finding
new technologies are absent.

As the figure shows, the cumulative effect of reduced research output turns out to
have a remarkably small effect on the level of productivity in the year 2020 under either
of the parameterizations used by Bloom et al. (2020). When city size is limited to one
million, productivity in the year 2020 is only two percent lower in the alternative case
than in the baseline. Even when city size is limited to 50 thousand, the impact on the
level of productivity is on the order of seven percent. This seems somewhat puzzling,
given that Figure 4 shows that research output in the counterfactual cases is between 5%

9Formally, what we back out is the series for α(Rbase
t−1 )

λ and what we then construct for the alternative
case is the series for α(Ralt

t−1)
λ. Because we are interested only in the ratio of these two objects, the value

of α is irrelevant.
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and 20% lower than in the base case, depending on which scenario one is looking at, for
all of the decades of the twentieth century.

The resolution to this puzzle is exactly the negative effect of the technology level Ā
on the speed of technological progress that is at the center of the model in Bloom et al.
(2020). Less research output early in the century would have led to a lower level of Ā,
which would have in turn made research later in the century lead to faster technological
progress that it did in the base case. This can be seen by examining the top panel of
Figure 5 where we use the “naive" parameterization in which the effect just described
is shut down. In this case, even if city size is restricted to one million, productivity in
2020 is 8% below its baseline level, while if city size is restricted to fifty thousand, the
reduction in productivity in 2020 is roughly one quarter.
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Figure 5: Counterfactual trajectories of national productivity.
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Note: Counterfactual ratio of counterfactual to observed productivity, Āalt
t /Ābase

t , by
decade for three different counterfactuals. City sizes are capped at 1m (squares), 100k
(diamonds), and 50k(circles). Panels differ in assumptions about the relationship
between research output and productivity growth; (a) λ = 0.75, β = 2.4, (b)
λ = 1, β = 3.1, (c)λ = 1, β = 0. We assume σB = 0.06 throughout.
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Table 4 shows the sensitivity of this result to value of σB , the parameter that measures
the agglomeration effect in R&D. We focus on the case where city size in the alternative
scenario is limited to one million, and consider the same combinations of λ and β

that were examined in Figure 5. As the table shows, the cumulative effect of limiting
city size on productivity is roughly linear in the value of σB . To the extent that this
effect is relatively small under our baseline parameterization, it would take a very large
adjustment in the parameter to produce large negative effects on productivity.

6. Combining Static and Dynamic Effects

We can now consider the combined effects of reduced aggregate productivity due to
slower technological progress (Āt) and lower static productivity from urban scale effects
(the Ãits) that would result from a limitation on city sizes. Equation ?? puts together the
results from the previous sections.

Y alt
t

Y base
t

=

(
Āalt
t

Ābase
t

)1/(1−γ)

∑
i

Y base
it

Y base
t

min

(
1,
(
Lmax

Lit

)σA/(1−γ)
)

(25)

Table 5 shows output in the alternative case where city size is limited to one million
relative to the base case of actual city sizes. We show values for all of the combinations
of parameters that were considered above.

For the base-case set of parameters, i.e. σA = 0.08 and σB = .06, and using Bloom et
al.’s preferred values for technology production, output in the alternative case would be
14% lower if city sizes had been restricted than in the baseline case of observed sizes. If
we pick parameters representing the upper end of plausible scale effects, that is σA = 0.12
and σB = 0.20, the reduction in output is 22%. These strike us a relatively small effects,
given the importance that often assigned to large cities as drivers of economic growth.
For example, using PPP data from 2022, Canada’s per capita GDP was 80% of the US
level.

23



Table 5: Output Relative to Baseline 2010

σB = 0.06 σB = 0.20
Parameters σA = 0.04 σA = 0.08 σA = 0.12 σA = 0.04 σA = 0.08 σA = 0.12

λ = 1.00 and β = 3.1 0.917 0.863 0.816 0.877 0.825 0.780
λ = 0.75 and β = 2.4 0.919 0.865 0.817 0.880 0.829 0.783

λ = 1 and β = 0 0.866 0.815 0.770 0.741 0.697 0.658

Note: Counterfactual output as a share of realized output in 2010 when counterfactual
city size is capped at 1m for different parameter values, Cells in this table are calculated
by multiplying the appropriate entries of tables 2 and 4.

Comparing the last line of Table 5 with the two above it shows that an important
role in moderating the impact of city size limitation is being played by the fishing out
effect embodied in the Bloom et al. production function for technology. When this effect
is turned off by setting β = 0, the decline in output comparing the alternative case to
the baseline is between 25% and 110% larger. (The relative importance of the fishing-out
effect is largest when σA is small, so that static scale effect are not important and similarly
when σB is large, so that scale effects on research productivity are large.)

The results in Table 5 can easily be transformed to examine the growth rate of output
rather than its level. Recall that the experiment that we are considering is imposing a
cap on city sizes in the US starting in the year 1900 – this is the point in time in which
our baseline and alternative scenarios diverge. Using data from the Maddison Project,
GDP per capita in the United States increased by a factor of 6.1 between 1900 and 2010,
corresponding to an annual growth rate of 1.66%. If output in the year 2010 had been
86% of its observed value, the annual growth rate would instead have been 1.52%.

7. Conclusion

In order to assess the effect of agglomeration on economic growth in the United States,
we have considered the effect of counter factually limiting city sizes starting in the year
1900 on GDP per capita in the year 2020. We allow for both a static effect of city size on
productivity and a dynamic effect of city size on research output, which then accumulates
over time to determine the level of productive technology.

Our conclusion is the the effects of limited city size would have been surprisingly
small – or put differently, that there was surprisingly little benefit from agglomeration.
To give an example, consider the case in which city size was limited to one million
people. Our estimate of the static productivity effect is that in this case (holding the
level of technology constant), output would have been 88% of its baseline level, using
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our standard set of parameters. The dynamic effect of limiting city size in this fashion
over the 120 year period that we consider would be that the level of technology would
have been 98% of its baseline level. Multiplying these effects, output in the case with
limited agglomeration would have been 14% lower that the baseline. GDP growth in
the alternative scenario would have been 0.014 percentage points lower than if city size
had not been limited (i.e. 1.52% vs. 1.66%). While this is certainly not a trivial effect, it
suggests to us that the urban scale effect was not the primary engine of economic growth.

As with any quantitative conclusion, there are many possible reasons why ours could
be wrong. One possibility is that we have incorrectly parameterized either the scale effect
of city size on productivity or the similar scale on research. Moving to the very highest
end of the range of parameters estimated in the literature does not substantially reverse
our finding, but it is always possible that the literature has been wildly off base.

A second possibility is that there are effects of urban scale, either static or dynamic,
that we have failed to account for.

A third possibility is that in examining our particular counterfactual, we have done
violence to what people mean when they say that cities are engines of growth. Concretely,
we assume the only economic effect of limiting city sizes would be via the urban scale
effect. A skeptic might point out that if city sizes were limited, there would have to
be more cities, and that some of these cities might not have the same fundamental
productivity (the term we call Ã) as the actually observed cities. This might be due
to the new cities not being in locations that are as desirable as the cities that we actually
observe. Our answer to this particular critique is that if it is correct, it is not so much cities
themselves that are engines of economic growth, but rather good locations on which to
put cities.

A final possibility is that we are being too broad in our interpretation of the phrase
“engine of growth." If urban scale effects explain one-tenth of US economic growth,
maybe that qualifies them as being an engine of growth.
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