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1. Introduction

It is hard to overstate the importance of particulates policy. According to the Global
Burden of Disease Project (GBD, 2024), ambient airborne particulates kill about 4.7m
people per year. The value of statistical life in a country with global average GDP per
capita is plausibly around 2.8m (USD2010)." The product of these two numbers is 13
trillion dollars. This is more than 10% of global annual GDP. This estimate can be too
large by orders of magnitude and still illustrate the fact that particulates are poisonous
and that managing exposure is an important problem.

This paper describes patterns of exposure to airborne particulates, investigates the re-
lationship between equilibrium exposure and various polluting activities, and develops
an integrated assessment model (IAM) to evaluate the relationship between restrictions
on polluting activities, exposure, and welfare. To accomplish this, we first assemble
spatially disaggregated global panel data describing aerosol optical depth, a remotely-
sensed measure of particulate concentration. We merge these data with a global panel of
gridded population data. These data allow us to measure exposure, the coincidence of
people and particulates. We next assemble data on emissions producing activities includ-
ing fossil fuel consumption and agricultural burning, and estimate relationships between
these “likely suspects” and particulate exposure. Finally, we develop a macroeconomic
model of equilibrium exposure and calibrate the model to fit a subset of the world’s
countries. This model allows us to evaluate the equilibrium relationship between the
cost of polluting activities, exposure, and welfare.

It is natural to suspect that the regulation of particulates will have unintended con-
sequences for exposure and welfare. Regulating particulates makes the production of
certain goods more costly. We expect people to adjust to such policies by reducing the
newly costly activity and by shifing to less affected sectors or locations.? For example,
farmers in Indonesia may respond to a restriction on agricultural burning or to a tax on
oil by migrating to the city. Thus, these policies may reduce exposure in the countryside,
but increase the population of more polluted cities. If regulation takes the form of
revenue generating taxes, the way the resulting revenue is used may also be important.

For example, if revenue transfers incentivize our Indonesian farmers to remain in the

We take the US EPA value of statistical life (VSL) of $7.4m in USD2006 converted to around $8m in
USD 2010, an income elasticity of VSL of 0.6 from Viscusi and Aldy (2003), global and US income per capita

of about 11,000 and 63,000 in USD2010 (in 2022), respectively, which yield (8 x 10°)(g5355)*® ~ 2.8 x 10°.

2Qur analysis implicitly assumes second-best policies. In theory, a comprehensive system of Pigouvian
taxes imposed on particulate emissions from all sectors and sources could implement the first-best alloca-
tion without unintended consequences absent other frictions or externalities. In reality, such a system is
unlikely to be feasible, as discussed in Section 8.



countryside despite newly less productive agriculture, their exposure to particulates
may be reduced by the policy.

We provide three types of evidence that these sorts of unintended consequences are
economically important. First, we show that the existing literature suggests the presence
of these types of adjustments to particulates regulation. Second, we show reduced
form evidence indicating the importance of changes in the geography of particulates
as a determinant of exposure. Third, our model indicates that unintended responses to
particulates policy are important in many countries.

Our model also provides a basis for evaluating counterfactual policy impacts on
exposure and welfare for the 30 countries for which we calibrate it. We describe the
literature and context of these contributions in section 3, but first define some key

terminology and provide additional motivation for our study.

2. The geography of particulate exposure

Particulates arise as a consequence of emissions. Emissions, from whatever source, are
measured in units of mass (megatonnes (MT) or kilotonnes (kT)). Point source regulation
is generally concerned with regulating the mass of emissions. Once in the air, particu-
lates disperse. This leads to a certain mass per volume of air. This is the concentration
of particulates. The units of concentration are mass per unit volume, and this is what
is measured by most pollution monitors. We will generally measure concentration in
kg/km? (or equivalently, ug/m?). We sometimes also measure concentration in terms
of “aerosol optical depth” (AOD). This is the measure of concentration reported by
our remotely sensed pollution data (we discuss AOD in detail below.) We exclusively
consider outdoor ambient concentration. Indoor air pollution is also of interest, but
data limitations preclude its consideration. We are primarily concerned with exposure.
For our purposes, this will be the person weighted mean of concentration, and its units
are AOD points per person. This definition is tractable and transparent, but implicitly
assumes that individual exposure is linear in concentration. We discuss this assumption
in section 3.

These definitions allow a description of concentration and exposure. Figure 1 presents
three maps showing China, India and Russia, among other countries (see Online Ap-
pendix for global versions). Panel (a) shows the distribution of AOD in 2010. Darker
red indicates higher mean annual particulate levels. Tan indicates missing data. Unsur-
prisingly, China is highly polluted, particularly in the central region and the Northeast.

India is also highly polluted, particularly in Ganges river valley, although we also see



Figure 1: Popula’uon particulates and exposure
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high levels of particulates throughout the subcontinent. Russia is generally less polluted,
and its particulates occur mainly in the West.

Panel (b) shows population density, also in 2010. China is densely populated except
for provinces on its Western frontier. Population is particularly dense in the central
region around Chongqing and in the Northeast. Even away from these areas, population
appears to be highly concentrated into cities. Population density in India is also high,
especially along the Ganges, although even away from this region, population density is
almost uniformly high. Russia, in contrast, appears almost unpopulated, although small
cities are visible, mostly in the Southern part of the country.

Panel (c) superimposes a partly transparent panel (a) on panel (b). The interpretation
of colors follows by taking convex combinations of their meanings in panels (a) and (b).
White indicates areas with low population and low particulates. Pink and red indicate
areas with high particulates and low population. Blue indicates regions with high
population density and low particulates. Purple indicates regions with high particulates



Table 1: Levels and changes in concentration and exposure for several countries

AOD Mean exposure %A AOD %A Mean exposure % AAOD

2000 2000 2000-10 2000-10 % AExposure
Indonesia  0.20 0.26 -16.15 -3.45 4.68
Brazil 0.13 0.10 65.95 32.53 2.03
uUs 0.14 0.17 -20.99 -14.67 1.43
India 0.28 0.35 31.02 30.00 1.03
Russia 0.12 0.16 52.26 74.18 0.70
China 0.31 0.52 13.60 23.02 0.59
Poland 0.20 0.21 -5.21 -7.92 0.66

Note: This table shows descriptive statistics on levels and growth rates of particulate measures and
exposure, for selected countries. AOD data is from NASA’s MODIS, measured by the Terra satellite (Levy,
Hsu, et al., 2015a). Exposure is the population-weighted AOD average across pixels. Population data is
from Gridded Population of the World (CIESIN, 2016).

and high population density. That is, purple indicates regions where many people are
exposed to high concentrations of particulates.

Panel (c) illustrates three features of our data that recur throughout our analysis. First,
exposure is substantially determined by country of residence. Imagine being asked to
participate in a lottery where, conditional on your choice of country, you would be
assigned to a blue dot in that country at random. If all you care about is your ultimate
exposure to particulates, this choice would be relatively easy. Russia is best. China and
India are more difficult to distinguish, but India is probably better.

Second, the geography of particulates matters. In Russia, particulates tend to occur
away from population centers. In India and China concentration and population coin-
cide. Close inspection of panel (c), however, suggests that China and India differ. India
is more “blue”, while China is more “pink”. In India, highly populated and polluted
places are surrounded by places that are highly populated, but not as polluted. China is
the opposite. Highly populated and polluted places are surrounded by places that are
highly polluted, but not as densely populated. Moving out of the densest cities looks
like a better response to particulates in India than in China.

Third, the geography of exposure is clearly different across countries. Russia couples
low concentrations with the separation of population and concentration. China features
high populations in its most polluted places. India has high population levels through-
out, but not all highly populated places are polluted.

Table 1 reinforces and refines these observations. The first column presents an area
weighted mean of AOD in 2010 for each of the countries listed. The second column
presents our exposure measure, population weighted mean AOD.

Exposure is 0.27 in Indonesia, while AOD is 0.20, so an average resident of Indonesia



Table 2: Country level select emissions in concentration units for 2010

Ambient  Coal  Oil A 8 Flow Fl.ow Service Ind.
burning  out in process  process

Indonesia 17 1 19 205 321 354 0 4
Brazil 22 2 28 52 138 161 6 26
us 11 49 53 38 128 129 33 24
India 36 1481 286 379 249 379 17 436
China 36 3256 208 318 311 324 17 1301
Poland 19 3875 107 12 195 214 42 59
Six country average 23 1444 117 167 224 260 19 308
Pixel average 23 958 104 155 200 227 17 357

(sample size= 26,169,345 pixels)

Note: This table shows ambient concentration and emissions expressed in concentration units for selected
countries and emission sources. Coal, oil, industry and service emissions are from IEA. Agricultural
burning data is from IIASA. Flow in and out are own calculations using AOD measurements and wind
data from Wentz et al. (2015).

lives in a place that is more polluted than average. Looking down the first column of
table 1 the smallest country level mean is about 0.12, while the largest is 0.31. The range
in exposure is larger, from 0.12 in Brazil to 0.53 in China. Brazil is alone in having its
population in places that are less polluted than average. China and India have about the
same levels of AOD on average, but exposure in China is much higher. The first two
columns of table 1 confirm what we see in figure 1. Countries matter, as does the within
country geography of population and concentration.

The next two columns report percentage changes in AOD and exposure between 2000
and 2010. Indonesia saw AOD fall by about 16%, but exposure by only 1.8%. Thus,
Indonesia accomplished a dramatic reduction in concentration, but this reduction did
not occur in places where people lived (or people migrated to more polluted places).
Column 5 gives the ratio of these two changes, Indonesia reduced concentration by
about 8.5% for each 1% reduction in exposure.

Looking down the rows of columns 3 to 5, we see that India’s increase in concentration
matched its increase in exposure closely. China, on the other hand, saw exposure
increase almost twice as fast as concentration. Poland decreased exposure more than
twice as fast as it decreased concentration.

Table 1 and figure 1 suggest the importance of equilibrium responses to changes in the
costs and benefits of particulate emissions. Differences in the geography of particulates
mean that in 2000, the average Chinese has about 50% higher exposure than the average
Indian, despite almost identical average levels of AOD. Table 1 and figure 1 also suggest
the importance of country level factors in determining particulates and exposure.

Table 2 complements these conclusions by describing the contributions of various

economic activities to concentration by country. For reference, the first column reports
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mean annual concentration of particulates for 2010 in kg/km3. The subsequent columns
express the particulate emissions from a particular class of activities as a concentration.
This value is the ratio of two quantities. The numerator is the mass of particulate
emissions from a particular source in 2010. The denominator is the mixing volume of
each country, the area of the country times the mixing height. We postpone a discussion
of data sources. Thus, the total particulates from coal combustion in China in 2010
contributed 3256 kg/km? of particulates to China’s entire mixing volume. The top panel
of table 2 reports country level calculations. The bottom panel presents two aggregate
calculations. The country average is calculated by first performing our calculation for
each country and then averaging, giving each country equal weight. The pixel average
is an average over countries, weighting each country by its mixing volume.

Table 2 suggests three conclusions. First, the flow of particulates into the atmosphere
in a year is large compared to the average ambient concentration. On average emissions
have a short residence time in the atmosphere, or equivalently, the deposition rate is
high relative to the emission rate. In section 6 we develop a model of the way that
particulates enters and exits the atmosphere. The high ratio of particulate emissions to
average concentration motivates our decision to model this process in steady state.

Second, the bottom panel of table 2 suggests an approximate ranking of the impor-
tance of different activities for particulates concentration. On average, coal is by far the
most important source of particulate emissions. Oil and agricultural burning are both
important, but are an order of magnitude less important than coal. Flows of particulates
into a country’s mixing volume from the rest of the world are about double the mass
of emissions from oil or agricultural burning, but are almost perfectly offset by flows of
particulates out of a country’s mixing volume. Unsurprisingly, the service sector makes
almost no contribution to emissions. Process emissions from heavy industry are the
most important contributor to emissions after coal.

Third, the top panel of table 2 presents country level statistics which demonstrate
again the first order importance of country heterogeneity. In figures 1 and OA1, and
in table 1 we see that particulate concentration and its distribution across populous
and unpopulous places differs across countries. In table 2 we see that the portfolio
of polluting economic activity also differs across countries. For example, agricultural
burning is a vastly larger emissions source than coal in countries such as Brazil or

Indonesia.



3. Literature

Our analysis is motivated by evidence for the importance of general equilibrium ad-
justments to regulation of particulates emissions, much of which is based on studies
of the US Clean Air Act (CAA). The CAA is a collection of regulations that impose
restrictions on emissions in regions of the US that fail to attain mandated standards for
air quality, including levels of particulates. The effects of the CAA have been studied
intensively (see, e.g., Currie and Walker (2019) and Aldy, Auffhammer, Cropper, Fraas,
and Morgenstern (2022)).

Chay and Greenstone (2005) find that areas subject to regulation under the CAA saw
Total Suspended Particulates (TSP)3 decline from 9o to 30 pug/m3. They conclude that
a 10% decrease in TSP increases house prices between 2% and 3.5%. Greenstone (2002)
finds that regulation decreased employment by about 600,000 in non-attainment regions
between 1972 and 1987, on the order of 1% of US employment during this time. Walker
(2013) finds that workers in non-attainment areas are displaced to clean industries and
to attainment areas. Becker and Henderson (2000) find that dirty industries tend to
migrate to attainment areas. Finally, Gibson (2019) shows that regulated plants may
substitute from air to water pollutants, and that air emissions increase at unregulated
plants relative to regulated plants within the same firm.

A more recent empirical literature establishes significant migration responses to air
pollution in China (Chen, Oliva, and Zhang, 2022), and especially so for high-skilled
workers (Chen et al., 2022, Khanna, Liang, Mobarak, and Song, 2024).

In short, the existence of the sorts of general equilibrium effects with which we are
concerned is empirically established for a specific US regulation and select emerging
markets. Regulation of particulates can lead to the migration of firms and workers
across sectors and regions.

With this said, it is hard to guess from the available results what, for example,
the equilibrium effects of agricultural burning restrictions in Pakistan or coal taxes
in Russia would be. This is the type of question we hope to address systematically
with our analysis, bringing a macro perspective to the literature on developing country
particulates policy (Greenstone, Pande, Sudarshan, and Ryan, 2024, Jack, Jayachandran,
Kala, and Pande, 2024, Davis, 2008, Duflo, Greenstone, Pande, and Ryan, 2013, Oliva,
2015).

3TSP is a now archaic measure of of particulate concentration. It describes the concentration of
particulates of all sizes. In contrast, contemporary measures are PM10 or PM2.5, the concentration of
particulates with radius less than 10 and 2.5 yum. Converting from TSP to PM1o or 2.5 is problematic.
World Bank, (1999) suggests PM1o= 0.55xTSP.



Our analysis thus builds on the long and influential tradition of integrated
environment-economy models (Dietz, 2025). Within this literature, our analysis is most
similar to recent efforts to analyze environmental processes in general equilibrium. Most
of this work considers climate change (Hassler, Krusell, and Smith Jr., 2016), and only
a few papers consider particulates. Carbone and Smith (2008) develop a single-region,
multi-sector model of air quality in the U.S. economy and show that the welfare costs
of energy and transport taxes may be significantly over- or under-estimated by partial
equilibrium. Perhaps most closely related, Hollingsworth, Jaworski, Kitchens, and Rudik
(2024) develop an economic geography IAM specific to the United States to analyze air
quality standards in spatial equilibrium. Their results show large welfare gains that
would have been substantially underestimated by an analysis ignoring the movement of
pollution, workers, and activity across space. Khanna et al. (2024) develop a quantitative
model to estimate the aggregate productivity consequences of particulates in China.
Their results also demonstrate the importance of equilibrium adjustments and of the
migration response to particulates in particular. Relative to these papers, we offer a
global perspective, a cross-country comparison of particulate policies” effects across 30
countries, and a multi-sector model that allows for a detailed delineation of specific
policies and emissions sources ranging from agricultural residue burning to road dust
(at the expense of, e.g., a coarser within-country geography). These details are important
to capture, for example, the relative importance of oil as an input to agriculture and thus
the potential of petroleum taxes to affect rural populations disproportionately.*

Several modeling groups have also developed non-equilibrium IAMs with partic-
ulates. For example, the seminal AP3 model tracks emissions, concentrations, and
damages for several pollutants including PM; 5 across U.S. counties (see, e.g., Muller and
Mendelsohn (2007, 2009), Holland, Mansur, Muller, and Yates (2016), Tschofen, Azevedo,
and Muller (2019) and also the INMAP model by Tessum and Marshall (2017)). Though
rich and spatially detailed, these models take the locations of people and firms as given,
precluding an examination of the equilibrium responses to particulates policy we study.

Finally, the International Institute for Applied Systems Analysis” GAINS model
(“Greenhouse gas - Air pollution Interactions and Synergies”) features an extremely

detailed representation of emissions-causing processes, accounting for details such as

4In contrast, in, e.g., Khanna et al. (2024), particulates are modeled in reduced-form as function of local
employment. Our focus on particulates and on multiple sectors, emissions sources, and energy inputs
also distinguishes our model from the growing frontier in spatial economics of climate change (e.g., Cruz
and Rossi-Hansberg (2024)), which feature extra richness in numerous dimensions but, given the nature
of carbon pollution, often do not distinguish fossil energy inputs or feature only one or two production
sectors. Some of our results nonetheless relate, such as on the important benefits of local revenue rebates
(Conte, Desmet, and Rossi-Hansberg, 2025), although for different reasons.



the distributions of boiler types and livestock species across countries. GAINS is
probably the most extensive multi-country, multi-pollutant IAM. However, GAINS is
not an equilibrium-based model and does not consider the behavioral responses to
pollution regulation that are our focus. We nonetheless build on GAINS in our model
quantification, as other scholars have done (e.g., Parry, Heine, Lis, and Li (2014)).

Our investigation is also motivated by the literature examining the effect of partic-
ulates on health. These papers (e.g., Chay and Greenstone (2005), Arceo, Hanna, and
Oliva (2016), Chen, Ebenstein, Greenstone, and Li (2013), Knittel, Miller, and Sanders
(2016), Deryugina, Heutel, Miller, Molitor, and Reif (2019)) often estimate the effect of a
marginal unit of particulates, applied to a treated population by a quasi-random process,
on a health outcome of interest. Apart from the fact that particulates are surprisingly
poisonous, two findings from this literature are relevant.

On the one hand, each of the papers listed above finds that IV estimates of the health
effect of particulates are between 3 and 20 times as large as the OLS estimates, suggesting
that a unit of particulates applied to a location at random is much more harmful than
is a typical unit in equilibrium. That is to say, in equilibrium people are able to make
adjustments that substantially reduce the harmfulness of particulate concentration.

On the other hand, Arceo et al. (2016) in particular, observes that the response of
child mortality to marginal increases in particulates are about the same in San Francisco
as in Mexico city, despite the large difference in the level of particulates. This fact
motivates our simple measure of exposure, population weighted mean AOD (in line
with the linearity in the dose-response function that Arceo et al. (2016) observe). We do,

however, allow for convex disutility over AOD in our quantitative model.

4. Data

The objects of this project are to (1) describe patterns of exposure, (2) investigate the
relationship between equilibrium levels of exposure and various polluting activities, and
(3) develop and calibrate a particulates integrated assessment model.

Steps (1) and (2) require three primary types of data. The first is gridded panel data
describing the locations of concentration and population. The second are measures of
the physical environment that affect the deposition, dispersion or natural sources of
particulates, e.g., climate, wind and land cover. The third is descriptions of polluting
activities such as fuel use. In this section we briefly describe each class of data, relegating
more technical details to the Appendix. We also postpone descriptions of additional data

required for Step (3) to Section 6.
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A AOD and population

We rely on a remotely-sensed measure of particulate concentration, aerosol optical
depth, provided by the NASA Terra satellite using the Moderate Resolution Imaging
Spectroradiometer (MODIS) (Levy, Hsu, and al., 2015). MODIS records the intensity of
the light reflected into space from the surface of the Earth. Comparing this measured
intensity with a reference value allows an estimate of the share of light that is dispersed

in the air column. More precisely,

AOD = —In ( light arriving at ground ) '

light arriving at top of atmosphere

That is, AOD is a positive, monotone transformation of the fraction of light arriving at the
top of the atmosphere that reaches the ground (Jacob, 1999a). Following the literature,
we rescale AOD from 0 — 5000 to 0 — 5.

The spatial resolution of the MODIS AOD data is about 3km square and they are
available about daily. To ease computation, we reprocess all of our gridded data to a
standard grid with a resolution of 0.0833 arc minutes, about 10 kilometers at the equator.
This results in a grid of pixels 4320 x 1740, with a North-South range from 85 degrees
North to 60 degrees South. After reprocessing each daily image into this grid, we average
over days within each year. Figure OA1 (a) maps these data for the world in 2010.

Table 3 provides descriptive statistics for our AOD data in 2000 and 2010. The left two
columns describe the 233 countries covered by our gridded population and AOD data,
while the right two columns describe the 30 countries for which we calibrate our IAM.

The 233 countries described in the left two columns contain about 6.34b people in
2010. In 2000, world average AOD was 0.17 and this increased to 0.20 by 2010. Exposure,
person weighted mean AOD, was higher and increased faster, from 0.33 in 2000 to 0.38
by 2010. Thus, people tend to concentrate in more polluted places.

Turning to the right two columns, in 2000, average AOD in our main sample was
0.15 and this increased to 0.19 by 2010. Exposure in 2000 was 0.36 increasing to 0.44 by
2010. This sample contains about 0.91m pixels and 4.10b people. Thus, our main sample
describes about 65% of the population reported in the larger sample and covers about
60% of the area. Concentration in the model sample is marginally lower than in the
universe, and exposure is somewhat higher. This is consistent with the main sample of
countries being somewhat larger, more developed and more urban than the full sample.

We are interested in the concentration of particulates in the air, mass per unit volume.
We convert AOD to concentrations with the conversion factor p = 100ug/m3 PM1o
suggested by Gendron-Carrier, Gonzalez-Navarro, Polloni, and Turner (2022). Thus, an
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Table 3: Descriptive statistics
Whole World (233 Countries) Main Sample (30 Countries)

2000 2010 2000 2010
AOD 0.17 0.20 0.15 0.19
Exposure 0.33 0.38 0.36 0.44
Pop (000,000) 5,627 6,341 3,704 4,102
Area (00km?) 954,833 954,833 529,026 529,026
Pixels 1,512,023 1,512,023 910,150 910,150

Note: Description of particulate concentration and exposure for the whole world (top) and for 30 country
sample on which most of our analysis is based (bottom). AOD data is from NASA’s MODIS, measured by
the Terra satellite (Levy et al., 2015). Exposure is the population-weighted AOD average across pixels.
Population data is from Gridded Population of the World (CIESIN, 2016). The 30 countries described by
the bottom panel are; Australia, Bangladesh, Belarus, Bosnia and Herzegovina, Brazil, Bulgaria, China,
Croatia, Czech Republic, Estonia, Greece, Hungary, India, Indonesia, Lithuania, Malaysia, Pakistan,
Poland, Portugal, Republic of Korea, Romania, Russian Federation, Serbia, Slovakia, South Africa,
Thailand, Turkey, Ukraine, UK, and the US.

AOD measure of 1 in one of our nominally 10km? pixels maps to an annual average
concentration of 100ug/m? PM1o.

Particulates cause health problems when people come into contact with them, while
MODIS measures AOD throughout the whole air column. Ideally, we would measure
particulate concentration at ground level. See Hidy et al. (2009) for a discussion of this
issue.> Howeover, the ability of MODIS data to predict ground based particulates is well
established, e.g. Gendron-Carrier et al. (2022), Foster, Gutierrez, and Kumar (2009) or
Kumar, Chu, and Foster (2007). Given this, we base our analysis on MODIS AOD data.

We measure population using version 4 of Gridded Population of the World (CIESIN,
2016), for 2000, 2005, 2010, and 2015. These data are based exclusively on administrative
data describing population. They are constructed by assigning population to about 1
km square pixels (0.0083 degrees) and interpolating to provide pixel based population
estimates in modulo five years. We reprocess these data by consolidating pixels into
10 x 10 groups. The resulting 0.083 degree grid is the basis for our gridded data. Figure
OA1(b) presents a map of our population data for 2010.

B Climate

Climate is important for our analysis for three reasons. First, relative to ground based
instruments, MODIS is less able to distinguish water vapor (particles of water) from the

5Related to this, Brauer et al. (2015) use the MODIS together with population and other data in an effort
to arrive at more precise estimates of ground level particulates. While the resulting data is likely superior
to our raw MODIS data as a measure of ground level particulates, this improvement is accomplished by
confounding particulates data with population density. For our purposes, this leads to difficulties in the
interpretation of correlations that do not arise with the raw MODIS AOD data.
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dust and soot that is our main concern. Consequently, controlling for local measures
of water vapor may be important in regression analysis. Second, MODIS only operates
on cloud-free days, and so climate has a direct impact on the selection of days and
pixels where we measure AOD. Third, climate may affect concentration directly because
rainfall contributes to wet deposition of particulates.

We rely on Jones and Harris (2013) for monthly gridded measures of climate. These
data are available monthly with a spatial resolution of 0.5 degrees. We reprocess them
to our finer grid and average over months to create annual measures. In particular, we
calculate annual means of, days of cloud cover, mean daily precipitation, mean daily

vapor pressure, mean daily temperature, and days with frost.

C Emissions

We measure cross-border particulate flows, fossil fuel use and economic activity at
the country level. At the pixel level, we measure three other sources of particulates;

urbanization, land cover and fires.

Fossil and organic fuels: Combustion is a major source of particulates. We focus on two
kinds of economically important combustion, modern energy and biomass burning.

We observe consumption of three main fuel groups, by country, year, and economic
sector. The groups are, as defined by the International Energy Agency (IEA): coal, peat,
and oil shale (from here on, coal); crude oil, oil products, natural gas liquids, and refinery
feedstocks (from here on, oil); and natural gas along with other clean energy sources,
including solar, nuclear, geothermal, and wind (from here on, gas/green). To facilitate
aggregation across fuels, all energy consumption is measured in million tonnes of oil
equivalent (Mtoe). Figure OA2 (a) illustrates the intensity of coal consumption per unit
area in 2010, with darker gray indicating more intensive coal use, lighter gray indicating
less coal use, and tan indicating missing data.

We observe organic fuel (also called biomass) consumption for about 6o countries (the
actual number varies slightly by fuel and year), as reported by the International Institute
of Applied Systems Analysis (IIASA). Biomass consumption is measured in petajoules
(P]) and includes household use of organic fuels like wood, dung, and agricultural
byproducts burned for energy generation. Agricultural waste burned for clearing and
other non-energy purposes is tracked separately. Figure OAz2 (b) illustrates the intensity
of organic fuel use in per unit area in 2010, with darker green indicating more intensive

use, lighter green indicating less use, and tan indicating missing data.
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GDP sector shares and GDP: Both the level and composition of economic activity are
important potential determinants of particulate emissions. To measure economic activity
by sector, we use country-year level data on the GDP shares of agriculture, industry, and
services from the World Bank (World Bank Development Indicators), and data on non-

combustion particulate emissions from industry, services, and agriculture from IIASA.

Urban vs rural:  Inspection of figure 1 suggests that urban areas are more polluted than
rural areas. To measure urban status, we rely on two sources of information. The first
is our gridded population data. The second is World Bank (2018), which reports the
urban share of each country’s population. Using both data sources, for each country,
we assign the smallest possible number of pixels to the urban class, subject to reaching
the urban population share reported in World Bank (2018). Figure OA2 (c) shows the
resulting partition of the world into rural and urban. Our model describes small open
economies consisting of rural and urban regions. Our calibration of this model relies on

the geography illustrated in figure OA2 (c).

Land cover: ~ Some of our regressions investigate the relationship between land cover
and particulates. We rely on MODIS land cover and fire data, (Channan, Collins,
and Emanuel (2014) and Giglio and Justice (2015)). The land cover data are annual,
gridded data with about 5 km? resolution. Each pixel reports one of several land cover
classifications, among them, crops and barren. We reprocess these data into our standard
grid.® MODIS fire data are more complicated. MODIS reports measures of fires at
approximately two week intervals for 250m? pixels. To aggregate to our larger pixels
and longer periods, we calculate the share of 250m? pixel days of fire occur in each of
our larger and less frequently observed pixels. This is our MODIS fire index.

Cross-border flows: Cross-border flows are sometimes important sources or sinks for
particulates. To measure such flows at the country-year level, we must measure pixel
level mean annual wind. We rely on Wentz et al., (2015) to measure mean monthly
wind speed for a 0.25 degree grid. We aggregate to years and reprocess to match our
somewhat finer analysis grid. We are left with two grids describing wind speed. One
gives mean wind velocity North to South, and the other East to West. Together with

®The MODIS land cover data also report an “urban” land use code. We experimented with using this
code to indicate urban areas. We found that it was less related to population density than our current
method. We also investigated changes in the MODIS urban code to track construction, a likely source of
particulates. We concluded that the data are too noisy to be informative about new building.
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Table 4: Explanatory power of country and year indicators

(\1{) 2) () 4) ©) (6) )

Country FE . . Y )

Year F . Y . . . Y .
Country x Year FE . . Y . : : Y
Climate . . . Y Y Y Y
30 countries:

N 3640600 3640600 3640600 3636452 3636452 3636452 3636452
R?*(Area weighted) 0.304 0.014 0348 0.122 0420 0.133 0459

R?(Population weighted) 0.418  0.020 0463 0.129 0524 0.140  0.559

our AOD data, this allows us to calculate the aggregate flow of particulates across any
border in our data (kt/year). The details of this calculation are in the appendix.

Using our definition of urban and rural areas, we calculate all cross-border flows
at the level of the country-region. Figure OA2 (d) illustrates these flows for 2010. We
represent cross-border flows, not by their total mass, but by their capacity to contribute to
concentration. That is, we divide by the volume air in which they disperse, the country-
region’s area times its mixing height. Absent systematic evidence about cross-country
differences in mean annual mixing height we fix this quantity for all countries based on
detailed estimates from across the United States (see Appendix).

In figure OA2 (d), bright red to white country-regions are net exporters of airborne
particulates, light to dark gray country-regions are net importers. Most countries,
particularly those with long seacoasts, are net exporters. Central Africa is known for both
dust storms and agricultural burning, and a handful of these countries are importers.
China’s southern neighbors are net importers, as are Brazil’s southern neighbors. Look-
ing closely at the figure suggests that many European cities export particulates to the

surrounding regions.

5. Descriptive and reduced form results

We now consider the equilibrium relationship between emissions, concentration, and
exposure. We begin by investigating the importance of country and year level variation
in our four year panel of pixels. Table 4 presents the results of a series of regressions of
pixel-year level AOD on various indicators and climate controls.

Column 1 presents the results of four regressions of pixel level AOD on Country fixed
effects in our main sample of 30 countries. Moving down the column, we first report the
number of pixel-years. In the next row, we report the R? of this regression, 0.30. That is,
with only country level indicators we explain 30% of total variation in pixel level AOD
over 2000, 2005, 2010 and 2015. At first glance, this seems surprising. Very small particles
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aside, particulates fall out of the air in days to weeks. There is also a literature reporting
the rate at which particulate concentrations decay as a function of meters from a source,
e.g., Cho et al., (2009). Given this prior evidence for the importance of small scale, high
frequency variation, the fact that country level variation has so much ability to predict
concentration is unexpected. However, recalling figure 1(a), it is less surprising. There
are obvious differences in mean annual particulate concentrations across Russia, India
and China. Our fixed effect regression establishes the generality of this observation.

The next row of column 1 reports the R? of the same regression where pixels are
weighted by their population rather than their area. We here describe the exposure of
an average person rather than an average pixel. We explain 42% of the variation in
exposure in this regression. Knowing only country of residence, we reduce mean square
prediction error for individual exposure almost in half. Column 2 parallels column
1, but estimates the effect of year indicators for the four panel years, 2000, 05, 10, 15.
These have little ability to predict either concentration or exposure. Column 3 includes
indicator variables for each country-year pair. These regressions have marginally more
predictive power than country variables alone.

In all, columns 1-3 suggest that country level fixed characteristics are important for
determining exposure. We would like to establish that this does not simply reflect
country specific climate. Column 4 of table 4 reports a regression, like those in columns
1-3, but where the control variables are our four pixel-year level climate variables. We
see that the R?s in these regressions are 0.12 and 0.13, depending on specification.

Columns 5-7 of table 4 replicate columns 1-3, but add our climate controls. These
regressions have higher R?s than either the corresponding regressions without climate
controls. They also have higher R?s than the climate only specification in column 4.
Thus, we reach three conclusions. First, climate is important, but country level factors
are important independent of climate. Second, country level indicators explain more
variation in concentration and exposure than climate measures that vary at the pixel-year
level. Third, world trends are not important for understanding particulates exposure
during our sample period.

Table 4 shows that country level variation can explain close to half of all variation
in exposure. We now investigate the extent to which additional pixel level variation
is important for exposure. Table OA1 repeats variants of the population weighted
regression of column 6 of table 4 where we add the following pixel-year level covariates
one at a time, and all together: pixel-year population, our pixel level urban indicator,
and remotely-sensed measures of fires, share in crops, and share barren. These results

require three comments.
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First, all of the pixel level variables, except for fire, are highly significant when
included singly or together. However, none of them does much to increase the precision
with which we can estimate exposure. The R? for column 7 of table 4 is 0.56. Adding all
of our pixel level covariates increases only increases this to 0.63. High quality, spatially
disaggregated measures of particulate sources barely improves our ability to predict
exposure once we know country-year of residence.

Second, the urban indicator variable reduces our prediction error by slightly more
than does the linear term in population density, so the step function in density implied by
the indicator variable is a better predictor of AOD than a linear function. The geography
of our model is partly motivated by this finding. In our model, each country is divided
into rural and urban regions.

Third, remotely-sensed measures of pixel share in crops and and barren are sources of
dust, and unsurprisingly, contribute to exposure. Exposure is not purely anthropogenic.
Physical geography plays a role. That our remotely-sensed measure of fire intensity
is unimportant may seem surprising, but is consistent with the geography of smoke
dispersion. Smoke plumes from wildfires often spread out over much larger areas than
our 10km? pixels (Wen et al., (2023)).

We next investigate the extent to which pixel-year level variation in exposure can be
attributed to country-year level variation in economic fundamentals. In table OA2, we
present pixel level regressions of AOD on variables that vary only at the level of the
country-year. These regressions are population weighted, and so measure the ability of
particular country-year level variables to predict exposure.

The country level variables that we consider in table OA2 are measures of natural
gas and renewables, coal, and petroleum per square kilometer of country area, and
also GDP in services, industry and agriculture, also per unit of area. Holding mixing
height constant, these variables are proportional to consumption per unit of country
mixing volume. Because the physical process that determines concentration depends on
particulate mass per unit volume, these normalized variables are more relevant to an
investigation of concentration and exposure than unadjusted levels. We consider these
variables both one by one and together.

Country-year level coal consumption has an R? of 0.14. Country-year level oil con-
sumption and green power are both significantly related to equilibrium exposure, but
have little predictive ability. Surprisingly, the sign on green power is negative. This
points to an inference problem that helps to motivate our model. While natural gas,
wind, and solar power cause essentially zero particulate emissions, all else equal, they

do not reduce concentration. More likely, countries that rely more heavily on these fuels
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also rely less heavily on dirtier power sources. This regression describes an equilibrium
relationship, not a causal one.

Organic fuel consumption and agricultural burning per square km have the expected
positive effects on exposure and have even more ability to predict exposure than coal
consumption. GDP in services per unit of area has little ability to predict exposure.
Countries that produce more agricultural and industrial products have greater partic-
ulate exposure, although only agricultural GDP has much ability to predict exposure.
Cross-border flows in increase exposure and conversely for flows out. These two
variables have an R? of 0.04.

The final column of table OA2 includes all of these country-year level regressors
together, and the results of this regression are important to our analysis. The R? of this
regression is 0.39. In contrast, the R? in column 3 of table 4 (the comparable specification)
is 0.46. That is, this relatively short list of likely suspects explains most of the variation in
exposure that can be explained by factors that vary at the country-year level. Therefore,
these results also indicate the importance of national particulates policy.

Finally, comparing table OA2 to table 2 we see that the regression results are broadly
consistent with raw data describing emissions, although the raw emissions data suggests
a relatively larger role for coal than do the regressions.

Our results so far suggest the following stylized facts about equilibrium exposure.

1. Exposure is substantially determined by country level factors. The importance of
these factors is stable over time and substantially independent of climate.

2. Variation in exposure that is not explained by country-year factors is also not
explained by a number of likely candidates that we measure at the pixel-year level.

3. Nearly all country-year level variation in exposure can be explained by a short list

of economic fundamentals that vary at the country-year level.

In addition, the geography of exposure matters. India’s exposure is dramatically
lower than China’s despite similar mean concentrations. It follows that an understanding
of equilibrium exposure requires either a research design that isolates variation in, e.g.,
natural gas and renewable power reliance, or the construction of a model in which the
importance of different sorts of linkages and adjustment mechanisms can be assessed.

We here pursue the second approach.
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6. Model

This section presents the structure of our Spatial Equilibrium Particulates Integrated Assess-
ment (SEPIA) model. Our goal is to use SEPIA to evaluate two classes of comparative
statics: those that relate particulates policies to outcomes of immediate interest, exposure
and welfare; and those that relate particulates policies to unintended consequences such
as migration across regions or sectors. Both are of intrinsic and policy interest.

The model treats each country as a small, open economy inhabited by a continuum
of households. Each country contains two regions, urban (indexed by u) and rural
(indexed by a). There are four sectors of production, summarized in table 5. This
section proceeds by describing (i) production, (ii) households, (iii) government, (iv) the
particulates model, and, finally (v) competitive equilibrium. Conventionally, we denote

exogenous world prices with an “*” superscript, and let N represent each country’s

population size. For legibility, we omit country subscripts.

A Production

Industry: Industrial output, Y/*, in each region k € {u,a} is produced using capital,
KT*, labor, L!*, and composite energy, J*. Energy is produced using coal, E!*,
petroleum, ELk and clean (green/natural gas), ELE as inputs. We adopt a standard
specification of technology (e.g., Golosov, Hassler, Krusell, and Tsyvinski (2014)):

I
yIk _ Af,k(KI,k)a(Ll,k)l—a—vf (ﬂ,k)” (1)

e (2)

Competitive producers rent capital from international markets at price R*, hire labor

I = (LB + k(BT + kg(B19) =

at the local wage w*, and buy energy services at price pg’k . The energy producers, in
turn, import fuels at given prices (p;, p,, py). Polluting fuel use in all sectors may be

subject to ad-valorem taxes 7. and 7;,. Industrial output serves as numeraire.

Services:  Production of services, Y?, is analogous to industry. Parameters differ so as

to capture, e.g., greater importance of petroleum in services.

Y = AS(KS)(L5)tmemr (JS)US (3)
JS = (nf(E )5 RS(ESF 4k (Ej)gel):‘l. (4)

Services are not tradable and so their price p° is domestically determined.
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Table 5: SEPIA Sectors

Sector Location(s) Tradeable? Inputs

Industry (1) Urban and Rural Yes Capital, Labor, Energy
Services (5) Urban No Capital, Labor, Energy
Agriculture (M) Rural Yes Capital, Labor, Energy
Energy Services (J k ke 1,5,M) Urbanand Rural No Coal, Oil, Gas/Green

Agriculture:  Agriculture Y, differs from the other sectors in two ways. First, we
assume decreasing returns to scale to reflect unmodeled land inputs. Second, we model

agricultural waste burning B and the cost 2(1:) of reducing fires by fraction s:
YM = (1= () - AM(LM)PE (M )R (M) (5)

As is common, we assume that agricultural land rents 7 = ((1 — p¥ — p}f —
p]y )pM "YM) are paid to absentee landlords abroad.

Similarly to carbon abatement costs in Nordhaus (2017), our model of fire abatement
costs provides a reduced form description of the fact that agricultural burning can be
reduced through reductions in production, substitutions of labor (e.g., Norgrove and
Hauser (2015)), and of capital (e.g., Sidhu et al., 2015 ).

Let ¢ denote the country’s baseline agricultural burning intensity. Net burning, B,

and associated abatement costs are given by:
B = (1-m(y") (6)

2p) = vpp*2. (7)

Farmers may be subject to an excise tax, 7z, on burning.” Otherwise, the sector
is analogous to services and industry: Competitive producers hire workers in the
rural labor market, rent capital from abroad, and obtain energy services based on an

aggregator:

e-1 e—1 e=1\ e—1
JM = (RM(EMYE k)BT + ) (B )T, ®)

Agricultural output is tradeable at the international price, p™".

Emissions: Each sector in the model economy produces particulate emissions directly,

and indirectly through energy consumption. Let {™ denote the particulate emissions

7This tax serves as wedge representation of the different policies adopted in practice. For example,
in India, farmers can be fined for crop residue burning (India Times, Nov. 17, 2018 “Despite Ban and
Penalties, Stubble Burning Has Only Increased This Year”), and Indonesia banned certain types of burning
in 2014 (see Rohadi (2017)).
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intensity of activity m. Industrial emissions in each location £ € {u,a} may stem
from (i) coal combustion ¢EX*, (ii) petroleum combustion ¢PEL*, and (iii) process
emissions (such as from iron and steel production) which we model as a by-product via
¢y 1k Analogously, the services sector may contribute to urban particulate emissions
through (i) coal combustion ECE?, (ii) petroleum combustion ¢PES, and (iii) process
emissions ¢°Yy (such as road dust suspension from transportation). Finally, there are
four sources of particulate emissions in the agricultural sector: (i) coal combustion ¢&¢EM,
(ii) petroleum combustion EPEM | (iii) waste burning ¢BB, and (iv) process emissions
My M (such as fertilizer usage). Total endogenous particulate emissions, Emiss®, in

both regions are the sum of all emissions in the region,

Emiss" = ¢°1E; + B + € [By) + Byt +€7Y° + ¢y )

Emiss® = ¢(EM + EM + @[EY + B+ MY M 4 ¢lyle 4 ¢PB. (10)

B Households

The economy is populated by a continuum of households indexed by i. Households
choose where to live and work based on their preferences over consumption, partic-
ulates, and an idiosyncratic net amenity value of living in the rural area, ¢;. This
term captures the fact that urban-rural wage gaps often cannot be fully explained by
observables, so that matching the data requires a residual preference for rural areas
(capturing, e.g., informal risk sharing networks).

Let ¢/ denote urban and z/ rural consumption of goods j = I,S5,M, respectively.
Utility is CES over the aggregate consumption bundle, which, in turn, is a Cobb-Douglas
composite of the different consumption goods:

~1—0o
V“(ml,xM,:L‘s,AOD“,ei) = f —x1(AOD")X2 + ¢; (11)
-0
~ I _pl_pS
7 = (xl>9 (:ES)GS(:L,M)I 0'—0 (12)
El—a
vi(el, M, %, AODY) = ] — x1(AOD")X2 (13)
-0

T = (05)95(01)91(01\4)1—91—95‘

(14)

Households supply one unit of labor inelastically wherever they live, earning w" in the

urban area or w* in the rural area. Households may receive lump-sum transfers 7" from
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the government. We abstract from households’ savings and investment decisions. The

annual budget constraints for households in each region are,

xj—l—prSanM*xM <w®+T. (16)
Because the manufactured good is the numeraire in both regions, we are implicitly
assuming that trade in this good across the two regions is costless.

Free mobility implies that a marginal household will be just indifferent between living

in the urban or rural area. Their cutoff amenity value € is thus defined by the condition:

’51—0 ’i.“l—o

¢ ={7— —xa(40D") 2} —{

—0 1
For our calibration exercise, ¢; follows a generalized extreme value distribution described

— x1(AOD) 2} (17)

g

in the appendix.

C Government

Our benchmark analysis considers the equilibrium impacts of both energy input taxes
and agricultural burning taxes. Government revenue from these levies, G, is either
discarded or re-distributed to households via lump-sum transfers 7. We thus abstract
from broader fiscal policy and posit the following public budget constraint:

G =71pB + TCZEg + TPZE]Z,j € {lLa;lu;S; M} (18)
J J
N-T<LG

D Pollution Model

To describe the way that particulates are transported across boundaries, we rely on a
two box diffusion model, a slight generalization of an elementary particulate transport
model.® Such stylized box-diffusion models are common in the integrated assessment
literature, e.g., the global carbon cycle (e.g., Nordhaus (2017) ).

In our model, there are three regions, a box for the rural region, a box for the urban

region, and the rest of the world. Inflows from the rest of the world are exogenous.

8For example, Jacob (1999b). We note that detailed pollution dispersion models have been developed
for both regulatory and research purposes (e.g., EPA (2017)). However, these models are typically designed
for the analysis of specific sources” impacts at fine spatial and temporal scales. The goals of this paper,
in contrast, are (i) to study pollution movement and concentration changes over large spatial (two regions
per country) and temporal (annual) scales, and (ii) to integrate a representation of these processes with a
macroeconomic model. These considerations favor our approach.

22



The model’s four main assumptions are: particulates are uniformly dispersed within
each box; the mass of particulates is conserved; the system is in steady state; and the
deposition rate of particulates in each box is proportional to the total mass in the box.?

So far, we have partitioned countries into rural and urban regions. For the purpose
of describing particulate transport we instead consider a sending region and a receiving
region, where the sending region is a net exporter of particulates to the receiver. Index
these regions by k € {s,r,w}.

Figure 2 illustrates the main features of the particulate model. Each region k € {s,r}
contains emissions sources that produce mass F** of particulates per unit of time
(kg/year). Each region also receives a flow of particulates from the world, F“¥, and
sends a flow of particulates to the rest of the world, F**. The sending region also sends
F*" to the receiver. Deposition, or “flow into the ground”, is denoted D*.

In any steady state, the conservation of mass requires the sum of flows in and internal

sources must equal the sum of deposition and flows out,

0 — FSS _ DS + F’LUS o FS’UJ _ FST (19)
0 — FT’/‘ _ D?” _|_F’LU7" _ FTU) + FST.

The first of these two equations gives a mass balance condition for the sending region,
and the second for the receiving region. The two conditions are symmetric except for
the treatment of flows from s to r.

We next describe the components of equation (19). For kK € {s,r,w}, introduce the
following notation. Let /¥ be the length in km of the border over which wind blows
from k to k' (km) for k,k' € {s,r,w} and let v**" be the mean annual wind velocity across
this border (km/yr). Let AOD; be AOD in region k and A* be the area in km? of this
region. Emiss” is particulate emissions in region k (kg/year) from modeled economic
activities and Emissk is particulate emissions from unobserved sources such as dust.
Finally, A is the common mixing height (km) and p the AOD to PM1o conversion factor
(kg/km3 per AOD unit).

The Emiss® are exactly the quantities defined in equations (9) and (10). However,
we here index anthropogenic emissions by their sender or receiver status when we

earlier indexed them by whether they described rural or urban regions. We are actually

9Perfect dispersion within each box is a simplifying assumption, and without this assumption the
problem rapidly becomes intractable. The conservation of the mass of particulates is a basic physical
principle and requires that particulates in each box reflect the net of sources, flows in, deposition, and
flows out. Our focus on steady state equilibrium is also a simplifying assumption, but one that appears
well grounded. We are interested in annual averages, while, as we saw in table 2, the deposition, flow and
production of particulates operates over much shorter time scales.
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describing two distinct economic models, one in which the sending region is urban and
another in which it is rural. In our calibrations, we will choose between these two models
on the basis of the case that obtains for each particular country in the data.

We can describe the components of equation (19) as follows. The flow into and out of
each region Fj; is the product of the concentration of particulates in the source region
times the volume of air that crosses from the source into the sink region. For k,k" €
{w,s,r} and k # K/, we have

FRF = kK \[FF ) AODF. (20)

The first three terms calculate the volume of air crossing the k%’ border in a year, and
the last two terms give the upwind concentration of PM10. The product of volume and
concentration is the mass of particulates transported from k to '

Next, given area, Aj;, the AOD to PM1o conversion factor, p, and the deposition

velocity, v%, deposition is given by,
DF = ok A% pAODF, (21)

for k € {s,r}. Flow across the border reflects flow across the area \I** at velocity v*.
Deposition reflects flow into land area A* at velocity v%,.
Finally, emissions in each region are given by:

F?*° = Emiss® + Emissgy (22)

rr __ . T . T
F'" = Emiss + Emissgy

Substituting (20)-(22) into (19) and rearranging yields expressions for equilibrium

AQOD in each region:
AOD* (Emiss®) = VN pAODY + Emissy, Emiss®
) [U%AS + A(Uswlsw + Usrlsr)] P [USDAS + /\(vswlsw + Usrlsr)]
(23)
AOD" (Emiss®, Emiss’) = VTN pAODY + Emissyy Emiss’
’ ,O(UEAT + Urw)\lrw) p(UEAT + Urw)\lrw)
,UST')\ZST
AOD?(Emiss®).

'U-TDAT + /UTU))\ZT’U)
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Figure 2: A Two-Box model of particulate concentration
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Note: Illustration of two-box model of particulate flows between sending and receiving region and the
rest of the world. F*" is flow from sender to receiver. F'*" and F™ are flows from sender and receiver to
the world. F"* and F*" are flows from the world to the sender and receiver. F'** and F'" are emissions.
D? and D" are deposition.

E Competitive Equilibrium

Competitive equilibrium consists of an allocation {LI/“,LI'“,LS,LM o Kiw gla S M.
Jiv gla g5, gM;  Elv ple ple, pleple ple, ES ESES, EM,EMEM; ol oM o5;
c[,¢M {cS; B,u,AOD",AOD"} a set of prices {ps,pg’“,pg’“,pt?,p]}/[ ; w'w?} and policies
{72,7),78,T} for j € {I,a;1,u;S,M} such that: (1) Profits are maximized in each sector
given prices and policies; (2) Household utility is maximized in each location given

prices; (3) Markets for labor and the domestic services clear:

YS — CS(LS +L1,u) +.T,'S(LM+LI’a); (25)

(4) Budget constraints of the government (18) and the nation are satisfied:
(LM L) @ 4 pM M) 4 (L 4+ L) (4 p™ M) 4t LB oy (B + 0y A )
j J j

(5) AOD obeys the laws of nature (23) and (9)-(10). The Online Appendix provides
details of these conditions for the functional forms of our model.

7. Calibration

Calibration proceeds in three steps. First, we set values for “directly calibrated” parame-

ters at common values for all countries based on the literature or standard assumptions.
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Second, we back out many parameter values directly from data for each country (“di-
rectly from data”). Third, we select the remaining model parameters to jointly minimize
the sum of squared differences between equilibrium moments as observed in the data
and our model for each country (“matching moments”). We here discuss key data
sources and parameters. The Appendix provides more detail.

Production and energy:  For each country, we observe sectoral output values. Using
a tilde to distinguish between revenues and quantities, we observe (}A;I =yl yM =
pMYM, yS = pY") directly from the World Bank, the initial distribution of labor
across urban and rural areas from GPW, and energy inputs at the fuel-sector level (e.g.,
petroleum used in agriculture EZ])” in Bangladesh in 2010) from the International Energy
Agency (IEA). The fuel share parameters for energy production in each country-sector
(e.g., ’ii])\/[ ) can then be inferred directly from optimality conditions (OA4)-(OA5) by using
data on fuel prices (from British Petroleum Company (2016)) and substitution elasticities
(¢) calibrated based on prior literature (see Appendix). For the parameters of sectoral
production, we solve for the initial equilibrium to obtain unobserved prices (e.g., rural
and urban wages) and infer the initial distribution of industrial production in urban
and rural areas. Intuitively, we use the initial observed distribution of the population
across regions, along with observed regional AOD, aggregate data moments (e.g., total
industrial output), and our model equilibrium conditions to infer this distribution via
joint matching of moments (see Appendix). Finally, we quantify agricultural burning
abatement costs based on each country’s baseline residue burning intensity and crop
mix, along with estimates from the literature (see Appendix).

Households: ~ Preferences over consumption goods are country-specific and are esti-
mated from World Bank data on sectoral household expenditures (2010) and services
sector output shares. Calibration of preferences over AOD and rural living is more
challenging. The benchmark calibration sets particulates disutility level parameter x;
to match empirical estimates of household willingness to pay (WTP) for particulate
reductions by Ito and Zhang (2019). Ito and Zhang (2019) estimate a mean WTP of
USD 5.46 per ug/m?® PM1o reduction for households in China with an annual income of
$2,253 who experience mean winter PM10 concentrations of 115 ug/m>. We assume a
quadratic particulates disutility curvature (x>=2) and set x; to match this WTP estimate

given each country’s consumption preferences and domestic price levels.™

°Ito and Zhang’s estimates represent a 5-year aggregate. We convert this figure into an annualized
equivalent assuming a personal discount rate of 3% per year.
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Given these preference parameters, we can then infer the equilibrium rural amenity
value €* for the marginal household by using the free mobility condition (17). Our gen-
eralized extreme value distribution assumption necessitates the selection of shape, scale,
and location parameters, which we jointly select to match (i) each country’s observed
base year distribution of the population given relative wages and particulates levels, (ii)
a benchmark migration-wage elasticity estimate of 1.9 from Morten and Oliveira (2018),

and (iii) the standard location parameter percentile (see Appendix for details).

Particulates: ~ The baseline particulates intensities of different fuels and activities, the
¢’s in (9)-(10), can differ markedly across countries. To quantify these parameters, we
use country- and activity-specific PM10 particulate intensity estimates from the IIASA
GAINS model. ITASA collects and processes detailed data on countries’” fuel input
mixes (e.g., ash content of coal), technologies (e.g., the distribution of boiler types), and
considers baseline environmental policy and mandated abatement levels to construct
country-, year- and activity-specific estimates of emissions factors.

For the particulates dispersion model, we observe area, boundary, and wind informa-
tion directly in our geographical and meteorological data. We obtain rural and urban
specific estimates of deposition velocity from the EPA’s ASPEN model (Assessment
System for Population Exposure Nationwide, EPA (2000))."* Average mixing height, }, is
estimated based on data from the EPA’s Support Center for Atmospheric Modeling, and
we set the AOD-PM10 conversion parameter, p, at 100 ug/m?> based on Gendron-Carrier

EX

et al. (2022). Finally, we set exogenous emissions, Fmiss”*, in each country-region-year

as the residual to match observed AOD levels.

8. Counterfactual policy evaluation

We here describe the results of the policy experiments for the roughly ** 30 countries for
which the data permit calibration and counterfactual analysis.

We consider three policies: A 10% ad-valorem tax on petroleum inputs, a 15% ad-
valorem coal tax, and a $30/MT unit tax on agricultural burning.

Panel (a) of figure 3 shows the predicted changes in national particulate exposure
for each policy-country pair under the assumption that policy revenues are used for

"The ASPEN model is a detailed pollution dispersion framework developed by the US EPA. It considers
annual averages of pollution dispersion, as required for our framework.

?In a handful of country-policy pairs the counterfactuals did not converge within the time or to the
precision required by our analysis, leaving us with less than 30 countries.
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Figure 3: Changes in exposure from emissions policies (%)
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Note: All panels’ x-axes show the percentage change in aggregate particulate exposure from each policy
(10% tax on oil, 15% tax on coal, 30$/MT tax on agricultural burning) in each country. Panel (a)
assumes tax revenues are discarded. Panel (b) assumes revenues are rebated lump-sum to households.

non-productive purposes. First, for the oil tax, prediced impacts range from -0.35% (in
Brazil) to +2.9% (in Serbia). Strikingly, the results suggest that uncompensated oil taxes

increase particulate exposure in the majority of countries. For the agricultural burning
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tax, changes in exposure are generally small. For the coal tax, exposure decreases in
most countries, but ranges from -6.5% (in South Africa) to +0.1% (in Malaysia).

We next illustrate the mechanisms underlying these aggregate results using South
Africa as an example. Table 6 shows that the (uncompensated) oil tax is predicted to
increase aggregate particulates exposure by around 1% despite the fact it decreases oil
use by more than 10% in both rural and urban areas. This occurs because South African
agriculture relies heavily on oil as energy input, leading to a decline in agricultural
output and employment as a result of the oil tax. The displaced workers move to more
polluted urban areas and the more polluting urban industrial sector. This increases both
migrant exposure and urban particulates. Similarly, while the agricultural burning tax is
predicted to reduce burning emissions by 15%, it also causes a decline in agricultural
output and employment. Here, displaced workers shift mainly into rural industry,
leading to an a small increase in rural coal use but on net also a small aggregate decrease
in particulates exposure. Finally, coal taxes lead to substantial declines in both urban
and rural particulates exposure. In sum, we find that general equilibrium effects can
substantially undermine the direct emissions reduction benefits of particulate policies.

We further illustrate this point by comparing predicted changes in equilibrium expo-
sure to the predicted ceteris paribus effects based on changes in targeted emissions. For
each tax, we weight the predicted changes in emissions from the targeted activity by its
baseline share of total emissions. For example, if the coal tax decreased coal emissions by
20%, and if coal accounted for 50% of total emissions in the baseline, we calculate a 20%
- 50% = 10% reduction in aggregate pollution. This calculation is a partial equilibrium
estimate of the reduction in total emissions.

Figure 4 compares the change in emissions and exposure for six countries. This
tigure again shows the importance of general equilibrium effects. As expected, emissions
always fall in response to regulation. However, for agricultural burning restrictions and
oil taxes, the magnitude of the change in emissions is often much larger than the change
in exposure. Burning restrictions reduce agricultural burning emissions, but also push
workers out of farming into rural industry or more polluted urban areas, and this offsets
the direct benefits. Given the agricultural sector’s disproportionate reliance on oil in
many countries, similar effects occur with oil taxes. Income lost to oil taxes incentivizes
migration to higher wage urban areas. In some cases, the offsetting effects are larger
than the direct effect and the change in emissions has a different sign than the change
in exposure. Figure 4 also shows the importance of cross-country heterogeneity. Even

when using the same model structure to compare outcomes across countries, both the
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Table 6: Counterfactual results for South Africa in base year 2010 with policy revenue
discarded.

Panel A: Overall Impacts

Agg. Agg. Urban Urban Rural Agg.
Exposure Exposure Pop. Share Exposure Exposure Welfare

(AODxbil.) %A %A %A %A
Baseline 0.00424 - 0.62 - - -
Oil Tax 0.00428 0.92 0.63 1.87 -0.79 -0.15
Burning Tax 0.00424 -0.04 0.62 -0.01 -0.10 0.00
Coal Tax 0.00396  -6.50 0.64 -6.65 -6.22 -1.19
Panel B: Rural Impacts
Industry Industry Ag. Ag. Ag. Coal  Oil

Output  Empl. Output  Empl. Burning Use Use AOD
($bil.) (bil.) ($bil.) (bil.) (MT)  (ktoe) (ktoe)

Baseline 53.2 0.015 1471.6 0.004 53 241 1.6 0.083
Oil Tax 53.3 0.015 1406.3 0.003 51 242 1.3 0.083
Burning Tax  55.1 0.015 1276.5 0.003 4.5 244 1.5 0.083
Coal Tax 47.0 0.013 1590.8 0.004 5.7 18.6 1.8 0.082
Panel C: Urban Impacts

Industry Industry Services Services Coal Oil

Output  Empl. Output Empl. Use Use AOD
Policy ($bil.) (bil.) (units) (bil.) (ktoe) (ktoe)
Baseline 122.9 0.007 2158.2 0.023 826 17.6 0.091
Oil Tax 123.9 0.008 2158.8 0.023 851 153 0.092
Burning Tax  122.9 0.007 2158.2 0.023 826 17.6 0.091
Coal Tax 128.3 0.008 2184.2 0.023 71.0 189 0.082

Note: Each panel reports outcomes in four cases, baseline, with an oil tax, a tax on agricultural burning,
and a coal tax. The top panel reports country level statistics. The middle panel reports outcomes for rural
areas, and the bottom panel reports on the urban area. Exposure is measured in AOD times population in
billions.

estimated policy impacts and the gap between partial and general equilibrium outcome
measures differs in magnitude and in sign across countries. For example, unlike the
other countries considered in figure 4, in Brazil particulates are on average lower in
urban areas and emissions fall by less than exposure in response to oil taxes.

The results also showcase the importance of fiscal management. We so far assumed
that policy revenues are spent non-productively. Panel (b) of figure 3 describes the effects
of policy on exposure when tax revenues are instead rebated to households lump-sum.
The results indicate that combining particulate policies with income support dramati-
cally increases their effectiveness for most countries and policies: coal tax impacts now

more than double for several countries (up to -14% in South Africa), oil tax impacts are
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Note: The x-axis in all three panels indicates percentage change. Dark gray indicates percentage change
in country mean particulate exposure resulting from each policy. Light gray indicates percentage change
in country agqregate emissions. The three panels describe, from left to right, an agricultural burning tax
of 30$/MT, a 10% tax on oil, and a 15% tax on coal. Tax revenue is discarded in every case.

now mostly negative, and agricultural burning taxes also achieve exposure reductions
(up to -0.7% in India).

Table OA3 again illustrates the underlying intuition by presenting detailed results
for South Africa as in table 6 but with lump-sum revenue rebating. All policies appear
more effective at reducing aggregate particulates exposure with revenue rebates. This
difference is largely due to the fact that helping rural households make up for the real
income losses associated with each policy helps avoid their movement to the (typically
more polluted) cities, as can be seen from the higher rural population shares with
revenue-rebating.

Table 7 further illustrates the importance of both revenue management and cross-
country heterogeneity. This table compares policies” welfare-rankings in six countries.
Specifically, we compare policies” impacts on aggregate utility in each country, and rank
them from best (rank 1) to worst (rank 3). Two features of table 7 stand out. First,
each policy ranks highly in some countries but poorly in others. Second, rankings may
depend on revenue management. For example, in Pakistan, the oil tax ranks worst (3)
when revenues are discarded, but ranks best (1) when revenues are rebated lump-sum.

Three main insights emerge from the quantitative analysis. First, the results demon-
strate the importance of national context for the assessment of policy. An apples-to-
apples comparison based on the same analytic framework shows that the same policy
can have qualitatively different impacts on exposure and welfare in different countries.

Second, the results highlight the first-order importance of general equilibrium effects
for particulates policy. For example, oil taxes reduce particulate emissions from oil
combustion and complementary activities, but the general equilibrium response to these
changes often pushes workers into more polluting activities or regions. This offsets

the direct effects of the tax. We also find examples where general equilibrium effects
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Table 7: Policy welfare rankings across countries

No Lump-Sum Rebate Lump-Sum Rebate
Ag. Burning Coal Oil | Ag. Burning Coal Oil
Brazil 1 2 3 2 3 1
China 1 3 2 3 1 2
Pakistan 1 2 3 2 3 1
Bangladesh 2 3 1 2 2 1
Indonesia 1 2 3 2 3 1
South Africa 1 3 2 3 2 1

Note: This table shows the welfare ranking of three policies by country; an agricultural burning tax of
30$/MT, for a 10% tax on oil, and a 15% tax on coal. The first three columns describe the way these
policies are ranked when tax revenues are discarded. The second three columns describe the way policies are
ranked when tax revenues are rebated lump sum.

magnify the benefits of a tax, again highlighting the importance of national context.

Third, the results highlight the importance of fiscal policy for the effectiveness of
particulates policy. Because income transfers affect household location decisions, the
same policy can have qualitatively different impacts on exposure depending on whether
tax revenues are redistributed. While a large literature has demonstrated the importance
of revenue recycling for the efficiency and distributional impacts of climate policy (see,
e.g., Goulder and Hafstead (2018), Metcalf (2018), Barrage (2019), Conte et al. (2025)),
to the best of our knowledge the finding of qualitatively different particulate exposure
effects depending on rebating is novel.

9. Sensitivity analysis

We now evaluate the sensitivity of our results to five key parameters: AOD disutility, the
migration-wage elasticity, atmospheric mixing height, agricultural burning abatement
costs, and the elasticity of substitution across energy inputs. For each triplet of parameter
x policy experiment X country, we compare the predicted effects of the policy on exposure
in the benchmark (no rebates) to an alternative calibration where the parameter in
question is increased by +1%. For example, we re-compute the effects of an agricultural
burning tax in each country with the AOD disutility 1% higher than in the benchmark,
and calculate the change in the aggregate exposure effect prediction for each country.
Figure 5 displays the results of these experiments via box plots of the distribution of
these quasi-elasticities across countries. Analogous results for the scenarios with income
transfers are shown in the Online Appendix.

We find that the model’s results are mostly insensitive to changes in the assumed
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Figure 5: Sensitivity Analysis: Level Change in Exposure per 1% Change in Parameter
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Note: Sensitivity of results to five key parameters: AOD disutility, the migration-wage elasticity,
atmospheric mixing height, agricultural burning abatement costs, and the elasticity of substitution across
energy inputs. For each triplet of parameter X policy experiment X country, we compare the predicted
effects of the policy on aggregate particulate exposure in the benchmark (no rebates) to an alternative
calibration where the parameter in question is increased by +1%. The figure describes the results of these
experiments with box plots of the distribution of the percentage point difference in predicted exposure
effects. The box spans the 25th-75th percentile, the line represents the median, and the whiskers represent
1.5 times the inter-quartile range.

AOD disutility™ and mixing height. The agricultural burning tax results are sensitive
to our assumptions about fire abatement costs, the oil tax results are sensitive to the
migration-wage elasticity, and both the oil and coal tax results show some sensitivity
to the fuel substitution elasticity. Interestingly, the sensitivity cannot be signed and
varies qualitatively across countries. These results highlight the importance of empirical
research to improve our understanding of the costs of agricultural burning mitigation
(e.g., Jack, Jayachandran, Kala, and Pande (2025)), migration responsiveness to wages
(e.g., Morten and Oliveira (2018)), and the elasticity of substitution across energy inputs

in production (e.g., Papageorgiou, Saam, and Schulte (2017)) across countries.

10. Conclusion

Particulates exposure is poisonous, and policies to reduce particulate emissions involve
the regulation of fossil fuel consumption and agriculture, both fundamentally important
activities. Thus, balancing the costs and benefits of particulate regulation is an economic
problem of the first order. With few exceptions, analyses of particulate exposure and
regulation do not consider the full range of potential responses to particulates poli-

3The alternative calibration with higher AOD disutility also re-calculates the distribution parameters of
the rural amenity value as required to match the initial population distribution and assumed migration-
wage elasticity. This may offset some of the ceteris paribus migration effects of higher AOD disutility.
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cies; firms may choose different inputs, workers and firms may shift to less regulated
activities, people and firms may move to less regulated regions, or to regions with a
comparative advantage in less polluting activities.

We assemble data describing particulate exposure throughout the world. These
data suggest the following conclusions. First, cross-country heterogeneity is important:
China, India and Russia are different in their production of emissions and in the extent
to which emissions lead to exposure. Second, the economic geography of exposure is
important. China and India both saw about the same increase in average concentration
between 2000 and 2010, but exposure in China increased by much more. Third, about
half of all variation in exposure is determined by country-year level factors. Fourth,
most country-year level variation in exposure is explained by a handful of country-year
economic variables; urbanization, coal consumption, agricultural GDP, organic fuel
consumption, and cross-border particulate flows. Perhaps more surprising, the half of
variation in exposure that is not explained by country-year level quantities, is also not
explained by our spatially disaggregated economic variables; population density, land
cover and fires.

Our econometric analysis should be regarded as largely descriptive. While it suggests
the importance of various factors for equilibrium exposure, ultimately, we are estimating
equilibrium relationships. For policy purposes, we would like evaluate the causal effect
of particular interventions. To accomplish this, we develop the SEPIA model. This model
provides a logically coherent description of the way that a small open economy responds
to particulates policy. Calibrating this model for 30 countries allows us to evaluate the
effects of policies restricting the combustion of petroleum, coal, and agricultural waste
on a country-by-country basis.

In addition to providing a logically coherent macro-economic description of how
particulate emissions and regulation affect production and consumption, the SEPIA
model integrates an economic model with a model of particulate dispersion. While
the theoretical integration of physical and biological processes into economic models
has a long history, SEPIA adds to the literature by integrating particulate dispersion into
a macroeconomic model that allows equilibrium adjustment margins observed in prior
empirical studies. In addition to improving our ability to describe the economics of
equilibrium particulates exposure, the comparative statics implied by the model answer
fundamental questions about particulates policy: Should particulates policy target coal,
petroleum or agricultural waste burning? Which of these policies, if any, is welfare
improving? What are the unintended consequence of such policies?

A good deal of research remains to be done. First, our primary unit of analysis is
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an annual average over a 10km? pixel. In contrast, much of the research on particulates
considers much smaller spatial scales and shorter time frames. That there is a lot of
variance over these smaller, shorter scales, means that our relatively aggregated measure
is smoothing out variation in particulate exposure that may be economically important.
Providing insight into these issues is probably important, but is beyond the reach of
our data. Second, our finding that pixel level variation in population density and land
cover has little ability to explain variation in pixel level concentration and exposure is
surprising and deserves further attention. Third, our object is to develop a model that
would allow us to evaluate policy relevant comparative statics across countries. This
requires that we satisfy ourselves with a stylized description of each county’s economy
that ignores country level idiosyncrasies. It is clearly feasible to develop country specific
models that provide a more detailed description of equilibrium particulate exposure,
as illustrated by, e.g., Hollingsworth et al. (2024) for the USA. We hope that our work
precipitates more studies in this line of research. Such work could also combine the
richer spatial economic representations of the climate literature (as in, e.g., Cruz and
Rossi-Hansberg (2024)) with the detailed energy system and economic production rep-
resentation relevant for particulate pollution.

Finally, our evaluation of the comparative statics of equilibrium particulate exposure
relies entirely on our model. An alternative approach would rely on quasi-experimental
variation, e.g., in coal prices, to evaluate similar comparative statics. This appears to be a
challenging agenda. However, the development of such a literature would complement

our inquiry and, hopefully, increase its credibility.
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Appendix A. Calibration

The calibration proceeds in three steps. First, we set certain parameters based on
the literature or standard assumptions at common values for all countries (“Directly
Calibrated”). Second, we back out certain parameter values directly from data for each
country (“Directly based on Data”). Third, we select the remaining model parameters
to jointly minimize the sum of squared differences between equilibrium moments as

observed in the data and our model (“Matching Moments”).
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Table A1: Directly calibrated parameters

Parameter Value(s) Sources and Notes

« 0.33 Standard

,0]]{4 0.52 Combine Fuglie (2010) cross-country estimates,

p% , pfy 0.32,0.05 Gollin, Lagakos, and Waugh (2013), and modeler’s judgment
€ 2 GHKT (2014)

o 1.5 Nordhaus (2008)
R* 0.15 Real return of 5%/year plus 10% depreciation
p 100£4 Gendron-Carrier et al. (2022)

Table A2: Fuglie (2010): Agricultural factor share estimates (Weighted Global Avg.)

Labor Land & Livestock Machinery Chemicals
Structures & Feed & Energy & Seed
035 0.21 0.23 0.10 0.10

Directly Calibrated

Table A1 summarizes the parameters calibrated based on the literature. The agricultural
production parameters warrant further discussion. Fuglie (2010) reviews empirical
estimates of agricultural input elasticities across countries and computes weighted global
averages over the categories given in table A2. Based on these figures, we assign “Land
& Structures” equally between land and capital, split “Machinery & Energy” equally be-
tween capital and energy, and attribute the remaining materials inputs proportionally to
labor and capital. Reassuringly, the resulting labor share estimate of p}! = 0.52 matches
Gollin, Lagakos, and Waugh'’s (2013) insight that empirical evidence on agriultural cost
shares from share tenancy arrangements suggest that 50-50 splits between labor and
other factors are common across countries and time.

The burning abatement cost function parameters are more challenging to calibrate.
Select estimates exist. For example, Norgrove and Hauser (2015) find that “fire exclusion
led to an approximately 50% increase in labor requirements for planting, weeding, and
harvesting both in the maize and plantain systems” in the Congo Basin. In surveys,
Indonesian farmers have reported that clearing peatland manually requires one to two
months time for what could be accomplished by fire in a few days (Rohadi (2017)). In
India, it is commonly reported that the labor cost for manual harvesting - which avoids
the stubble that otherwise needs to be burned - is currently around Rs 3,000 - 4,000 per
acre, whereas the cost of renting a combine machine (which does not clear the stubble)
is Rs 1,500-2,000, suggesting a doubling of harvesting costs for full fire abatement. We

proceed as follows. First, we assume a standard convexity parameter of 1p=2. The
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parameter 7 captures the fraction of each country’s total agricultural output that it
would cost to fully eliminate burning (as £2(x = 1)=14). For burning crops, we take
as central estimate that eliminating residue burning increases labor costs by 40 percent
for relevant crops. Since not all crops are associated with burnable residue, we scale
the overall cost estimate by each country’s relative importance of burning crops. More
formally, letting wp denote the share of burning crops in a given country, the fraction of

output required to eliminate agricultural burning emissions is thus given by:

Qn=1)=1-[(1-wp) +wp(l—04)]L (a1)

We quantify wp as follows. First, we use Food and Agriculture Organization data to
compute the share of land devoted to burning crops in each country (in 2010), where
we classify as “burning” all crops listed in FAOSTAT data for crop residue burning
(rice, sugar cane, wheat, and maize). The largest burning shares observed are around
80 percent. Second, we compute each country’s agricultural residue burning intensity
in MT/$ based on our data (from IIASA and the World Bank, respectively). The highest
agricultural burning intensity country in 2010 was South Africa. We then set wp=0.80
for South Africa, and decrease wp proportional to each country’s relative agricultural

burning intensity differential (i.e., the percentage deviation relative to the maximum).

Directly based on Data:

We now describe the parameters and initial equilibrium values based directly on data.

Economic Model: Base year fuel input usage across sectors (E.", E), EJ form e I;S,M)
are from the International Energy Agency (OECD/IEA (2018)). We map the data into
model sectors as follows: “Agriculture” contains IEA sectors Agriculture and Forestry,
and Fishing. “Services” contains IEA sectors Residential, Commercial and public ser-
vices, and Transport. Finally, “Industry” contains IEA sector Industry.

Energy resource prices are from British Petroleum Company (2016). We average across
global prices for each fuel to compute p;, p,, and p; (calibrated based on natural gas
prices) and then adjust by the energy content of the fuel to arrive at prices per Mtoe.

Based on these prices and quantities, we can then directly back out each sector’s
energy production x’s for each country from the energy service producers’ optimality
conditions (standard, see Online Appendix equations (OA4)-(OA5)) and the assumption
that 1 = k" + k' + K" for each m € I,S,M.

With values for fuel inputs and energy production parameters in hand, we can infer

each sector’s energy aggregate production J! = J/* + jle, 5 and JM in the country-
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year via equations (2, 4, 8). We can then infer each country’s base year aggregate energy
input prices for each sector pf], p?, and pfy from the relevant fuel price indexes

1

P = (R + 7 () o+ )+ () (0 + 7))

for m € {I,a; I,u; S,M}. As a benchmark we set pre-existing taxes to zero for individual
tuels. However, we allow for and back out from the data a rural industry energy wedge
77% as described in the “Matching Moments” section below.

For each country, we then set energy expenditure shares (v!, 1%, p}!) based on the

observed base year share. For example (and analogously for other sectors):
I gl
Y J
y1
The emissions coefficients for each fuel type (£¢, &P, £9) are based on IIASA GAINS

model data described in Section 7. The specifics are as follows. First, we obtain IIASA’s

estimates of each country’s total PM1o emissions by fuel/activity for all available years
of our sample (2000, 2005, 2010, 2015)." Second, we obtain IIASA’s estimates of each
country’s energy use by key fuel type (coal, liquid fuel, natural gas, etc.). Finally, we
divide emission from each fuel by fuel quantity to derive emissions coefficients (KT of
PMi1o per PJ) for each fuel type-country-year.">

The emissions coefficient for industrial output (¢) is derived by dividing non-
combustion industrial emissions totals for each country-year (from IIASA) by industry
output in the relevant country-year. The emissions coefficient for services (£ ) is also
derived by dividing IIASA’s estimates of total non-exhaust road emissions by services
output in the relevant country-year. The emissions coefficient for agricultural output
combines IIASA’s estimates of (i) non-burning related agricultural emissions (e.g., fertil-
izer use) and (ii) emissions from general biomass energy inputs. The sum of these terms
is then divided by agricultural output in the relevant country-year.

The emissions coefficient for agricultural burning (¢7) is obtained directly from
ITASA’s estimates (“Emissions factors and related parameters for PM (TSP) and CO2"),
specifically as the PM10 emissions coefficient for the “WASTE_AGR” variable.

4 We specifically consider the ECLIPSE_vsa_CLE_base scenario which reflects current law.

SWe note that IIASA also makes publicly available the extremely detailed activity data and fuel
coefficient estimates underlying their analysis. These differentiate, for example, coal emissions coefficients
of pulverized versus fluidized bed versus grate firing combustion boilers. IIASA’s total emissions data
reflect their estimates of the distribution of these technologies within each country-year. Our use of these
total emissions along with energy inputs data thus yields an appropriately weighted average emissions
factor at the fuel level, as relevant for our analysis.
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For household preference parameters, we consult World Bank data on sectoral house-
hold expenditures across countries from 2010. First, we map the reported categories into
our model’s basic sectors according to the following correspondence: “Industry” con-
tains World Bank sectors Clothing and Footwear, Energy, ICT , and Others. “Services”
contains World Bank sectors Education, Financial Services, Health, Housing, Personal
Care, Transport, and Water Utility. Finally, “Agriculture” is the World Bank Food and
Beverages sector. Second, because the data do not cover all of our sample countries, we
extrapolate consumption shares for countries with missing data. Letting D][,%lo denote
the GDP per capita quintile of country j in 2010, we estimate

4
1,5,2010 __ I
0" = fo+ Y_BiDj%%0+¢j
=1

and use predicted shares 6/ where needed. Third, given that the model treats the
services sector as non-traded, in order to better match its output data, we set the service

sector consumption share based on observed base year service sector output shares:
05 =YS/Y

where Y5 denotes service sector GDP and Y total GDP. Finally, the remaining good (here

agriculture) expenditures share is then set as the residual based on:
1=0"+0%+0M

Finally, based on the structure of the model, we can back out initial equilibrium levels

of capital in both services and agriculture:

KS:oz-{;g/R*
KM:p]\I}-{/]‘v/[/R*

where the tilde marks output values (i.e., p- Y') as observed in sectoral GDP data.

Particulates model:

Dry deposition velocities are based on the EPA’s ASPEN model (EPA (2000)). Their
analysis presents different deposition velocity values depending on (i) urban versus
rural areas, (ii) wind speed, and (iii) atmospheric stability. We adopt values relevant to
each region (urban or rural), compute weighted (based on border lengths) average wind
speeds for each area, and assume neutral atmospheric stability to select the appropriate

deposition velocity for a given country-region. ASPEN provides dry deposition rates.
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We adjust for the average prevalence of wet deposition through a proportional increase
of +37% based on estimates by Wu et al., (2018).1°

Mixing height X is set to 0.5 km based on data from the EPA’s Support Center for
Regulatory Atmospheric Modeling (SCRAM). SCRAM previously provided twice daily
mixing height observations across the United States at the monitoring station level. The
data contain at least one station per state, including coverage in Hawaii and Alaska, thus
reflecting a very diverse set of climatic and geographic areas. In the most recent year of
observations (1991), the average morning mixing high recorded is 487 meters.

Matching Moments

Given the data and calibrated values described thus far, we select the remaining un-
known parameters and initial equilibrium values to minimize the squared sum of differ-
ences between the model’s equilibrium conditions and the data: Sectoral productivities
Al Ala AS AM; industry allocations across urban and rural areas K%, K@, [1¢,
Lia, jlu jla ylu ylLa 1abor allocations towards the other sectors LM, LS; prices pS ,

* . .
M, w*, w®; household consumption bundles S, M ! xS, M. and a rural industry

- I
energy services tax wedge 7.

Initial experimentation suggested that equal marginal
products of energy services between rural and urban industry is difficult to match. We
therefore allow for a rural energy services tax wedge defined by:

’UI YI ,a

=P+ (a2)

Another point to note is that our model assumes that households earn only labor income
and that returns to capital are paid abroad. Consequently, the model under-estimates
household income levels relative to reality. In order to match the model’s implied
household demand for services to an empirical moment, we thus use observed services

output adjusted by the approximate labor income fraction, specifically:
(L5 + LMYz + (L1 + L eN)p® = V(1 — a — maz(v! 05, p)))

The remainder of the calibration proceeds as follows. Given industry energy demands
(JL, J1%) we can then back out the implied fuel usages in each area (Ef;“, E({'“, Eg'“,
Elv, plv, By, Given each country’s preference parameters and domestic price levels,
we then also set the particulates disutility parameters to match the model’s implied

®In countries where the exogenous emissions (Emiss$,y or Emissy) implied by the benchmark
calibration at baseline AOD and emissions levels are negative, we further adjust the deposition rates to
the minimum level required to ensure that exogenous emissions are non-negative.
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marginal willingness to pay (MWTP) to empirical estimates:

—MUsop _ xa1(x2) (AOD")x2~1
AT, Aog, (1)1

74

MWTPaop =

We set x» = 2 and select x; so that MWTP4op equals 1.16 - Ito and Zhang’s (2019)
5-year estimate of $5.46 per household annualized at a 3% annual discount rate - when
evaluated at the relevant income ($2,253.5) and AOD of 1.15 (PM1o levels of 115 ).
Finally, we calibrate the rural amenity GEV distributions parameters as follows.
The GEV distribution in each country depends on a shape parameter shp, a location

parameter loc, and a scale parameter scl, with associated pdf for shp # 0:

() = ()eap(=(1 4 stp(C 1))~y (1 4 snp( 101
for (1 + shp( (x;floc) )) > 0 and, for shp =0,
(2) = (cJeap(—eap(~ T 1) (2= loc)

We calibrate shp,loc and scl from three moments: First, after calculating the initial
equilibriu, marginal rural amenity value ¢* via (17), we ensure that the GEV distribution

matches the initial observed urban population share u; in each country via:

where F(.) denotes the CDF of the GEV distribution in a given country. Second,
we match the assumed migration-wage elasticity €,,;4— = 1.9 based on Morten and
Oliveira (2018) by calculating counterfactual values of the urban population share 1
and marginal rural amenity value & after a hypothetical 1% urban wage increase and

ensuring that these are consistent with the GEV distribution via:'7
g = F(&)
Third, we select the location parameter loc to fit the standard GEV property:
F(loc) = exp(—1)

For each country, our calibration searches for values of the scale, shape, and location
parameters of a GEV distribution to match these three moments as closely as possible.

7The counterfactual values are iy = min{1,u; - (1 + €nig—w)} and & from (17) with urban consumption
¢ re-calculated at a 10% higher wage (in partial equilibrium without changes in AOD or output prices).

45



Online Appendix for:

Equilibrium Particulate Exposure

Lorenzo Aldeco, Lint Barrage, and Matthew Turner

June 2025



OA1. Additional Figures and Tables

Figure OA1: World maps of AOD and population in 2010

(b) Gridded Population of the World, 2010

Note: (a) Shows annual average aerosol optical depth as measured by MODIS for 2010 (Levy et al.,
2015). (b) shows population density in 2010 as reported by CIESIN (2016). In both figures, darker colors
indicate higher values and tan indicates missing data.

Table 4 shows that country level variation can explain close to half of all variation
in exposure. We now investigate the extent to which additional pixel level variation
is important for exposure. Table OA1 repeats variants of the population weighted
regression of column 6 of table 4 where we add pixel-year level covariates. Sample
sizes in table OA1 are smaller than in table 4 because of missing values for pixel level
variables.

Column 1 estimates the effect of pixel-year population density on exposure. Unsur-
prisingly, people who live in denser places experience higher particulate exposure. In-
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Figure OA2: Fuel consumption, urban boundaries and cross-border flows in 2010

(d) Net Flows, annual kT per km3
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creasing the population of a 10km? pixel by 100,000 people increases expected exposure
by about 0.7 AOD points. Converting to PM1o0, this is about 70 ug/m?, the difference
between a clean coastal city in the developed world and a large Chinese city. While this
response seems large, it improves our ability to predict exposure only slightly. The R?
in this regression is only marginally higher than column 6 of table 4, 0.57 vs 0.56.

The second column of table 4 includes our pixel level urban indicator (illustrated in
tigure OA2(c)) instead of density. On average people living in urban pixels are exposed
to about 0.1 extra AOD points, about 10ug/m? PM1o. This indicator variable is also
highly significant, but like population density, does little to improve our ability to predict
exposure. The indicator variable reduces our prediction error by slightly more than does
the linear term in density, so the step function in density implied by the indicator variable
is a better predictor of AOD than the linear function of column one. The geography of
our model is partly motivated by this finding. In our model, each country is divided
into rural and urban regions.

Columns 3 and 4 include remotely-sensed measures of land cover, share in crops and
share barren. Both are sources of dust, and unsurprisingly, contribute to exposure. These
results indicate that exposure is not purely anthropogenic, physical geography plays a
role. Finally, column 5 includes our remotely-sensed measure of fire intensity in the
pixel. This coefficient is not measurably different from zero. This reflects the physical
geography of smoke dispersion. The smoke plumes from wildfires often spread out over
much larger areas than one of our 10km? pixels (Wen et al., (2023)).

Table OA1 column 6 replicates the regression of table 4 column 6, but includes all five
of our pixel year level variables. The R? of this regression is only 0.63, versus about 0.56
for the regression including only country-year indicators and climate variables. That
is, high quality, spatially disaggregated measures of particulate sources barely improves
our ability to predict exposure once we know country-year of residence.

We next investigate the extent to which country-year level variation in exposure can
be attributed to country-year level variation in economic fundamentals. In table OAz2,
we present pixel level regressions of AOD on variables that vary only at the level of the
country-year. These regressions are population weighted, and so measure the ability of
particular country-year level variables to predict exposure.

Columns 1-3 include measures of natural gas and renewables, coal, and petroleum
per square kilometer of country area one by one. Holding mixing height constant
these variables are proportional to consumption per unit of country mixing volume.
Because the physical process that determines concentration depends on contributions to

particulate mass per unit volume, not country level particulate mass, these normalized
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variables are more relevant to an investigation of concentration and exposure than are
country level aggregates.

That the sign on green is negative points to an inference problem that helps to
motivate our model. While natural gas, wind, and solar power cause essentially zero
particulate emissions, all else equal, they do not reduce concentration. More likely,
countries that rely more heavily on these fuels also rely less heavily on dirtier power
sources. This regression describes an equilibrium relationship, not a causal one.

Column 2 estimates the relationship between coal and exposure. We see that country-
year level coal consumption has an R? of 0.14. In column 3, we see that country-year
level o0il consumption is positively related to equilibrium exposure, but like clean power,
it has little predictive ability.

Columns 4 and 5 look at the effect of organic fuel consumption and agricultural
burning per square km. These variables have the expected positive signs and even more
ability to predict exposure than coal consumption.

Column 6 of table OA2 estimates the effect of the share of a country’s area that is
urban on particulate exposure. Consistent with what we see in figure 1, urbanization
predicts exposure and this variable has an R? higher than that of coal. However, the
sign on this variable is negative, contrary to what we saw in table OA1. Taken together,
the results table OA1 and OA2 suggest the importance of urbanization as a determinant
of equilibrium levels of exposure, but also indicate the importance of a model or quasi-
random variation if we are to estimate a causal relationship.

Columns 7-9 examine the role of GDP in services, industry and agriculture, also per
unit of area, on exposure. Production in services has little ability to predict exposure.
Countries that produce more agricultural and industrial products have greater particu-
late exposure, although only agricultural GDP has much ability to predict exposure.

Column 10 estimates the effect of mass per square kilometer of cross-border flows in
an out of each country. As expected, flows in increase exposure and conversely for flows
out. These two variables have an R? of 0.04.

Column 11 conducts a regression including all of these country-year level regressors.
Two findings are noteworthy. First is the relative stability of coefficient estimates. With
the exception of natural gas and green power generation, none of the coefficients change
signs relative to the regression where the relevant regressor appears alone. Second, the
R? of this regression is 0.39. In contrast, the R? in column 3 of table 4 (the comparable
specification) is 0.46. That is, this relatively short list of likely suspects explains most of
the variation in exposure that can be explained by factors that vary at the country-year

level. Therefore, these results also indicate the importance of national particulates policy.
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Table OA1: Population weighted regressions of AOD on pixel-year level sources, country-
year indicators and climate. 30 country calibration sample, 2000, 2005, 2010, 2015.

_ (1) (2) 3) 4) ®) (6)
Density 0.00000756" 0.000008T4
(0.000000457) (0.000000834)
Urban 0.101%** 0.0823***
(0.00133) (0.00234)
Crops 0.000255*** 0.000402***
(0.00000711) (0.00000746)
Barren 0.00130*** 0.00182***
(0.0000757) (0.000119)
Fire 0.000106  0.00000439

(0.000118)  (0.000115)
R? 0.573 0.592 0.574 0.562 0.559 0.629

Note: Robust standard errors in parentheses. Controls for country-year fixed effects in all specifications. *
p < 0.05, ** p < 0.01, *** p < 0.001

Finally, comparing table OAz to table 2 we see that the regressions results are broadly
consistent with raw data describing emissions, although the raw emissions data suggests

a relatively larger role for coal than do the regressions.

OA2. Competitive Equilibrium Details

This section elaborates details of the competitive equilibrium not already in Section 6.

Production: ~ First, sectoral outputs {Y/*ylaySyM jlu jha jS M1 are produced
acccording to the production technologies (1)-(8). Second, profit-maximizing input
demands equate marginal products to factor prices for each type of producer. For

industry and services, these conditions are given by:

(1—a—v™)Yym i

o = w (OA1)
Ym
O;(—m = R* (OA2)
pmym m
= (0A3)

uw if me {Lus}

m € {Lu;1,a; S} and k = {a if m e {l,a}
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Table OA2: Population weighted regressions of AOD on country-year level sources,
without country-year indicators or climate. 30 country calibration sample, 2000, 2005,
2010, 2015.

) ) ®) 4) ©) (6) ?) ®) ©) (10) (11

Terra Terra Terra Terra  Terra Terra Terra Terra Terra Terra  Terra

Green/km?3 -33 248
(163) (167)
Coal/km? 347%%* 264**
(70) (99)
Oil/km? -6 -270%**
(21) (59)
Ag burn/km? 2792%** 29
(577) (520)
Biomass/km? 5Q#** 8.5
(9.6) (14)
Urb. share -.0057*** -.0019
(.0011) (.0012)
Srv GDP/km3 -.0016 -.033**
(.0056) (.0098)
Ind GDP/km? .051* .095*
(.023) (.037)
Ag GDP/km? o R 21%*
(.072) (.071)
Flow-/km? -152% 76
(55) (71)
Flow+/km?3 161** -38
(57) (64)
N 3640600 3640600 3640600 3640600 3640600 3640600 3640600 3640600 3640600 3640600 3640600
R2 0.000 0135 0.000 0.150 0.165 0.170 0.000 0.051 0237 0.036 0.389

Note: Standard errors in parentheses clustered at the country-year level. * p < 0.05, ** p < 0.01, ***
p < 0.001

For energy producers, the corresponding fuel input demands are:

E™ K p;—l-T;;n ©
7 - (G (OA
o KD+ TN
p = (G O3

m € {Lu;I,a;S,M}

Finally, in agriculture, the profit-maximizing conditions for input demands and waste
burning B are given by:
yM .
o T [P == wef] = (0A6)
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MYM [ M+ B] *
Pk gear [P —s(l-p)E7| = R (OAy)

MYM [ M+ B] M
vl 7B(1 — p)¢ | = py (OA8)
v U |pM — g (1= el | = Brp(1—vp) (OA9)

(OA10)

Households: The optimal consumption bundle for urban households maximizing their
utility (13) subject to budget constraint (15) satisfy optimality conditions:

1 — 61 — 65 C[ *
(Q—I)Cw = pM (OAII)
05 !
ﬁc—s = pS (OAIZ)

Analogously, for rural households, consumption bundles satisfy the budget constraint
(16) and:

1—07 —6%) of ‘
%x—M = p¥ (OA13)
65 x!
oS = PS (OA14)

Household i's optimal choice of location £* is given by:

e Juoif &7 (AODvyae > T
a otherwise

— X1 (AODG)X2 + €

Letting F'(¢) denote the cumulative distribution function of idiosyncratic amenity values

¢, and with the marginal household’s value €* defined by (17), the aggregate share of the

population living in the urban area must thus satisfy:
LIu g 1S -0 ~sl—0
——-=

T
F(1 — x1(AOD")X2 — 1 + x1(AOD*)X2) (OA15)

— 0
Aggregate Conditions:  Finally, competitive equilibrium requires that the domestic

market for services clears (25), the government’s budget constraint is satisfied (18), the

national budget constraint holds (26), and that the country’s labor market (24) clears.

OA3. Additional Model Results

Table OA3 shows a version of the sensitivity analysis assuming that policy revenues are

rebated lump-sum to households.
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Table OA3: Counterfactual results for South Africa in base year 2010 with lump-sum
rebates.

Panel A: Overall Impacts

Agg. Agg. Urban Urban Rural  Agg.
Exposure Exposure Pop. Share Exposure Exposure Welfare

(AODxbil.) %A %A %A %A
Baseline 0.00424 - 0.62 - - -
Oil Tax 0.00412 -2.77 0.60 -7.69 6.15 -0.011
Burning Tax 0.00421 -0.59 0.62 -1.43 0.92 -0.002
Coal Tax 0.00361 -14.92 0.57 -31.45 15.00 -0.047
Panel B: Rural Impacts
Industry Industry Ag. Ag. Ag. Coal Oil

Output  Empl. Output Empl. Burning Use Use AOD
($bil.) (bil.) ($bil.) (bil.) MT)  (ktoe) (ktoe)

Baseline 53.2 0.015 1471.5 0.004 5.3 241 1.6 0.083
Oil Tax 57.7 0.016 1406.3 0.003 5.1 260 1.4 0.083
Burning Tax ~ 55.7 0.015 1276.5 0.003 4.5 247 15 0.083
Coal Tax 60.4 0.017 1590.8 0.004 5.7 232 19 0.083
Panel C: Urban Impacts

Industry Industry Services Services Coal Oil

Output  Empl. Output  Empl. Use Use AOD
Policy ($bil.) (bil.) (units) (bil.) (ktoe) (ktoe)
Baseline 122.9 0.007 2158.2 0.023 826 17.6 0.091
Oil Tax 113.1 0.007 2104.4 0.022 79.8 148 0.087
Burning Tax  121.3 0.007 2150.2 0.022 81.8 175 0.090
Coal Tax 95.6 0.006 2019.0 0.021 578 17.2 0.069

Note: Each panel reports outcomes in four cases, baseline, with an oil tax, a tax on agricultural burning,
and a coal tax. The top panel reports country level statistics. The middle panel reports outcomes for rural
areas, and the bottom panel reports on the urban area. Exposure is measured in AOD times population in
billions.

Figure OA3 shows a version of the sensitivity analysis assuming that policy revenues

are rebated lump-sum to households.
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Figure OA3: Sensitivity Analysis: Level Change in Exposure per 1% Change in Parame-
ter

Ag. Burning Tax Qil Tax Coal Tax
005 05 o5
0 — —
o —_—— B — o — —A—
005
o1
_05 -05

015
.02 -1 -1

I AOD Disutility Migration-Wage Elast. [0 Mixing Height

B Fire Abatement Cost Fuel Substitution Elast.

Note: Sensitivity of results to five key parameters: AOD disutility, the migration-wage elasticity,
atmospheric mixing height, agricultural burning abatement costs, and the elasticity of substitution across
energy inputs. For each triplet of parameter X policy experiment X country, we compare the predicted
effects of the policy on agqregate particulate exposure in the benchmark (with rebates) to an alternative
calibration where the parameter in question is increased by +1%. The figure describes the results of these
experiments with box plots of the distribution of the percentage point difference in predicted exposure
effects. The box spans the 25th-75th percentile, the line represents the median, and the whiskers represent
1.5 times the inter-quartile range.

OA3. Calculating cross-border particulate flows

Figure OAy4 illustrates the boundary between two hypothetical regions where AOD is
constant within each region. The arrows illustrate wind velocity across the border. For
the sake of illustration, each instance of Vz4 has velocity 2 and reflects the East-West
wind velocity across the AB boundary. Letting the length of the solid bar at lower
center be one unit distance, wind Vp4 operates across two units of length. Therefore,
the East-West transport of particulates is given by the length of the border over which
wind travels from B into A, times the velocity of the wind, times mixing height, times
the concentration of particulates in region B. Let A denote mixing height and recall that

p converts AOD to concentration, transport from region B to A is given by,
2XAXVpaxpxAODpg

Performing a similar calculation for flows from A to B and summing, we have net flows
from A to B

Fpa=(2xAxVgaxpxAODg) — (3 x A x Vap x px AOD,)

55



Figure OA4: Calculation of cross-boundary flows
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Note: Logic for calculating the mass of cross-border particulate flows from gridded AOD and wind data.

This is exactly the way that we calculate flows in practice, with one exception. Where
we have here assumed that there is no pixel level variation in AOD within a region, in
practice, the wind operates on whatever AOD we measure in its own pixel.

Our model will ultimately require two further structural parameters to describe flows
across-borders. The first is border length. This is trivial to compute, and in this case, the
border between regions A and B is 5 units long. The second parameter is the velocity
of the cross-border wind, vps (= —vpa). This is a complicated quantity because, to
summarize cross-border wind, we must describe the direction it travels and the length
of the border over which it operates. For the purpose of the model, wind velocity is
defined as the velocity that explains the actual observed transfer of particulate mass
across the border. That is, vappAAOD 4 = Fp.
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