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1 Introduction
Much of the literature in urban economics can be divided into two categories,

classical urban economics and quantitative spatial models (QSM). The classical
literature assumes that households have the same preferences; space is continuous
and uniform, whether on a line or in a plane; and equilibrium cities are symmetric
around a single exogenously selected point. The most influential model in this lit-
erature is the monocentric city model. The QSM literature builds on applications
of discrete choice models to spatial settings (Anderson et al., 1992; Ben-Akiva
and Lerman, 1985). Households have heterogenous preferences over a discrete
set of workplace-residence pairs. Model geographies are discrete and empiri-
cally founded. Locations are heterogenous in their amenities and productivity,
allowing a flexible description of the first nature advantages of locations for work
and residence (Redding and Rossi-Hansberg, 2017). Where the classical literature
focusses on analytical solutions and qualitative results, QSM concentrates on the
numerical evaluation of particular comparative statics in models that describe
specific real-world locations.

The advantage of quantitative spatial models is that, unlike classical models,
they are flexible enough to be a basis for empirical investigations of actual cities.
But such exercises are not purely empirical. Quantitative spatial models are com-
plicated general equilibrium models, and it is rarely clear whether the compara-
tive statics that the usual object of QSM are, like “theorems” that teach us about
the model, or if they reflect details of geography to which the model is applied.
By providing a nearly complete characterization of a QSM type model, albeit
in a stylized geography, we hope provide a basis for thinking about whether the
quantitative conclusions of more complicated models are theoretically ambiguous
or if they are necessary implications of modelling assumptions.

As in the QSM literature, a single parameter describes household heterogene-
ity in our model. By varying this parameter we investigate what happens as the
heterogenous households approach the homogeneity assumption of the classical
literature. In this way, we unify the two literatures. By highlighting the sensitivity
of equilibrium to preference heterogeneity, our results invite questions about how
and to what extent the equilibrium depends on the distribution of heterogeneous
preferences.

We consider a simple setting with three locations where each location is
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endowed with one unit of land, the simplest geography activities can concentrate
in a land-scarce center or disperse to a land-abundant periphery. This geography
is rich enough to exhibit previously unremarked comparative statics and to refine
our intuition about how economic forces operate to form cities. As is always the
case with models that have a small number of locations (e.g., Krugman (1991) or
most trade models), our setting precludes immediate empirical application and
may rule out even more complex phenomena. However, our approach has the
advantages of tractability and transparency, and much of the intuition that we
derive appears to be general.

Our main results may be summarized as follows. First, we provide a complete
characterization of spatial equilibria in much of the parameter space. By contrast,
the existing literature largely restricts attention to parts of the parameter space
where equilibrium is unique.

Second, given non-zero commuting costs, we find that preference heterogene-
ity leads to an ‘average preference for central employment and residence’. The
intuition behind such average preferences can be seen in a Ricardian trade model.
When a location must trade with every other location, the central location has
an advantage as the place where average transportation costs are lowest. In
our framework, the average preference for centrality arises because an average
household commutes everywhere with positive probability. Therefore, preference
heterogeneity has an unsuspected implication: even without first nature techno-
logical advantage, equilibrium employment may be concentrated at the city center
under constant returns. In other words, the city is monocentric. Conversely, when
households are homogeneous, regardless of the intensity of increasing returns,
there always exists an equilibrium where employment and residence are exactly
equal in the center and periphery.

Third, we investigate the relationship between first nature productivity, re-
turns to scale within a location, and productivity spillovers across locations,
and the equilibrium arrangement of residence and employment. While all are
regarded as mechanisms encouraging the agglomeration of economic activity, we
find that equilibrium comparative statics depend sensitively on which of these
three mechanisms is at work, and how strongly. For example, under weak
increasing returns, there is a unique interior equilibrium, economic activity is
centralized, and stronger returns to scale increase central employment, wages and
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land rents. When increasing returns to scale are moderate, multiple stable interior
equilibria may occur and different cities may coexist under identical technological
and economic conditions. When returns to scale become even stronger, they lead
to dispersed employment, wage equalization, and land rent equalization across
locations. That is, returns to scale are not an agglomeration force when they are
sufficiently strong.

Fourth, changes in preference heterogeneity also have complex effects on
equilibrium. Equilibrium requires that employment and residence be dispersed
when households are homogeneous or very heterogeneous. Conversely, concen-
tration of employment and residence occurs in equilibrium when the degree of
heterogeneity takes intermediate values.

We also find that the equilibrium employment and residence are dispersed
both when commuting costs are high and when they are low. Only at intermediate
levels of commuting costs can highly concentrated employment and residence
arise. That is, when the location of production and residence is endogenous, the
standard intuition that lowering commuting costs leads to dispersed economic
activity need not apply.

Finally, it is well known that models with increasing returns or externalities,
like ours, often exhibit multiple equilibria (see, e.g., Matsuyama, 1991). In this
case, stability is commonly used as an equilibrium refinement to shrink the set
of equilibria. We find that standard, iterative methods pervasive in the QSM
literature rely on a stability condition that need not be robust to alternative (but
equivalent!) formulations of the equilibrium conditions. This problem motivates
a new approach to stability. Importantly, we show that multiple stable equilibria
may arise in empirically relevant parts of the parameter space. We also provide
an algorithm that allows us to determine whether any particular equilibrium is
stable. Finally, we show that the corner equilibria, which are pervasive under
increasing returns, are unstable.

2 Literature
Most papers in classical urban economics assume households are homoge-

nous, or there are a finite number of classes; and space is continuous and feature-
less, whether a line or a plane. The simplest, and most influential model in this
literature, is the monocentric city model (Fujita, 1989).
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Although this workhorse model is otherwise quite general, it relies heavily on
the assumption that households choose only their residential location, the location
of work being fixed exogenously at the center, and endogenizing the choice of
work location has long been an objective of urban economic theory. Ogawa and
Fujita (1980) consider a simple setting where firms choose only their location and
households choose only their places of work and residence. They introduce the
idea of a linear “potential function” as a reduced form description of productivity
enhancing spillovers across firms. This assumption, now conventional, requires
that firm productivity at any given location responds to a distance weighted
mean of employment at all locations. Exploiting spillovers is the source of an
agglomeration force, while land scarcity acts as a dispersion force. As the benefits
of spillovers increases relative to the cost of commuting, there is first a mixed city,
then a duocentric, and finally a monocentric city. This is the foundation for the
idea that productivity spillovers are an agglomeration force.

Fujita and Ogawa (1982) build on this initial paper by considering a potential
function with negative exponential decay. Unfortunately, even this simple seem-
ing model is difficult to work with. Lucas and Rossi-Hansberg (2002) revisits the
problem posed by Fujita and Ogawa (1982), but allow firms and households to
substitute between labor and land. They establish general existence and unique-
ness results when increasing returns are ‘weak enough’, but otherwise rely on
numerical methods.1 Using a totally different specification for spillovers, Berliant
et al. (2002) find that the equilibrium city is always monocentric and involves a
specialized CBD.

The fundamentals of QSMs are different from classical urban economics (Red-
ding and Rossi-Hansberg, 2017). First, cities consist of discrete sets of locations
connected by a transportation network. Second, by assuming that agents are het-
erogenous rather than homogenous, QSMs draw on a long history of scholarship
that applies discrete choice models to transportation, location and trade problems
(Anas, 1983; de Palma et al., 1985; Eaton and Kortum, 2002).

Much of the recent work closely follows Ahlfeldt et al. (2015). In this model,

1Dong and Ross (2015) cast doubt on the numerical results obtained by Lucas and Rossi-
Hansberg and confirms those by Fujita and Ogawa. In particular, in the spirit of Ogawa and Fujita
(1980), they find (i) a monocentric pattern with a specialized CBD for low commuting costs, (ii)
mixed land use involving firms and workers around the center for moderate commuting costs
and (iii) a mixed city for high commuting costs.
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households have preferences over housing and consumption, as in the older
urban economics literature, and commute from home to work. Households have
heterogenous preferences over work-residence pairs and each household selects
a unique pair. Locations are heterogenous in their amenities and first nature
productivity, while local returns to scale or productivity spillovers are sometimes
considered. As a consequence of this realism, analytical results are limited,
although it is possible to derive analytic expressions characterizing equilibrium.
There are also well-known existence results, and uniqueness has been established
for the case when increasing returns are small enough. Beyond this, most of what
is known about these models results from the numerical evaluation of particular,
empirically founded, comparative statics.

Our analysis is based on a hybrid of the models considered in classical urban
and QSM literatures. We use the new quantitative spatial model toolbox to
analyze the problem of spatial equilibrium in a stylized geography of the older
urban economics literature. As household heterogeneity is parameterized by a
single variable, we are able to investigate what happens when the heterogenous
households of the QSM literature approach the homogeneity of the older urban
economics literature. As we will see, this will lead us to a better understanding
of both classes of models and their differences. Our hope is that our study of
simple settings like ours will help to illuminate the economic forces at work
behind QSM-based counterfactuals and allow a more critical evaluation of their
plausibility.

3 Model, equilibrium, and solution method
Model

A city consists of three locations i,j = −1,0,1. Each location is endowed with
one unit of land. We define a spatial pattern X = (X−1,X0,X1) as a triple that
specifies the value of X at each location i. We focus on symmetric spatial patterns
where X−1 = X1 and consider only symmetric equilibria. Asymmetric equilibria
are not ruled out, but we do not investigate them.

The city is populated by a continuum [0,1] of households and by a com-
petitive production sector whose size is endogenous. All households choose
a residence i, a workplace j, their consumption of housing, and a tradable
numéraire good. Our model is static and all choices occur simultaneously.
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Households have heterogenous preferences over workplace-residence pairs, and
household types parameterize preferences. Each household ν ∈ [0,1] has a type
z(ν) ≡ (zij(ν)) ∈ R3×3

+ , a vector of non-negative real numbers, one for each
possible workplace-residence pair ij. Following the QSM literature, we assume
that the mapping z(ν) : [0,1] → R3×3

+ is such that the distribution of types is the
product measure of 9 identical Fréchet distributions:

F (z) ≡ exp

(
−∑

i
∑
j

z
−ε
ij

)
, (1)

where ε ∈ (0,∞) describes the heterogeneity of preferences. An increase in ε

reduces preference heterogeneity and conversely.
Households commute between workplace and residence. Commuting from i

to j involves an iceberg cost τij ≥ 1. This cost is the same for all households and
τij = 1 if and only if i = j. By symmetry, we assume that the iceberg commuting
cost matrix is  τ−1,−1 τ−1,0 τ−1,1

τ0,−1 τ0,0 τ0,1

τ1,−1 τ1,0 τ1,1

 =

 1 τ τ2

τ 1 τ

τ2 τ 1

 , (2)

where τ > 1.
A household that lives at i and works at j has a Cobb-Douglas indirect utility

Vij(ν) = zij(ν)vij , where vij ≡
Wj

τijR
β
i

, (3)

where Wj is the wage paid at location j and Ri the land rent at i. Wages
are the only source of income because land rent accrues to absentee landlords
while perfect competition and constant returns guarantee that equilibrium profits
are zero. Because our main purpose is to study the relationship between the
production sector technology and spatial equilibrium, to lighten notation, we
assume that consumption amenities are the same at each location i and each
workplace j.

By solving equation (3) for zij and substituting in equation (1), we see that the
distribution of Vij(ν) is also Fréchet. Utility maximization requires that house-
holds choose the largest of the nine possible work-place residence payoffs that
follow from their particular taste parameters zij . Therefore, using a well-known
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property of Fréchet measures, it follows that the share sij of households who
choose the location pair ij equals2

sij =
vεij

∑r∈I ∑s∈I vεrs
=

[
Wj/(τijR

β
i )
]ε

∑r∈I ∑s∈I

[
Ws/(τrsR

β
r )
]ε . (4)

Households that share the same type, ν, choose the same location pair ij and
reach the same equilibrium utility level. However, households making the same
choice may have different types and different equilibrium utility levels.

Commute cost τ and preference heterogeneity ε almost always occur together
as τ ε. To simplify our notation, we introduce the spatial discount factor defined by

ϕ ≡ τ−ε, (5)

where ϕ ∈ (0,1) decreases with the level of commuting costs and increases
with the heterogeneity of the population. Hence, ϕ may be high because either
commuting costs are low, or the population is very heterogeneous, or both. It is
easy to see that ϕ = 1 when τ = 1 or ε = 0, while ϕ = 0 when τ → ∞ or ε → ∞.
Because the heterogeneity of preferences disappears when ε → ∞, examining
behavior as we approach this limit allows us to examine the role of preference
heterogeneity in the model.

Throughout our analysis, we find that equilibrium behavior depends on and
can be described by the ratio of central to peripheral quantities. We denote such
ratios by lower case letters, e.g., w ≡ W0/W1 and r ≡ R0/R1. Given (4), we also
define relative land rents and relative wages as follows:

ρ ≡ r−εβ , ω ≡ wϵ. (6)

When ρ > 1, central land is cheaper than peripheral. When ω > 1 central wages
are larger than the periphery.

Using symmetry (s0,1 = s0,−1, s1,0 = s−1,0, s1,1 = s−1,−1 and s1,−1 = s−1,1)
and (2) – (6), Appendix A shows that the commuting flows (4) can be restated as

2See, e.g., Eaton and Kortum (2002) equation (8) for a derivation. Anderson et al. (1992),
Theorem 2.2. gives a more discursive derivation of choice probabilities under the closely related
Gumbel distribution.
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functions of ρ and ω only: s11 s10 s1−1

s01 s00 s0−1

s−11 s−10 s−1−1

 =
1

ρ(ω+ 2ϕ) + 2(ϕω+ 1 + ϕ2)

 1 ϕω ϕ2

ϕρ ρω ϕρ

ϕ2 ϕω 1

 . (7)

Equation (7) shows how the heterogeneity of households affect the commuting
flows through the value of ϕ. Note that equation (7) follows directly from utility
maximization.

Commuting flows determine the residential and employment patterns. Let
Mi and Lj be the mass of residents and households at i,j = 0,1. Then, we have:

M0 = s00 + 2s01, M1 = s10 + (1 + ϕ2)s11,

L0 = s00 + 2s10, L1 = s01 + (1 + ϕ2)s11.
(8)

The labor market clearing and population balance conditions are,

L0 + 2L1 = M0 + 2M1 = 1. (9)

Using equations (7) – (8) we can write these conditions in terms of pairwise
commute shares.

Let Hi be the amount of residential land and Ni the amount of commercial
land at location i. Because each location i is endowed with one unit of land, land
market3 clearing also requires

Hi +Ni = 1. (10)

The variables that describe our model city are: residence M ≡ (M0,M1); em-
ployment L ≡ (L0,L1); residential land H ≡ (H0,H1); commercial land N ≡ (N0,N1);
the wages W ≡ (W0,W1); and land rent R ≡ (R0,R1). Recalling our convention
of denoting centrality ratios with lower case letters, we have m ≡ M0/M1,
ℓ ≡ L0/L1, h ≡ H0/H1, and n ≡ N0/N1. These are the ratios of central to
peripheral quantities of residents, employment, residential land, and commercial
land.

Assume that the numéraire is produced under perfect competition and the
production functions at locations j = 0,1 are, respectively,

3Note that we implicitly assume an interior solution. To allow for corner equilibria, this
condition should be written as (Hi +Ni − 1)Ri = 0.
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Y0 = A0L
α
0N

1−α
0 , Y1 = A1L

α
1N

1−α
1 , (11)

where Aj is location-specific TFP and the labor share of output, α, is strictly
between zero and one.

Our expressions for TFP Ai provide a nested description of three economic
forces conventionally regarded as foundations for the agglomeration of economic
activity; first nature technological advantage (Ci), local increasing returns to
scale (γ), and productivity spillovers (δ). We assume that increasing returns are
localized and that spillovers obey a negative exponential function across locations:

A0 = C0(L
γ
0 + 2δLγ1), A1 = C1(L

γ
1 + δLγ0 + δ2Lγ1). (12)

We are most often concerned with relative first nature productivity, c ≡
C0/C1, rather that levels. If the center and periphery have different first nature
advantages, production is constant returns, and there are no spillovers, then
γ = δ = 0 and c ̸= 1. If there are local increasing returns, but no spillovers
and no first nature advantages, then γ > 0, δ = 0 and c = 1. Finally, when
γ = 0 , c = 1 and δ > 0, then spillovers affect productivity, but there is no local
increasing returns or first nature advantage. Thus, our description of TFP permits
an investigation of how the organization of a city changes with the intensity and
the mechanism that fosters the concentration of employment.

If we set δ = 0, equation (12) describes the technology used by Ciccone and
Hall (1996), Duranton and Puga (2004), and Allen and Arkolakis (2014). On the
other hand, if δ > 0, our definition of TFP mirrors Fujita and Ogawa (1982) where
one unit of employment at one unit distance x contributes δ = e−x to TFP, and at
two units of distance, contributes δ2 = e−2x (this suggests 1 as the upper bound
of δ).

Our description of TFP differs from Lucas and Rossi-Hansberg (2002) and
Ahlfeldt et al. (2015) who assume that A0 = C0(L0 + 2δL1)

γ and A1 =

C1(L1 + δL0 + δ2L1)
γ . This specification is inconvenient for our purpose because

the impact of a change in spillovers varies with the strength of returns to scale.
When there are no spillovers, δ = 0, the two formulations are identical.

If location j hosts a positive share of the production sector, the first-order
conditions for cost minimization require Wj = αAj (Nj/Lj)

1−α and Rj = (1 −
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α)αAj (Lj/Nj)
α. Hence, the relative demand for factors is given by

Wj

Rj
=

α

1 − α

Nj
Lj

.

Dividing the relative demand at i = 0 by the relative demand at i = 1, we get:

r

w
=

ℓ

n
. (13)

To satisfy the zero-profit condition, unit cost must equal the price of the
numéraire, i.e.,

1
Ai

(
Wi

α

)α ( Ri
1 − α

)1−α
= 1. (14)

Dividing (14) at i = 0 by the corresponding condition at i = 1 yields

wαr1−α

a(ℓ)
= 1, (15)

where a(ℓ) is the ratio of central and peripheral TFP defined as follows:

a(ℓ) ≡ A0

A1
= c

ℓγ + 2δ
δℓγ + 1 + δ2 , (16)

which increases with ℓ for any γ > 0 and any δ ∈ (0,1).

Equilibrium
We now define a spatial equilibrium,

Definition 1. A spatial equilibrium is a vector of patterns for residence, employment,
residential and commercial land, wages and rents (M,L,H,N,W,R) such that:

(i) all households make utility-maximizing choices of workplace, residence, housing,
and consumption;

(ii) the production sector minimizes cost in all locations;

(iii) production sector makes zero profit in all locations; and

( iv) all markets at each location clear.
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We say a spatial equilibrium is interior when each location hosts a positive
mass of residents (M0 > 0 and M1 > 0) and produces the consumption good
(Y0 > 0 and Y1 > 0). When one or more of these variables is zero, we have a
corner equilibrium.

The next result shows that in equilibrium, employment, commercial land,
and residential land patterns can all be expressed solely in terms of relative rents,
ρ and relative wages, ω.

Lemma 1. In equilibrium, the relative land rents ρ and relative wages ω uniquely
determine the residence M, employment L, residential land H, and commercial land N
according to

M0 =
ρ(ω+ 2ϕ)

ρ(ω+ 2ϕ) + 2(ϕω+ 1 + ϕ2)
, M1 =

1 −M0

2
, (17)

L0 =
ω(ρ+ 2ϕ)

ω(ρ+ 2ϕ) + 2(ϕρ+ 1 + ϕ2)
, L1 =

1 − L0

2
, (18)

N0 =
ρ+ 2ϕ

ρ+ 2ϕ+ ηρ
(

1 + 2ϕω− 1+ε
ε

) , H0 = 1 −N0, (19)

N1 =
1 + ϕρ+ ϕ2

1 + ϕρ+ ϕ2 + η
(
ϕω

1+ε
ε + 1 + ϕ2

) , H1 = 1 −N1. (20)

Proof: See Appendix A.

This lemma requires four comments. First, when the relative land rents, ρ,
and relative wages, ω, are determined, all the other variables are determined.
Second, each location always hosts a positive mass of residents. Indeed, M0 < 1
while M0 = 0 implies ρ = 0, that is, R0 → ∞, which cannot hold in equilibrium.
Third, the proof of Lemma 1 shows that the expressions for L (see equation (18))
follow immediately from utility maximization, while the expressions for H and
N (see equations (19) and (20)) require market clearing. Fourth, using Lemma 1,
the labor supply ratio, ℓ, is equal to

ℓ(ρ,ω) ≡ L0

L1
= ω

ρ+ 2ϕ
ϕρ+ 1 + ϕ2 . (21)

As expected, the equilibrium labor supply at the central location increases
with the relative wage, w, and decreases with the relative land rent, r. Recalling
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that ω ≡ wε, it follows immediately from (21) that the heterogeneity parameter
ε is the elasticity of the labor supply ratio ℓ with respect to the wage ratio w.
Furthermore, for given ρ and ω, the impact of ϕ on ℓ(ρ,ω) is ambiguous.

Solution method
We now turn to a characterization of the spatial equilibrium. To begin, define

η ≡ αβ

1 − α
> 0, (22)

Recall that β is the consumption share of housing, and α the production share
of labor. Thus, the numerator is the share of firm revenue used for residential
land, and the denominator is the share of firm revenue used for commercial land.
It follows that η measures the relative intensity of residential and commercial
land demand in production. This ratio plays an important role in determining
whether production or residence is more concentrated in the land-scarce center.
For future reference, we can easily guess at the magnitude of η. A housing share
of consumption of β = 0.25 is in line with modern empirical evidence (Davis
and Ortalo-Mangé, 2011). The labor share of output is probably about α = 0.6.
Substituting into equation (22) we calculate that η is about 0.375.

We use Lemma 1 to write the equilibrium conditions (13) and (15) in terms
of ρ and ω. Then, if we solve the two resulting equations for ω and equate them,
we are left with a single equation in ρ that is sufficient to determine the interior
equilibria. The following proposition provides the foundation for stating this
result precisely.

Proposition 1. Assume γ ̸= γm ≡ α/ε. Then, a pair of relative land rents ρ∗ and
relative wages ω∗ is an interior equilibrium if and only if it solves the two equations:

ω
1+ε
ε = f(ρ) ≡ ϕρ− 2ηϕρ1+ 1

βε + (1 + ϕ2)(1 + η)

(1 + η)ρ1+ 1
βε + 2ϕρ

1
βε − ηϕ

, (23)

ω
1+ε
ε =


g(ρ; γ) ≡ (cερ)

αψ
α−γε

(
ρ+2ϕ

ϕρ+1+ϕ2

) γε
α−γε

1+ε
ε when δ = 0,

(cρ
1−α
βε )

1+ε
α

[ (
ω ρ+2ϕ
ϕρ+1+ϕ2

)γ
+2δ

δ
(
ω ρ+2ϕ
ϕρ+1+ϕ2

)γ
+(1+δ2)

]
when δ > 0.

(24)

Proof: See in Appendix B.
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Figure 1: Graphical demonstration of equilibrium for a range of parameter values.

(a) ρ0 < ρL and γ < γm (b) ρ0 < ρL and γ > γm

ω
1+ε
ε ω

1+ε
ε

ρ ρ

(c) ρ0 > ρL and γ < γm (d) ρ0 > ρL and γ > γm

ω
1+ε
ε ω

1+ε
ε

ρ ρ

Notes: These figures illustrate equilibrium in twelve different cases. In all panels, the
market-clearing locus, f is given by the red line. The blue lines describe the zero-profit
locus, g. In the left two panels, darker colors of blue indicate smaller values of returns to
scale, γ, and in the right two panels darker colors of blue indicate larger values of γ.
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Equations (23) and (24) are complicated, but the intuition behind them is
simple. The expression for L in Lemma 1 follows immediately from utility
maximization, while the expression for N requires land market clearing. Function
f results from substituting L and N from Lemma 1 into the equilibrium condition
(13). Thus, f describes the locus of relative land rents and relative wages (ρ,ω) that
satisfies cost minimization, utility maximization, and land market clearing, but not
zero profit. For simplicity, we call f the market-clearing locus. Because f does
not require the zero-profit condition to hold, parameters that affect productivity
directly, c, δ, and γ, do not appear in f .

The expression for g is more involved. It results from substituting equation
(21) into (15). Equation (15) follows from cost minimization and the zero-profit
condition, while equation (21) follows from utility maximization. Thus, g describes
the locus of relative land rents and relative wages (ρ,ω) satisfying cost minimization,
utility maximization, and zero profits, but not land market clearing. For simplicity,
we call g the zero-profit locus.

Recalling the definition of a spatial equilibrium, a vector of relative land rents
and relative wages (ρ,ω) that lies at the intersection of the market clearing and
zero-profit loci is a spatial equilibrium. When δ = 0, we can equate equations (23)
and (24) to arrive at a single equation in ρ that determines the interior equilibria.
In this case, we study the spatial equilibrium by studying the solution(s) of the
equation,

f(ρ) = g(ρ; γ). (25)

We show the existence of an interior equilibrium by showing that (25) has an
interior solution. We determine the number of possible interior equilibria by
determining the number of interior solutions of (25).

We cannot apply this solution method when δ > 0 because no closed form
expression for ω exists. The remainder of the section considers the case when
δ = 0. We postpone our treatment of the case when δ > 0 to Section 6. Note that
when γ = γm, the zero profit locus, g, is discontinuous, and so this case requires
special attention.

Lemma 2 in Appendix C establishes that, as shown by the red line in all panels
of Figure 1, the market clearing locus, f(ρ), is a positive, continuous function that
declines monotonically from a positive asymptote at ρm, to zero at ρM .
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To develop intuition about the market-clearing locus, consider an increase in
ω that reflects an increase in the central wage W0. As W0 increases, central firms
substitute away from labor towards land, and central households spend more
on residential land. For the central land market to clear, R0 must increase and,
therefore, ρ decreases. This gives the required negative relationship between ω

and ρ along f . Mechanically, ω goes to zero or infinity as W0 or W1 approaches
zero.

Lemma 2 also shows that there are two critical values of relative rent, ρm and
ρM , such that the relationship between relative rent, ρ, and relative wage, ω, is
negative along f when ρ varies between ρm and ρM . Values of ρ outside this
interval imply negative wages, and so we focus on the interval [ρm,ρM ].

Let us now consider function g for δ = 0. The left two panels of Figure 1, (a)
and (c), describe g for three different values of γ < γm: dark blue the smallest
γ, light blue the largest γ, medium blue in between. The right two panels, (b)
and (d), are the same as the left, but for γ > γm. Here, the light blue line traces
g for the smallest value of γ, dark blue uses the largest value, medium blue is
intermediate value, and all three are greater than γm.

Lemma 3 in Appendix D establishes three properties of the zero-profit func-
tion, g. (i) When γ < γm, g is an increasing function that converges to an
increasing step function as γ approaches γm from below. (ii) When γ > γm, g is a
decreasing function that converges to a decreasing step function as γ approaches
γm from above. (iii) The unique value of ρ at which the step occurs, denoted ρL,
is strictly between zero and one.

Our intuition about the behavior of the zero-profit locus is based on the obser-
vation that, as γ increases, three quantities can adjust to preserve the zero-profit
condition; wages, rents, and employment. For small values of γ, we can ignore
changes in productivity, Ai. Indeed, when 0 < Li < 1, for γ small, Lγi is close
to one unless Li is close to zero. When wages go up in a location, preserving
the zero-profit condition requires that the corresponding land rent must decline.
This gives us a negative relationship between w and r, and thus, the positive
relationship between ω and ρ that we see in the two left panels of Figure 1.

As γ increases beyond γm, TFP, Ai, becomes more sensitive to changes in
γ because Lγi becomes more sensitive to small adjustments in employment Li.
Indeed, when 0 < Li < 1, Lγi is decreasing in γ. As a consequence, increases in γ
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lead to larger changes of the same sign in Ai. Preserving the zero-profit condition
now requires that wages and rents must move in the same direction. Thus, we
have a positive relationship between w and r, or the negative relationship between
ω and ρ that we see in the right two panels of Figure 1.

The singularity of function g arises when γ = γm, that is, when employment
concentrates entirely in the center or periphery (on the zero-profit locus). In
this case, the equilibrium condition (25) becomes invariant to changes in relative
wages, which means that g is a step-function.

Figure 1 permits a graphical solution of equation (25), and hence a description
of equilibrium for the particular examples illustrated in the figure. This figure
suggests two main conclusions about equilibrium changes when returns to scale
increase. First, when γ < γm, the market-clearing and zero-profit loci, f and g,
cross exactly once for a positive value ρ, so a unique, interior equilibrium exists.
Second, when γ > γm, f and g may cross more than once. Thus, γm ≡ α/ε is
a threshold value of γ, below which there is a unique interior equilibrium, and
above which multiple interior equilibria may occur.

Lemmas 2 and 3 guarantee that the location of the step in g lies to the left of
the zero of f , so that ρL < ρM . However, the step in g can lie above the asymptote
of f , as in the top two panels of Figure 1, or below, as in the bottom two panels.
As a result, two cases may arise: ρL is larger or smaller than ρm. The top two
panels of Figure 1, (a) and (b), describe the case where ρm < ρL, while the bottom
two panels, (c) and (d), describe the opposite case.

It remains to determine what ρm ≷ ρL means. Lemma 4 in Appendix E estab-
lishes that ρm < ρL if commuting costs are high or the demand for commercial
land is sufficiently large relative to the demand for residential land. Conversely,
if commuting costs are low and the demand for commercial land is low, then
ρm > ρL.

Summing up, the critical value of γ (γm) and the three critical values of ρ
(ρm, ρM and ρL) partition the parameter space into four regions with qualitatively
different equilibrium behavior. These regions correspond to the panels of Figure 1
and are determined by whether γ < γm or γm < γ and by whether ρm < ρL < ρM

or ρL < ρm < ρM .
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Stability
In the presence of multiple equilibria, it is common to appeal to stability

as a selection device. One candidate, particularly relevant for the literature on
quantitative spatial models, is to say that an equilibrium is stable if an iterative
process converges to it. We show in Appendix F that this approach gives rise
to unsuspected difficulties. In particular, the selected equilibrium may vary with
the specification of the equilibrium conditions. Instead, we say that a spatial
equilibrium is stable if households want to return to the equilibrium when an arbitrarily
small measure of them are displaced. This definition of stability has three advantages.
First, like our model, it is static and does not require an explicit description of
time. Second, and unlike the other candidate definitions of stability, it has explicit
behavioral foundations. Third, as we demonstrate, it is tractable.

Let ij and kl be two arbitrary location pairs; ij = kl (location pairs are equal)
when i = k and j = l hold simultaneously and distinct otherwise. We say that an
equilibrium is unstable if, for some ij ̸= jk, for any arbitrarily small ∆ > 0, there
is a subset of individuals of mass ∆ who strictly prefer the location pair kl, which
differs from their utility-maximizing pair ij, when a perturbation moves them all
to kl. In other words, the subset of individuals who have been moved away from
ij do not want to move back. Otherwise, the equilibrium is stable.

The key issue is to determine the subset of individuals to use to check whether
the equilibrium is unstable. In what follows, we assume that this subset is formed
by individuals whose types are close to those of an individual indifferent between
her equilibrium pair ij and another location pair kl.

Consider an equilibrium commuting pattern s∗≡(s∗ij), which could be interior
or corner, and two location pairs, ij and kl, such that ij ̸= kl and s∗ij > 0. We say
that an individual ν ∈ [0,1] is indifferent between ij and kl if and only if

V ∗
ij(ν) = V ∗

kl(ν) ≥ V ∗
od(ν), (26)

for every location pair od such that od ̸= ij and od ̸= kl. Lemma 5 in Appendix G
establishes that such an individual always exists.

With this definition in place, we can now state our definition of stability
formally.

Definition 1 Consider an arbitrarily small subset of individuals of measure ∆ > 0 who
choose ij and have types close to z(ν) ∈ Sij where ν is indifferent between ij and
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kl ̸= ij. If this individual is strictly better off when she and her neighboring individuals
are relocated from ij to kl, the spatial equilibrium is unstable. Otherwise, the spatial
equilibrium is stable.

The motivation for this definition is as follows. If the relocation of a small
group of almost indifferent individuals from ij to kl makes the indifferent agent
strictly better off, then, by continuity there is a non-negligible subset of individu-
als who strictly prefer kl to ij. Hence, these individuals will never switch back to
ij. On the contrary, if the indifferent individual never becomes strictly better off
for any small subset, no other individual strictly prefers a different location pair.
Hence, all the individuals will be willing to switch back to.

By relocating a small subset of individuals from ij to kl, the commuting
pattern s becomes different from the equilibrium pattern s∗. Hence, for our
definition of stability to make sense, we must be able to compare the equilibrium
and off-equilibrium utility levels. For this to be possible, we must determine the
conditional equilibrium vectors of wages and land rents W(s) and R(s). We show
in Appendix H that, for α > 1/2, these vectors exist, are unique and continuous
in s.

4 Constant returns to scale
To begin, we consider a benchmark case when production is constant returns

to scale, and there are no spillovers or first nature advantages. The following
proposition characterizes the unique spatial equilibrium.

Proposition 2. Assume constant returns to scale and no productivity spillovers (γ =

δ = 0). Then, there exists a unique equilibrium. This equilibrium has the following
properties:

(i) the equilibrium is interior;

(ii) wages are lower in the center than the periphery while rents are larger (0 < ω∗ <

1, 0 < ρ∗ < 1);

(iii) if (1 − α)/αβ > ε/(1 + ε), then employment is larger in the center than the
periphery (ℓ∗ > 1);

(iv) if ε → ∞ , then shares s∗ij are equal to 1/3 for i = j and 0 for i ̸= j.
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Proof: See Appendix I.

Even without first nature advantages, spillovers, or returns to scale, agglomer-
ation may occur. To understand why, consider the problem of a household faced
with a choice of location and residence when wages and rents are the same in all
locations. If we let V = W/Rβ , then using (3), such a household’s discrete choice
problem is

max
ij


z−1,−1V , z−1,0

τ V , z−1,1
τ2 V

z0,−1
τ V , z0,0V , z0,1

τ V
z1,−1
τ2 V , z1,0

τ V , z1,1V

 .

This is the standard way of stating a discrete choice problem, except that we
arrange the nine choices in a matrix so that the rows correspond to a choice of
residence and columns to a choice workplace.

Suppose we restrict households to all choose a central residence. Because the
distribution of idiosyncratic tastes is identical for all location pairs, the average
payoff for a household at a central residence is

E
(

max
{z0,−1

τ
V , z0,0V ,

z0,1

τ
V
})

= Γ

(
ε− 1
ε

)(
1 +

2
τ ε

)1/ε

V . (27)

If, instead, we restrict households to choose a peripheral residence, then

E
(

max
{
z−1,−1V ,

z−1,0

τ
V ,

z−1,1

τ2 V
})

= Γ

(
ε− 1
ε

)(
1 +

1
τ ε

+
1
τ2ε

)1/ε

V . (28)

Because τ > 1, it follows that the average payoff for a household in a pe-
ripheral residence is less than an average household in a central residence. By
symmetry, exactly the same logic applies to the choice of employment. This
occurs despite the fact that wages and rents are the same in all locations. In
this sense, this discrete choice problem creates an average preference for residence
and employment in the central location. Proposition 2 tells us that in equilibrium,
these preferences are capitalized into lower central wages and higher central rents.
While our model is simple, this phenomena appears to be general. If we exclude
empirically uninteresting geographies like circles, most remaining location sets
have a center in the sense of this example. We conclude that heterogeneous pref-
erences together with commuting costs imply an average preference for residence
and employment in the central location.
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Against the two centralizing forces of average preferences are set two cen-
trifugal forces. There is twice as much land in the periphery as the center.
Because land contributes to utility and productivity, the scarcity of central land
incentivizes the movement of both employment and residence to the periphery.
Whether the center ends up relatively more specialized in residence or employ-
ment depends on which of the two activities has the highest demand for land,
and this activity will locate disproportionately in the land-abundant periphery.

Proposition 2 makes this intuition precise. Agglomeration of production
occurs at the center when

1
η
=

1 − α

αβ
>

ε

1 + ε
. (29)

Recalling our discussion of η following equation (22), part (iii) of Proposition
2 says the center ends up relatively specialized in residence or employment
depending on which of the two activities has the highest demand for land. With
η = 0.375, the left hand side of equation (29) is about 2.67. It follows that equation
(29) holds for all ε > 0, so that Proposition 2(iii) is probably the empirically
relevant case.

It is tempting to think that the average preference for central work and resi-
dence is a response to commuting costs. This is not correct. From Proposition 2,
when ε → ∞ and preferences become homogeneous, we approach a city where
each location is in autarky for any τ . Inspection of (27) and (28) shows why this
occurs. When ε → ∞, (27) and (28) are identical. As the same holds when τ = 1,
we may conclude that both idiosyncratic preferences and commuting costs are necessary
to create an average preference for residence and employment in the central location.

5 First nature
We now turn attention to conventional sources of agglomeration. We begin

with an examination of first nature productivity advantages. To isolate the role
of first nature, we consider the case when production is constant returns to scale,
γ = 0, and there are no spillovers, δ = 0.

The following proposition characterizes the corresponding unique spatial
equilibrium.

Proposition 3. Assume constant returns and no productivity spillovers (γ = δ = 0).
Then, there exists a unique equilibrium and this equilibrium is interior for relative first
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nature advantage, c, positive and finite. The equilibrium employment distribution becomes
more concentrated as the first nature productivity advantage c = C0/C1 increases.
Furthermore, there exists a threshold level c > 0 such that the equilibrium employment is

(i) equally distributed between the two peripheral locations, (L1,L0,L1) =

(1/2, 0,1/2), when c → 0;

(ii) higher in the periphery than the center, with 0 < L0 < L1, when 0 < c < c;

(iii) uniformly distributed between center and periphery with (L1,L0,L1) =

(1/3, 1/3, 1/3) when c = c;

(iv) higher in the center than the periphery, L0 > L1 > 0, when c < c < ∞;

(v) fully agglomerated at the center when c → ∞.

Proof: See Appendix J.

Proposition 3 shows that each value of c in [0,∞) uniquely determines a
symmetric employment distribution. Furthermore, the employment ratio ℓ rises
when first nature productivity is higher, while the two corner equilibria ℓ = 0 and
ℓ → ∞ arise when c takes its limit values 0 and ∞. This seems unsurprising, but
requires two comments. First, Proposition 3 describes the relationship between
first nature productivity and equilibrium employment patterns. It is silent about
the residential pattern and commuting behavior. Second, Proposition 3 resembles
Proposition 2 in Ahlfeldt et al. (2015). However, our result slightly extends
the Ahlfeldt et al. result by mapping out the relationship between first nature
advantages and equilibrium outcomes.

6 Spillovers
We now consider a city where, in addition to arbitrary first nature advantages,

increasing returns or productivity spillovers operate at low levels. More
specifically, we compare the impact of local increasing returns and technological
spillovers in the vicinity of γ = 0 and δ = 0 for arbitrary first nature productivity
advantages. In doing so, we restrict attention to empirically relevant values of
the two parameters.4

4Estimates of agglomeration economies suggest that IRS and spillover effects, γ and δ, are
typically much less than one (Rosenthal and Strange, 2020).
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Proposition 4. Consider an economy with arbitrary relative first nature productivity, c,
constant returns to scale, and no spillovers (γ = δ = 0). Then,

(i) there exists a unique threshold ĉ > 0 such that increasing γ slightly above 0
increases central employment if c > ĉ. When c < ĉ, increasing γ slightly above 0
increases peripheral employment;

(ii) increasing δ from 0 to δ̄ ≡ (
√

3 − 1)/2 ≃ 0.37 raises central employment.
However, increasing δ from δ̄ to 1 decreases central employment.

Proof: See Appendix K.

Increasing returns magnify the initial first-nature productive advantage of a
location. Increasing γ raises the relative TFP a(γ) if and only if the equilibrium
under constant returns is such that ℓ > 1. Thus, if first nature concentrates
employment in the center, increasing returns increase this concentration. Fur-
thermore, when c > ĉ, the greater the relative initial advantage is, the greater is
the impact of increasing returns.

There have been many efforts to measure spillovers empirically. However,
these efforts do not permit a conclusion about whether or not the condition of
Proposition 4(ii) is satisfied. In particular, Arzaghi and Henderson (2008) find
that spillover effects in the advertising industry fall to almost zero over the space
of a few city blocks. This suggests a value of δ smaller than 0.37. On the other
hand, Carlino and Kerr (2015) estimate that, even for firms making software, the
value of proximity to other firms falls to about 0.3 in 1 − 5 miles, and falls more
slowly for firms making fabricated metal. This does not seem to rule out values
of δ above the 0.37 threshold of Proposition 4(ii). More generally, Proposition 4
suggests the importance of considering first nature when estimating the effects of
spillovers. That “ship building” and “fish processing” are the two most dispersed
industries of the 234 examined in Duranton and Overman (2005) probably has
little to do with spillovers.

7 Increasing returns
We now turn attention to the role of increasing returns to scale. To focus

attention on returns to scale, we rule out first nature advantages and spillovers,
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Figure 2: Equilibrium correspondence between ρ and γ.
ρ0 < ρL ρL < ρ0

m s m s
=

Notes: In both panels the x-axis is returns to scale, γ, and the y-axis is the logarithm of
relative land rent, ln ρ. The left panel illustrates all interior equilibria as γ varies when
ρ0 < ρL. The right panel shows the case where ρL < ρ0. Solid lines indicate stable
equilibria and dashed lines indicate unstable equilibria, where stability is defined as in
Section 3.

and ask what happens as γ increases. In this case, we have a(ℓ) = ℓγ .

Proposition 5. Assume that there are no relative first nature advantages and no
spillovers (δ = 0 and c = 1). If γ > 0, then

(i) an interior equilibrium always exists.

(ii) there exist two corner equilibria where (L−1,L0,L1) = (0,1,0) or (1/2,0,1/2),
but these equilibria are unstable;

(iii) in both corner and interior equilibria, each location hosts a positive mass of
residents.

Proof: See Appendix L.

Part (i) of Proposition 5 is exactly what we would expect from inspection of
Figure 1. Throughout the range of increasing returns, the market clearing locus,
f , and the zero profit locus, g, always have at least one interior intersection.

The Fréchet distribution for the support of the zij in the indirect utility func-
tion (3) is unbounded, so we expect that every location will always have residents,
as required by part (iii).
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Regarding part (ii), we show in Appendix L that these corner equilibria are
unstable. This result is easy to understand. Consider the agglomerated corner
equilibrium L∗ = (0,1,0). No single individual wants to move to, say, location
1 because her marginal productivity would be zero. This is why (0,1,0) is an
equilibrium employment pattern. By contrast, when a small subset of households
happens to be at j = 1, the marginal product of labor, and therefore the incomes,
of individuals whose tastes are close to those of the indifferent individual are
high. As a consequence, they do not want to move back to location 0. This means
that we can ignore the corner equilibria.

Figure 2(a) depicts the equilibrium correspondence ρ(γ). In Appendix M,
Lemma 7 provides a simple test for checking the stability of any interior equilibria.
Applying this test to the examples illustrated in Figure 2 allows us to determine
the stability of each possible equilibrium for the relevant parameter values. We
indicate stable equilibria with a heavy solid line, and unstable equilibria with a
lighter dashed line.

With existence and stability established, we now turn to a characterization of
equilibrium as γ increases from zero. We begin by introducing three domains
of returns to scale by means of two thresholds γm and γs, which are defined
below. We will show that these domains are associated with qualitatively different
equilibrium behavior.

Definition 2 Increasing returns to scale are:

(i) weak if 0 < γ < γm ≡ α/ε;

(ii) moderate if γm ≤ γ ≤ γs;

(iii) strong if γ > γs.

As we describe above, γm = α/ε is the value of γ at which the zero-profit
locus g switches from an increasing to a decreasing function of ρ. Because γm = 0
as ε → ∞, it follows that the population must be heterogeneous for weak returns
to scale to occur. Put differently, if households are homogeneous, the case of weak
increasing returns is ruled out.

In a modern economy, the labor share of production, α, is about 0.6, while the
range of commonly used estimates for ε is about [5,7]. Taking the ratio of these
values, we have γm in [0.085,0.12].
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Characterizing γs is more complicated. Taking the log of functions f and g

and solving the equilibrium condition log f(ρ) = log g(ρ; γ) for γ yields

γ(ρ) =
log f(ρ)

log ρ+2ϕ
ϕρ+1+ϕ2 +

ε
1+ε log f(ρ)

. (30)

The parameter γs is defined as the value of γ that maximizes this expression,
subject to ρm ≤ ρ ≤ 1. Anticipating results below, γ(ρ) is obtained by reversing
the axes in Figure 2(a), and γs is defined as the maximum of γ(ρ), the point where
the two equilibrium branches with ln ρ < 0 merge.5

To investigate the magnitude of γs, Figure 3 solves for the value of γ that
maximizes equation (30) for a range of parameter values. Using plausible values
for parameters, γs, evaluates to about 0.4.

Estimates of the wage elasticity of population for modern, developed country
cities are often between 0.03 and 0.05, but other estimates suggest that larger
values of γ are defensible. For the contemporary US, Glaeser and Gottlieb (2009)
find that the elasticity of city level output to population is 0.13. Using data from
six African countries in the early 21st century, Henderson and Turner (2020)
find that the elasticity of household income to density is about 0.3, even after
controlling for basic demographics. Examining about a century of rural and urban
wage data for the US, Boustan et al. (2013) find that the urban wage premium is
consistently around 0.3. Thus, values of γ between 0.05 and 0.30 find at least some
empirical support (but large estimates probably partly reflect sorting and the rural
to urban transition). This interval comfortably contains γm, and γs is near the top
of this interval when other model parameters take defensible values. Thus, the
domains of weak and moderate returns to scale seem empirically relevant while
the domain of strong returns to scale cannot be ruled out with confidence.

Weak increasing returns
The next proposition describes the equilibrium when increasing returns to

scale are weak and ε is positive and finite.
Proposition 6. Assume that there are no relative first nature advantages and no
spillovers (c = 1 and δ = 0).

5Interestingly, we can show that γm = γs when ρm ≥ ρL and γm < γs when ρm < ρL.
Therefore, the region of moderate increasing returns to scale does not exist unless the step in the
zero profit locus is to the right of the asymptote of the market clearing locus, i.e., ρm < ρL.
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Figure 3: Numerical evaluation of γs

γs

τ

Notes: This figure plots the γs, the value of γ that maximizes equation (30). The figures
are drawn for α = 0.6 and β = 0.15, δ = 0, c = 1, τ = 1.15 and ε = 5 (dotted),
6 (dashed) and 7 (solid). For iceberg commuting cost, τ in the empirically relevant range
of (1,1.5), γs is around 0.4.

(i) If 0 < γ < γm, then there is a unique interior equilibrium;

(ii) If (1 − α)/αβ > ε/(1 + ε) holds, then equilibrium employment in the center is
greater than in the periphery. Furthermore, central employment, rents and wages
are all increasing in γ. That is,

dℓ∗

dγ
> 0,

dρ∗

dγ
< 0, 0 <

dω∗

dγ
.

Proof: See Appendix N.
In the region of weak increasing returns, equilibrium is largely determined

by the same forces that operate when the technology displays constant returns.
That is, the average preferences for central work and residence draw activity
into the center and the relative abundance of peripheral land pulls it out. As
scale economies increase, the central location becomes increasingly attractive for
employment, the central land price capitalizes higher central productivity, and
the central wage rises in response to the increase in the marginal product of labor.

The comparative statics in Proposition 6 holds whenever 0 < γ < γm. The
generality of this result conceals the fact that distinct equilibrium regimes arise
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when ρm < ρL and ρL < ρm. When ρm < ρL, high commuting costs encourage
households to work where they live or land hungry production faces pressure
to disperse to the periphery (or both). An equilibrium in such an economy has
low levels of commuting and dispersed production. Thus, when ρm < ρL, low
levels of increasing returns do not lead to equilibrium cities where employment
or residence is highly concentrated in either the center or periphery. Panel (a)
of Figure 1 illustrates this case. Formally, as γ approaches γm, the zero-profit
locus converges to an increasing step function with the step at ρL. Hence, the
curves f and g must cross near ρL as γ increases towards γm. Because ρm < ρL,
it follows that this intersection must occur when f is away from its asymptote at
ρm. Therefore, the equilibrium value of ω grows with γ but remains bounded.

In contrast, when ρL ≤ ρm, low commuting costs allow households to separate
work and residence locations in response to a small wage premium, and produc-
tivity is not sensitive to the relatively abundant land of the periphery. In this case,
increasing returns compounds the average preference for central employment
to concentrate employment in the center, and households are able to cheaply
disperse their residences to the land-abundant periphery. An equilibrium in such
an economy involves concentrated employment and high levels of commuting.
Thus, when ρL < ρm, low levels of increasing returns lead to equilibrium cities
where employment is highly concentrated in the center and residence in the
periphery. The monocentric city arises endogenously. Formally, when ρL ≤ ρm,
as γ approaches γm, the intersection of f and g occurs near the asymptote of f .
As a result, the value of ω at which the two curves intersect becomes large.

Figure 2 shows the equilibrium relationship between γ and ln ρ for numerical
examples satisfying ρm < ρL in panel (a) and ρL < ρm in panel (b). In both panels,
the x-axis is γ and the y-axis is ln ρ. Both figures show all interior equilibria,
but not the corner equilibria. Both figures indicate stable equilibria with a solid
line and unstable equilibria with a dashed line. Consistent with our results in
Propositions 2 and 6, Figure 2 shows that ρ decreases from near one as γ increases
in a neighborhood of zero. As γ increases towards γm, we see that ρ continues
to decrease. Comparing panels (a) and (b) we see the two distinct equilibrium
regimes that arise as γ increases toward the threshold of the weak increasing
returns domain when ρm < ρL and ρL < ρm.

By Proposition 5, interior equilibria always exist. Lemma 7 in Appendix M

27



provides a simple test for checking the stability of any interior equilibria. Ap-
plying this test to the examples illustrated in Figure 2 allows us to determine the
stability of each possible equilibrium for the relevant parameter values. In Figure
2, we indicate stable equilibria with a heavy solid line, and unstable equilibria
with a lighter dashed line. While our results do not permit general conclusions
about the stability of equilibria, they demonstrate that stable equilibria need not
exist and that multiple stable equilibria are possible.

Moderate increasing returns
When γ > γm, the market clearing locus, f , remains unchanged, but the

zero-profit locus, g, changes from an increasing to a decreasing function. When
f and g are both decreasing, they need not cross at all, and may cross more than
once. Thus, zero or many equilibria are possible. Proposition 5 establishes that
an equilibrium exists. Figure 1 suggests that for intermediate values of γ, that f
and g cross one or three times. The following proposition formalizes this intuition.

Proposition 7. Assume that there are no relative first nature advantages and no spillovers
(δ = 0 and c = 1). If γ is slightly above γm and

(i) if commuting costs are high or the demand for commercial land is large (ρm < ρL),
then there are three equilibria: (1) central wages and rents are larger than in the periphery
(ω∗

1 > 1 and ρ∗1 < 1); (2) close to the equilibrium that occurs under weak increasing
returns with central wages and rents larger or smaller than in the periphery (ω∗

2 ≶

1 and ρ∗2 ≶ 1); (3) central wages and rents are smaller than in the periphery (ω∗
3 <

1 and ρ∗3 > 1). Furthermore, as returns to scale decrease towards the weak/moderate
threshold (γ → γm), employment in (1) concentrates in the periphery; employment in (2)
remains interior; and employment in (3) concentrates in the center;

(ii) if commuting costs are low and the demand for commercial land is small (ρm >

ρL), then there is a unique interior equilibrium (ρ∗,ω∗) such that central wages and
rents are smaller than in the periphery (ω∗ < 1 and ρ∗ > 1). Furthermore, as returns to
scale decrease towards the weak/moderate threshold (γ → γm), equilibrium employment
concentrates in the periphery.
Proof: See Appendix O.

The logic underlying part (i) of Proposition 7 is visible in panel (b) of Figure 1.
The medium blue line describes the case of moderate increasing returns. In this
case, g crosses f three times. At the first intersection point, we have ρ∗1 < 1 and
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ω∗
1 > 1; at the second, we see that ρ∗2 approaches ρL as γ decreases toward γm; at

the third intersection point, we have ρ∗3 > 1 and ω∗
3 < 1. The value ω∗

1 (resp., ω∗
3 ) in

turn requires that employment occurs primarily in the center (resp., periphery).
The light blue line in panel (b) describes g when γ is just above γm. As γ

approaches this threshold, for one of the two new equilibria, ω grows without
bound (and occurs outside the frame of the figure), while ω approaches zero
in the other equilibrium. That is, just above the threshold, these two equilibria
approach corner patterns where all employment is either central or peripheral.

The corresponding logic for part (ii) of Proposition 7 is visible in panel (d) of
Figure 1. As in panel (b), the medium blue line describes the case of moderate
increasing returns. In this case, g crosses f only once. The light blue line in
panel (b) describes g when γ is just above γm. As γ approaches this threshold,
the single intersection of f and g occurs at progressively larger values of ω as g
converges to a decreasing step function. In the limiting case, as γ approaches γm
from above, the single equilibrium occurs when all employment is concentrated
in the periphery. Figure 2 summarizes the results of Proposition 7.

That part (i) of Proposition 7 establishes the emergence of multiple equilibria
seems unsurprising. We expect sufficiently strong increasing returns to give
rise to multiple equilibria. Part (i) also describes an equilibrium branch which
continues behavior from the weak increasing returns case. This is the central,
interior equilibrium branch in panel (a) of Figure 2. That the logic governing
behavior in the case of weak increasing returns should sometimes survive a small
increase in γ above γm also seems unsurprising.

We see in part (ii) that multiple equilibria need not emerge as returns to scale
increase. When commuting costs are low and land is less productive, i.e. ρm > ρL,
there is only a single equilibrium when γ is weak or moderate. Thus, increasing
returns is necessary for multiple equilibria, but not sufficient.

Propositions 6 and 7 together imply a discontinuous change in the only pos-
sible equilibrium city when ρL < ρm and γ varies around γm. This discontinuity
is clearly visible in panel (b) of Figure 2. From Figure 1, it is clear that this
discontinuity follows from the fact that the zero-profit locus switches from an
increasing to a decreasing step function around the threshold γm.

These results require three comments. First, notice that Proposition 7 char-
acterizes equilibrium just above the threshold separating weak and moderate
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increasing returns, γm. It is natural to expect that the behavior we observe near
γm persists throughout the full range of moderate increasing returns, as in the
example illustrated in Figure 2. In fact, we cannot rule out the possibility of
more complicated equilibrium behavior for values of γ just below γs, although we
have not found a counter example to contradict the conjecture that the results of
Proposition 7 hold throughout the range of moderate increasing returns.

Second, Proposition 7 establishes qualitatively different equilibrium behavior
around γ = γm when ρm < ρL and conversely. Recalling that ρL < ρm describes
the case when commuting costs and the land share of production are both low,
this is the case when we expect the location of employment to be more sensitive
to changes in returns to scale. This intuition is consistent with our finding in
Proposition 7.

Third, when commuting costs are high or land is more productive, i.e.
ρm < ρL, part (i) of Proposition 7 establishes the existence of three equilibria
when γ is not too far above the γm threshold. As γ decreases towards γm em-
ployment in these equilibria converges to the corners (L−1,L0,L1) = (1/2,0.1/2)
or (0,1,0). Reversing these statements, in these equilibria, as returns to scale
increase, employment becomes more uniformly distributed across locations. For
these equilibria, increases in returns to scale does not lead to agglomeration. It
leads to its opposite.

Strong increasing returns
Careful inspection of Figure 1 shows that the market clearing and zero profit

curves cross only once and that a single interior equilibrium persists when γ

is larger than a threshold γs, regardless of whether ρm < ρL or ρL < ρm. The
following theorem extends and makes precise this intuition.

Proposition 8. Assume that there are no relative first nature advantages and no
spillovers (δ = 0 and c = 1). If γ > γs, then there exists a unique interior equilibrium.
Furthermore, as returns to scale γ increase and tend to ∞, ℓ∗ decreases and the distribution
of employment converges toward the uniform distribution.
Proof: See Appendix P.

Equilibrium requires that profits be zero everywhere, that households choose
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their most preferred workplace-residence pair, that firms choose inputs to min-
imize costs, and that land markets clear. An increase in returns to scale imme-
diately upsets the zero-profit condition as productivity increases more rapidly in
more densely populated places, changing A0 and A1 in equation (14). Cost min-
imization dictates the corresponding changes in wages. With wages determined,
two degrees of freedom remain to restore the zero-profit condition, a change
in rent and, recalling that Ai = Lγi , a change in population, Li. In particular,
an increase in rent or a decrease in population can both reduce profits after
an increase in the strength of agglomeration economies. Proposition 8 shows
that equilibrium increases in wages and rents are not sufficient to preserve the
zero-profit condition when increasing returns are sufficiently high. Restoring the
zero-profit condition is accomplished by dispersing employment to reduce wage
and rent at the center. In other words, strong increasing returns act as a dispersion
force.

To sum up, Proposition 6 shows that for low levels of returns to scale, in-
creases in γ lead to increased concentration of employment in the center. We see in
Proposition 7(i) that increases in γ lead to decreases in employment concentration
along the equilibrium branches where employment is highly concentrated in the
center or the periphery. Proposition 8 shows that beyond γs, increases in γ lead
to decreases in employment concentration for the only equilibrium that persists at
high levels of returns to scale. Thus, increasing returns is not an agglomeration
force over its entire possible range; for γ > γm, increases γ may cause employment
to disperse. For γ > γs, increases to γ must cause employment to disperse.

The left panel of figure 2 illustrates this behavior. In the region of moderate
returns to scale, both of the extreme equilibrium branches exhibit increasing
dispersion as returns to scale increases. Above the threshold of strong returns
to scale, the single surviving equilibrium branch also exhibit increased dispersion
as γ increases. Importantly, these equilibria are sometimes stable. This establishes
that the behavior described by Proposition 7(ii) and Proposition 8 cannot be
disregarded because the relevant equilibria are unstable.

Inspection of Figure 1 makes it clear why this result occurs. As γ increases
beyond γm, the zero-profit locus, g, diverges from the step function g(ρ,γm) and as
this occurs, the intersection of f and g occurs at values of ρ that are progressively
nearer to one.
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Figure 4: Employment and residence ratios as commuting cost and preference
heterogeneity vary.

m, ℓ m, ℓ

τ ε

Notes: In both panels, the heavy black line is equilibrium employment centrality,
ℓ = L0/L1, the dashed line is residence centrality, m = M0/M1 and parameters values
are γ = 0.07, α = 0.6, β = 0.15, δ = 0, c = 1. (Left) ε = 6 and τ varies along the
x-axis. (Right) τ = 1.15 and ε varies along the x-axis. In all cases, parameters lie in the
region of weak increasing returns (γ < γm). For an empirically relevant part of the
parameter space, the figures show a non-linear relationship between the centralization of
employment and residence and commute costs (Right) and preference heterogeneity (Left).

8 Commuting cost and preference dispersion
We now consider how interior equilibria vary as commuting cost τ or prefer-

ence dispersion ε change . Because τ and ε often appear together in the analysis
as ϕ = τ−ε, we may expect the comparative statics for the two parameters to be
similar.

Figure 4a illustrates the equilibrium employment ratio ℓ and residence ratio,
m, as τ varies in the case of weak increasing returns: the concentration of
employment and residence in the center is increasing in commuting costs for
low levels of τ and decreasing for high levels of τ . Equilibrium employment and
residence becomes uniform as τ approaches either one or infinity. The peak of
the employment ratio locus occurs around τ = 1.2, where commuting results in
a 20% utility penalty. For reference, Redding and Turner (2015) report an average
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round trip commute of about 50 minutes for an average American, this is about
12% of an eight hour work day. This calculation suggests that the complicated
comparative statics illustrated in Figure 3 could well be empirically relevant.

It is easy to see that ϕ = 1 when τ = 1, while ϕ = 0 when τ → ∞ . In these
two cases, equations (27) and (28) show that the average payoff of the choice of
central versus peripheral workplace converge toward each other. To show this,
setting ϕ = 0 and ϕ = 1 in equations (23) and (24), we obtain:

f(ρ)|ϕ=0 = ρ−1− 1
βε , f(ρ)|ϕ=1 =

ρ− 2aρ1+ 1
βε + 2(1 + a)

(1 + a)ρ1+ 1
βε + 2ρ

1
βε − a

,

g(ρ; γ)|ϕ=0 = ρ
1
a+

γ
αερ

γε/α
1−γε/α

1+ε
ε , g(ρ; γ)|ϕ=1 = ρ

b
1−γε/α .

Evaluating these functions at ρ = 1 shows that f(1)|ϕ=0 = g(1; γ)|ϕ=0 = 1 and
f(1)|ϕ=1 = g(1; γ)|ϕ=1 = 1. Hence, ρ∗ = 1 is an interior equilibrium when ϕ = 1
and when ϕ = 0.

Figure 4b illustrates the equilibrium employment ratio ℓ and residence ratio,
m, as ε varies, also in the case of weak increasing returns. We see that ag-
glomeration occurs only when ε takes intermediate values. Letting ε → ∞ in
f(ρ)|ϕ=0 = g(ρ; γ)|ϕ=0, we obtain ρ−1 = ρ

1
a−1 whose unique interior solution

is ρ∗ = 1. It then follows from equation (23) that ω∗ = 1, which implies
ℓ∗(1) = m∗(1) = h∗(1) = n∗(1) = 1. Using equations (17) and (18), it is easy
to show that s∗ij = 0 for i ̸= j and s∗ii = 1/3. Thus, when households no longer
care about where they live and work, they focus on their own consumption only.

By contrast, as ε = 0, returns to scale must be weak because the threshold
γm → ∞. The uniform pattern also emerges as the population becomes infinitely
heterogeneous. As taste heterogeneity over pairwise choices becomes increasingly
important relative to commuting costs and, in the limit, households ignore land
price and wage differences, and the distribution of households across pairs is
uniform. Since the distribution of types is the same across locations, households
must be uniformly distributed across locations.

Thus, as ε goes to zero or infinity, the distribution of residence and employ-
ment becomes uniform, but the city functions differently. When ε = 0, we have
an extreme form of urban sprawl where many people commute and there is
no city center. Formally, when ε = 0, the payoffs for each of the nine location
pairs become identical (s∗ij = 1/9). By contrast, when ε → ∞ we have a city of
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backyard capitalists in which nobody commutes. Indeed, the payoff (28) attached
to off-diagonal pairs goes to zero (s∗ij = 0 for i ̸= j).

Summing up, these results, and those discussed in Section 3, show that intro-
ducing heterogeneity in households’ preferences for workplace-residence pairs is
not an innocuous assumption. On the contrary, it has important effects on the
properties of the spatial equilibrium.

Three remarks are in order. First, in the monocentric city model, decreases
in commuting costs lead households to spread out. In our heterogenous house-
hold model, comparative statics on commuting costs are not monotone. Second,
quantitative exercises often evaluate the effects of counterfactual changes in com-
muting costs. To the extent that these counterfactual exercises are comparative
statics of commuting costs, our results suggest that the qualitative features of such
counterfactual exercises may change sign in response to changes in parameters
according to the value of ε. Finally, we note that our comparative statics on
preference heterogeneity are similar to those from new economic geography.
Combining results from Krugman(1991) and Tabuchi and Thisse(2002), economic
activity is dispersed in economies with homogenous households, concentrated
for intermediate levels of heterogeneity, and concentrated again for economies
with very heterogenous households. In the NEG framework, as in our model,
the addition of idiosyncratic preferences for locations leads qualitatively different
equilibria.

9 Conclusion
Understanding how people arrange themselves when they are free to choose

work and residence locations, when commuting is costly, and when some eco-
nomic mechanism rewards the agglomeration of employment, is one of the
defining problems of urban economics. We address this problem by combining
a discrete choice model of location, the stylized geographies of classical urban
economics, and a production function that allows for first nature advantages, in-
creasing returns, and productivity spillovers. We provide a complete description
of equilibria in much the parameter space.

Besides accounting identities, an equilibrium must satisfy two main condi-
tions: all households choose their most preferred workplace-residence pair and
profits must be zero everywhere. Of these two, the first is familiar from widely
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used discrete choice models of spatial equilibrium. The second is less well studied
and has two surprising implications. First, equilibrium agglomeration of employ-
ment is first increasing and then decreasing in the strength of returns to scale.
When increasing returns to scale are strong enough, the zero profit condition is
preserved, in part, by dispersing employment. Second, productivity spillovers
can act to disperse employment. Productivity spillovers allow firms to benefit
from high productivity locations without paying the rent and wage premium
required to locate in them. It is enough to be near. Of the three conventional
foundations for economic agglomerations that we consider, only the comparative
statics for first nature behave as expected: employment concentrates where first
nature productivity is greater.

Despite its wide use, our conventional description of preference heterogeneity
implies a previously unnoticed foundation for agglomeration. A population of
households with heterogenous preferences over workplace-residence pairs has
an average preference for central work and residence. Absent any property of
production that rewards the concentration of employment, a city comprised of
such households has denser central employment and residence.

Even in a simple setting like ours, the relationship between economic funda-
mentals and equilibrium is complicated. This is true throughout the parameter
space, but particularly in the region of moderate returns to scale. As we see in
Figure 2, it is in this region where multiple interior equilibria arise, where equilib-
rium comparative statics can be discontinuous, and where increasing to returns to
scale begins to disperse employment. Our back of the envelope calculations show
that when other parameters of the model take defensible values, the threshold
values for return to scale, γm and γs, are respectively central and at the boundary
of the set of plausible values for γ. This suggests that none of the equilibrium
behavior that we describe can be ruled out a priori in applications of QSM.

Our results also have implications for research based on quantitative spatial
models. Two observations will illustrate. First, Heblich et al. (2020) estimate
a model with many features in common with ours. They demonstrate that
a reduction in commuting costs following the opening of the subway in 19th
century London precipitates a dramatic reorganization of the city. Loosely, prior
to the subway, employment and residence were dispersed and commuting was
relatively rare, and after the subway, the locations of residence and employment
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separated as people commuted to central employment from peripheral residences.
According to the discussion following Proposition 6, high commuting costs en-
courage households to work where they live, while low commuting costs allow
households to separate work and residence locations. Thus, the phenomena
observed in London correspond closely with comparative static in our model
in a large part of the parameter space. This argues for the external validity of
the comparative statics evaluated in Heblich et al. (2020). At a minimum, their
finding does not require all of the many peculiarities of London to arise.

Second, as a rule, quantitative spatial models often share many features with
the one considered here, and so may be expected to exhibit at least some of the
same complicated behavior. The possibility of complex behavior in a neighbor-
hood of the boundary between the weak and moderate returns to scale together
with the empirical relevance of this threshold suggests that efforts to investigate
the possibility of multiple equilibria are appropriate. We have shown, that conver-
gence of fixed point algorithms fails to serve as an equilibrium selection criterion
under multiple equilibria because it is not robust to the algebraic form of the
equilibrium conditions. Thus, an investigation of multiple equilibria appears to
require new techniques.
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Appendix
A. Proof of Lemma 1

As commuting flows (7) are uniquely determined by ρ and ω, it suffices to
express the equilibrium patterns — the labor pattern (L0,L1), the residential pop-
ulation pattern (M0,M1), the housing pattern (H0,H1), the commercial land-use
pattern (N0,N1), the wage pattern (W0,W1), and the land rent pattern (R0,R1) —
as functions of ρ, ω, and (sij), or equivalently, as functions of r, w and (sij).
Labor and population patterns: Using (7) and (8) yields (17) and (18).
Land-use patterns: Consider the complementary slackness conditions for pro-
ducer’s profit maximization:(

αAiL
α−1
i N1−α

i −Wi

)
Li = 0, with αAiL

α−1
i N1−α

i −Wi ≤ 0 and Li ≥ 0,[
(1 − α)AiL

α
i N

−α
i −Ri

]
Ni = 0, with (1 − α)AiL

α
i N

−α
i −Ri ≤ 0 and Ni ≥ 0.

These complementary slackness conditions imply that

AiL
α
i N

1−α
i =

WiLi
α

=
RiNi
1 − α

.

Hence, the demands for commercial land are given by

N0 =
1 − α

α

W0L0

R0
, N1 =

1 − α

α

W1L1

R1
.

Using (8), we obtain expressions for the commercial land demands:

N0 =
1 − α

α

W0

R0
(s00 + 2s10), N1 =

1 − α

α

W1

R1

[
(1 + ϕ2)s11 + s01

]
. (A.1)

Next, plugging the commuting flows (7) into the market demand functions for
residential land, Hi ≡ ∑j sij

βWj

Ri
, and using w = W0/W1, we obtain expressions

for the residential land demands:

H0 = β
W0

R0

(
s00 + 2w−1s01

)
, H1 = β

W1

R1

[
(1 + ϕ2)s11 +ws10

]
. (A.2)

Computing the ratios, Hi/Ni, for i = 0,1, and using (10),

H0

N0
=

1 −N0

N0
= η

s00 + 2ω− 1
ε s01

s00 + 2s10
,

H1

N1
=

1 −N1

N1
= η

(1 + ϕ2)s11 + ω
1
ε s10

(1 + ϕ2)s11 + s01
,

where η is given by (22). Solving for N0 and N1, and using (7), we arrive at
expressions (19) – (20) for the land-use patterns.
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Wages and land rents. The ratios Wi/Ri, i = 0,1, are pinned down by combining
(A.1) and (A.2) with the land-market clearing conditions (10):

W0

R0
=

α

1 − α

[
(1 + η)s00 + 2s10 + 2ηw−1s01

]−1
;

W1

R1
=

α

1 − α

[
(1 + ϕ2)(1 + η)s11 + s01 + ηws10

]−1
.

Restating the zero-profit conditions (14) as

Ri = αα(1 − α)1−αAi

(
Wi

Ri

)−α
,

and plugging the ratios Wi/Ri into the right-hand sides, we obtain land rents as
functions of r, w, and sij :

Ri =

(1 − α)A0
[
(1 + η)s00 + 2s10 + 2ηw−1s01

]α , i = 0;

(1 − α)A1
[
(1 + ϕ2)(1 + η)s11 + s01 + ηws10

]α , i = 1.

Plugging the land rents back into the ratios Wi/Ri, we obtain the wages as
functions of r, w, and sij :

Wi =

αA0
[
(1 + η)s00 + 2s10 + 2ηw−1s01

]−(1−α) , i = 0;

αA1
[
(1 + ϕ2)(1 + η)s11 + s01 + ηws10

]−(1−α) , i = 1.

Last, equation (4) may be rewritten as[
Wj/(τijR

β
i )
]ε

∑r∈I ∑s∈I

[
Ws/(τrsR

β
r )
]ε =

[
Wj/(τijR

β
i )
]ε[

W0/(Rβ0 )
]ε

+ 2ϕ
[
W1/Rβ0

]ε
+ 2ϕ

[
W0/Rβ1

]ε
+ 2(1 + ϕ2)

[
W1/(Rβ1 )

]ε
whose denominator is equal to[

w/(rβ)
]ε

+ 2ϕ
[
1/rβ

]ε
+ 2ϕ [w]ε + 2(1 + ϕ2) = ωρ+ 2ϕρ+ 2ϕω+ 2(1 + ϕ2).

Q.E.D.

B. Proof of Proposition 1
Using (7) and (A.1) – (A.2), we can define the relative demand for land, λ(r,w),

as follows:

N0 +H0

N1 +H1
= λ(r,w) ≡ (1 + η)w1+εr−βε + 2ϕw1+ε + 2ηϕr−βε

ϕr−βε + ηϕw1+ε + (1 + ϕ2)(1 + η)

1
r

. (B.1)
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Because each location has one unit of land, the relative supply of land is equal
to one. In equilibrium, the relative demand for land equals the relative supply of
land: λ(r,w) = 1. Using (B.1) and (6), the condition λ(r,w) = 1 becomes:

(1 + η)ω
1+ε
ε ρ+ 2ϕω

1+ε
ε + 2ηϕρ

ϕρ+ ηϕω
1+ε
ε + (1 + ϕ2)(1 + η)

= ρ−
1
βε ,

whose solution in ω
1+ε
ε yields (23).

To derive (24), let us restate (15), using (6) and (21), as follows

ω
α
ε ρ−

1−α
βε = a

(
ω

ρ+ 2ϕ
1 + ϕρ+ ϕ2

)
, (B.2)

where a(·) is the relative TFP given by (16). Equation (B.2) defines implicitly a
function ω

1+ε
ε = g(ρ,γ,δ). If δ > 0, then the g-function cannot be expressed in

closed form but can be written as a fixed point given by the second line of (24).
When δ = 0, the g-function can be expressed in closed form. Indeed, in this case,
(B.2) takes the form

ω
α
ε ρ−

1−α
βε = c

(
ω

ρ+ 2ϕ
1 + ϕρ+ ϕ2

)γ
,

whose solution in ω
1+ε
ε delivers the first line of (24). Q.E.D.

C. Lemma 2
Lemma 2. The f -function in the RHS of (23) has the following properties:

i. there exist ρm > 0and ρM > ρm, such that f(ρ) > 0if and only if ρm < ρ < ρM ;

ii. f(ρ)decreases from ∞to 0 over (ρm,ρM ).

Proof. The proof follows directly from the properties of the relative demand for
land, λ(r,w), given by (B.1).

The relative demand for land decreases with the relative land price r. Indeed,
computing the elasticity of the relative demand for land w.r.t. r, we get:

−∂ lnλ(r,w)
∂ ln r

=

1 +
(1 + η)βε

[(
1 − ϕ2 + (1 + 2ϕ2)η

)
w1+ε + ηϕ

(
w1+ε)2

+ 2ηϕ(1 + ϕ2)
]
r−βε

rλ(r,w) [ϕr−βε + ηϕw1+ε + (1 + ϕ2)(1 + η)]
2 ,
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where the RHS is clearly positive. Also, the relative demand for land increases
with the relative wage w. Computing the elasticity of λ(r,w) w.r.t. the relative
wage w, we get:

∂ lnλ(r,w)
∂ lnw

=

(1 + η)(1 + ε)
[
ϕr−2βε +

(
1 + 3ϕ2 + η(1 − ϕ2)

)
r−βε + 2ϕ(1 + ϕ2)

]
w1+ε

rλ(r,w) [ϕr−βε + ηϕw1+ε + (1 + ϕ2)(1 + η)]
2 ,

where the RHS is clearly positive. This result reflects two effects: (i) a higher
wage leads to substituting labor with land in production; (ii) the citizens, who
are commuting-averse, tend to live in locations offering higher wages.

To derive ρm and ρM , consider two extreme cases.
Extreme case 1: w = 0. The condition λ(r,w) = 1 becomes:

λ(r,0) ≡ 2ηϕr−βε

ϕr−βε + (1 + ϕ2)(1 + η)

1
r
= 1. (C.1)

The equation λ(r,0) = 1 has a unique solution r > 0.
Extreme case 2: w = ∞. The condition λ(r,w) = 1 becomes:

λ(r,∞) ≡
(

1 + η

ηϕ
r−βε +

2
η

)
1
r
= 1. (C.2)

The equation λ(r,∞) = 1 has a unique solution r > r > 0. That r > r follows from
∂ lnλ(r,w)
∂ lnw > 0, which implies λ(r,∞) > λ(r,0) for every given r, hence λ(r,∞) =

1 = λ(r,0) < λ(r,∞), which implies r > r.
The above analysis brings us to two important conclusions:

• the equilibrium condition λ(r,w) = 1 defines an increasing relation between
r and w, hence it defines a decreasing relation between ω and ρ;

• while the equilibrium condition λ(r,w) = 1 can hold for any w ≥ 0 (includ-
ing w = 0 and w = +∞), it can hold only for a limited range of relative land
rents: r ∈ [r,r].

Because ω
1+ε
ε = f(ρ) is just an equivalent way of writing the equilibrium

condition λ(r,w) = 1, which defines a decreasing relationship between ρ and
ω, we have f ′(ρ) < 0 for each admissible value of ρ. Furthermore, because the
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equilibrium condition λ(r,w) = 1 can only hold for r ∈ [r,r], the extreme cases of
r = r and r = r, which correspond, respectively, to w = 0 and w = ∞, the function
f decreases from ∞ to 0 as ρ changes from ρm ≡ r−βε to ρM ≡ r−βε > ρm. Beyond
the interval (ρm,ρM ), the expression for f(ρ) in (23), although still mathematically
well defined, has no economic meaning. Q.E.D.

D. Lemma 3
Lemma 3. (i) If γ ̸= γm and δ = 0, then g(ρ; γ)is strictly positive and finite over
[ρm,ρM ]. (ii) If γ < γm, then gis increasing over [ρm,ρM ]. (iii) If γ > γm, then gis
decreasing over [ρm,ρM ]. (iv) As γ converges to γm, we have:

lim
γ↗γm

g(ρ; γ) =


0, ρ < ρL;(

ρL+2ϕ
1+ϕρL+ϕ2

)− 1+ε
ε

ρ = ρL;

∞, ρ > ρL;

lim
γ↘γm

g(ρ; γ) =


∞, ρ < ρL;(

ρL+2ϕ
1+ϕρL+ϕ2

)− 1+ε
ε

ρ = ρL;

0, ρ > ρL;

where ρL > 0is the unique solution to the equation

ρ
1
η

ρ+ 2ϕ
1 + ϕρ+ ϕ2 = c

−ε
α .

Proof. Part (i) follows from combining (24) with 0 < ρm < ρM < ∞. Parts (ii) and
(iii) are obtained by differentiating g with respect to ρ. Part (iv) holds because
g(ρ; γ) may be rewritten as follows:

g(ρ; γ) = Φ

[(
ρ

1
η

ρ+ 2ϕ
1 + ϕρ+ ϕ2

) γm
γm−γ

·
(

ρ+ 2ϕ
1 + ϕρ+ ϕ2

)−1
] 1+ε

ε

, (D.1)

where Φ ≡ c
ψη

γm−γ . Q.E.D.

E. Lemma 4
Lemma 4. There exists a function ϕ(βε) ∈ (0,1)and scalar η > 0such that ρm < ρLif
ϕ < ϕor η < η. Conversely, if ϕ > ϕand η > η, then ρm > ρL.
Proof. It follows from the proof of Lemma 2 that ρm is the unique solution of

D(ρ) ≡ (1 + η)ρ
1+βε
βε + 2ϕρ

1
βε − ηϕ = 0. (E.1)

The expressions (D.1) and (E.1) imply that ρL and ρm are functions of η. We
next show that ρm and ρL vary with η as follows,

lim
η→0

ρL = 1,
dρL
dη

< 0, lim
η→∞

ρL = 1 − ϕ,
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lim
η→0

ρm = 0,
dρm
dη

> 0, lim
η→∞

ρm = ϕ
βε

1+βε .

We can show that ρm (resp., ρL) increases (resp., decreases) in η by applying
the implicit function theorem to D(ρ) = 0 (resp., (D.1)). Observe further that,
when η → ∞ (resp., η → 0), dividing D(ρ) = 0 by η and taking the limit yields
ρm = ϕβε/(1+βε) (resp., ρm = 1). Last, when η → ∞ (resp., η → 0), taking (E.1) at
the power η and the limit yields ρL = 1 − ϕ (resp., ρL = 1).

To determine where ρm and ρL intersect, we compare limη→∞ ρL and
limη→∞ ρm by considering the equation

ϕβε/(1+βε) + ϕ = 1. (E.2)

Differentiating the LHS of (E.2) with respect to ϕ shows that it increases from
0 to 2 when ϕ increases from 0 to 1. The intermediate value theorem then implies
that, for any given βε, (E.2) has a unique solution ϕ(βε) ∈ (0,1), which increases
with βε.

The inequality ρm ≤ ρL holds if ϕβε/(1+βε) ≤ 1 − ϕ, which amounts to ϕ ≤
ϕ(βε). If ϕ < ϕ ≤ 1, then there exists a unique value η > 0 that solves the
condition ρL(η) = ρm(η). Consequently, if η < η, then ρm ≤ ρL. If η ≥ η, then
ρm > ρL.

Summing up, ρm ≤ ρL if ϕ ≤ ϕ or η ≤ η, and ρm > ρL when both conditions
fail. Q.E.D.

F. Iterative stability
One candidate, particularly relevant for the literature on quantitative spatial

models, is to say that an equilibrium is stable if an iterative process will converge
to it. Formally, if equilibria are defined by f(ρ) = g(ρ), then equilibria are fixed
points of h(ρ) = ρ, for h(ρ) ≡ f−1(g(ρ)). In this case, it is well known that an
iterative process will find a fixed point ρ∗ if and only if |h′(ρ∗)| < 1. Surprisingly,
this notion of stability is not well defined as there are two problems.

First, there are two alternative ways of stating the fixed point problem. First,
as ρ = h(ρ) ≡ f−1(g(ρ)), and alternatively, as ρ = h̃(ρ) ≡ g−1(h(ρ)). Both
representations have the same solutions, but their stability properties are opposite.
Indeed, for any solution of this problem, |h′(ρ∗)| < 1 if and only if |h̃′(ρ∗)| > 1.
Thus, the iterative stability of any given solution to the fixed point problem that
defines equilibrium depends on arbitrary decisions about the representation of
the fixed point problem.
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To understand the second problem, observe that for any 0 < θ < 1, the
equation h(ρ) = θρ+ (1 − θ)ρ also defines solutions of f(ρ) = g(ρ), so that fixed
points of h̃(ρ) = [(h(ρ) − (1 − θ)ρ)/θ] = ρ are also solutions of f(ρ) = g(ρ).
However, the stability properties of this second equation may be different from
the original. By choosing θ sufficiently small, we guarantee that |h̃′(ρ∗)| > 1.

In sum, iterative stability is not well defined and iterative methods cannot be
expected to find all the equilibria of an economy when multiplicity of equilibria
prevails.

An alternative approach to stability involves specifying state variables for the
economy and adjustment process for these state variables. In the context of our
problem, symmetry implies that we must determine the values of three variables
to obtain the equilibrium outcome. For example, it is sufficient to know L0,
M0, and s00 to determine all the sij . To implement this notion of stability, we
must specify an adjustment process describing how L0, M0 and s00 respond to
a perturbation. Stability is then well defined in the resulting dynamic system.
However, this approach rests on ad hoc descriptions of the adjustment process,
which is hard to justify here.

G. Lemma 5
Lemma 5. For any two distinct location pairs ijand klsuch that s∗ij > 0, there exists an
individual ν ∈ [0,1]with zij(ν) ∈ Sijand zkl(ν) > 0who is indifferent between ij and kl.
Proof. The assumption s∗ij > 0 implies L∗

j > 0, hence W ∗
j > 0. Combining this

with (3) and (26) implies that any individual ν ∈ [0,1] whose type z(ν) satisfies

zij(ν) = zkl(ν)
W ∗
l

W ∗
j

τkl
τij

(
R∗
i

R∗
k

)β
≥ zod(ν)

W ∗
d

W ∗
j

τod
τij

(
R∗
o

R∗
i

)β
(G.1)

is indifferent between ij and kl.
Two cases may arise. First, if s∗kl > 0, then L∗

l > 0 and W ∗
l > 0. (G.1) thus

implies that any individual ν satisfying

zkl(ν) > 0, zij(ν) = zkl(ν)
W ∗
l

W ∗
j

τkl
τij

(
R∗
i

R∗
k

)β
, zod(ν) = 0

is indifferent between ij and kl.
Second, if s∗kl = 0, then L∗

l = 0 and W ∗
l = 0. Therefore, (G.1) implies that

any individual such that zkl(ν) > 0 and zij(ν) = 0 for any ij ̸= kl is indifferent
between ij and kl. Q.E.D.
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H. Existence and uniqueness of a conditional equilibrium price system
Step 1. We first show the existence of a unique conditional equilibrium price
for a symmetric commuting pattern s such that either L(s) = (0,1,0) or L(s) =

(1/2,0,1/2), and Mi(s) > 0 for i = 0, ± 1.
We focus on the case of a fully agglomerated labor supply pattern, i.e., such

that L0(s) = 1 and L−1(s) = L1(s) = 0 (the proof for the fully dispersed labor
supply pattern given by L0 = 0 and L−1(s) = L1(s) = 1/2 goes along the
same lines). Plugging L0 = 1 and L−1 = L1 = 0 into the firm’s complementary
slackness conditions at i = 0, we obtain

W0 = αN1−α
0 and R0 = (1 − α)N−α

0 , (H.1)

so that
W0

R0
=

α

1 − α
N0. (H.2)

Observe that L1(s) = L−1(s) = 0 implies si1 = si,−1 = 0 for all i ∈ {−1,0,1}.
Combining this with the land market clearing condition and the market residen-
tial demand at i = 0, we get:

H0 +N0 = 1 and H0 = s00
W0

R0
,

so that
N0 = 1 −H0 = 1 − s00

W0

R0
. (H.3)

Plugging (H.3) into (H.2), we get a linear equation in W0/R0:

W0

R0
=

α

1 − α

(
1 − s00

W0

R0

)
=⇒ W 0(s)

R0(s)
=

α

1 − α+ αs00
. (H.4)

From (H3)-(H.4), we get:

N0(s) =
1 − α

1 − α+ αs00
.

Plugging N0 = N0(s) into the equilibrium condition (H.1) pins down
uniquely the conditional equilibrium wage W 0(s) and the conditional equilibrium
land rent R0(s). As for W j(s) and Ri(s) for i,j = ±1, zero labor supply implies
W j(s) = 0 and N j(s) = 0 for j = ±1. Hence, the land market clearing at the
periphery becomes

Hi = 1 = si0
W0

Ri
for i = ±1,

which implies Ri(s) = si0W 0(s) for i = ±1.
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I. Proof of Proposition 2
Plugging b = c = d = 1 and γ = δ = 0 into (23), we get

f(ρ) ≡ ϕρ− 2ηϕρ1+ 1
βε + (1 + ϕ2)(1 + η)

(1 + η)ρ1+ 1
βε + 2ϕρ

1
βε − ηϕ

, g(ρ) = ρψ,

where
ψ ≡ (1 − α)(1 + ε)

αβε
=

1 + ε

ηε
.

(i) Because f(ρ) decreases with ρ from ∞ to 0 over (ρm,ρM ), and g(ρ) increases
with ρ from 0 to ∞, the two curves have a unique intersection ρ∗ ∈ (ρm,ρM ), which
implies existence and uniqueness of equilibrium and that it is interior.

(ii) It is readily verified that 0 < f(1) < g(1) = 1. Hence, the intersection must
occur strictly between ρm < 1 and 1. This implies 0 < ρ∗ < 1 and ω∗ = (ρ∗)

1
η < 1.

(iii) The equilibrium employment pattern is bell-shaped if and only if

ℓ∗ = ω∗ ρ∗ + 2ϕ
1 + ϕρ∗ + ϕ2 = (ρ∗)

1
η

ρ∗ + 2ϕ
1 + ϕρ∗ + ϕ2 > 1.

Restate the equilibrium condition f(ρ) = g(ρ) as follows:(
η

1+ηρ
−ψ + 1

1+ηρ
−1
)−1

+ 2ϕ

ϕ
(

η
1+ηρ

ψ + 1
1+ηρ

)
+ 1 + ϕ2

(
η

1 + η
ρ1+ 1

βε +
1

1 + η
ρψ+

1
βε

)
= 1. (I.1)

Because 1/x is convex, for every ρ < 1 Jensen’s inequality implies(
η

1 + η
ρ−ψ +

1
1 + η

ρ−1
)−1

<
η

1 + η
ρψ +

1
1 + η

ρ < ρ. (I.2)

Plugging (I.2) into (I.1) leads to

1 <
η

1+ηρ
ψ + 1

1+ηρ+ 2ϕ

ϕ
(

η
1+ηρ

ψ + 1
1+ηρ

)
+ 1 + ϕ2

(
η

1 + η
ρ1+ 1

βε +
1

1 + η
ρψ+

1
βε

)
.

Using ψ > 1 yields

η

1 + η
ρψ +

1
1 + η

ρ <
η

1 + η
ρ+

1
1 + η

ρ = ρ.

Because the function x+2ϕ
ϕx+1+ϕ2 is increasing for all x ≥ 0, we obtain

1 <
ρ+ 2ϕ

ϕρ+ 1 + ϕ2

(
η

1 + η
ρ1+ 1

βε +
1

1 + η
ρψ+

1
βε

)
. (I.3)
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As ψ > 1 implies
1
η
< 1 +

1
βε

< ψ+
1
βε

,

while ρ∗ < 1, we have

η

1 + η
(ρ∗)1+ 1

βε +
1

1 + η
(ρ∗)ψ+

1
βε < (ρ∗)

1
η .

Replacing the bracketed term in (I.3), we obtain the inequality:

1 < (ρ∗)
1
η

ρ∗ + 2ϕ
ϕρ∗ + 1 + ϕ2 ,

which is equivalent to ρ∗ > ρL, hence ℓ∗ > 1 (see (7)).
(iv) When ε → ∞, we have:

lim
ε→∞

f(ρ) = ρ−1, lim
ε→∞

g(ρ) = ρ
1
η =⇒ lim

ε→∞
ρ∗ = lim

ε→∞
ω∗ = 1.

Also, limε→∞ ϕ = 0. Hence, setting ϕ = 0 in the RHS of (7), we get:

lim
ε→∞

 s11 s10 s1−1

s01 s00 s0−1

s−11 s−10 s−1−1

 =
1
3

 1 0 0
0 1 0
0 0 1

 .

Q.E.D.

J. Lemma 6 and proof of Proposition 3
We first prove the following lemma.

Lemma 6. Consider an interior equilibrium (ω∗,ρ∗), such that g′(ρ∗) > f ′(ρ∗).
Any shock in c, γor δthat shifts the g-curve upwards/downwards in the vicinity of the
equilibrium leads to a labor pattern more/less concentrated at the center.
Proof. Combining the labor centrality ratio (21) with (23), we get:

ℓ
1+ε
ε = f(ρ)

(
ρ+ 2ϕ

1 + ϕρ+ ϕ2

) 1+ε
ε

. (J.1)

It is readily verified that the right-hand side of (J.1) decreases in ρ. Because f is
independent of c, the right-hand side of (J.1) as a function of ρ is also independent
of c. Note, however, that the equilibrium value of ρ depends on c, which implies
that the equilibrium value of ℓ varies with c. Indeed, an upward/downward shift
in the g-curve leads to a decrease/increase in ρ∗ because the equilibrium moves

48



northwestwards/southeastwards along the f -curve which is unaffected by the
change in the value of c.

Hence, we have:

an upward shift in g =⇒ ρ∗ ↓ =⇒ ℓ∗ ↑ .

Q.E.D.
From (23) – (24), one can see that an increase in c keeps the f -curve unchanged

and shifts upwards the g-curve. Hence, by Lemma 6, we have:

dℓ∗

dc
> 0. (J.2)

In other words, ℓ∗ is strictly increasing in c.
We now prove (i) – (v) in the following order: (i), (v), (iii), (ii) and (iv).
(i) We need to show that

lim
c→0

ℓ∗ = 0.

Because limc→0 g(ρ) = 0 for ∀ ρ ∈ (ρm,ρM ) , we have:
lim
c→0

ω∗(c) = 0

lim
c→0

ρ∗(c) = ρM
=⇒ lim

c→0
ℓ∗(c) = lim

c→0

[
ρ∗(c) + 2ϕ

1 + ϕρ∗(c) + ϕ2ω
∗(c)

]
= 0. (J.3)

(v) Along the same lines as in the proof of (i), one can show that

 lim
c→∞

ω∗(c) = ∞

lim
c→∞

ρ∗(c) = ρm
=⇒ lim

c→∞
ℓ∗(c) = lim

c→∞

[
ρ∗(c) + 2ϕ

1 + ϕρ∗(c) + ϕ2ω
∗(c)

]
= ∞.

(J.4)
(iii) Using the implicit function theorem shows that ℓ∗(c) is differentiable,

hence continuous, w.r.t. c for 0 < c < ∞. Combining this with (J.2) – (J.4) implies
that the equation ℓ∗(c) = 1 has a unique, finite, and positive, solution c̄.

(ii) and (iv) follow from (J.1) combined with (i), (iii), and (v). Q.E.D.

K. Proof of Proposition 4
(i) Assume that δ = 0. Using (16) implies

a(γ) = cℓγ
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E(γ) = C0

(
ℓ

ℓ+ 2

)γ
, F (γ) = C1

(
1

ℓ+ 2

)γ
=⇒ a(γ) =

E(γ)

F (γ)
=
C0

C1
ℓγ .

Therefore,
da(γ)

dγ

∣∣∣∣
γ=0

= c ln ℓ.

Proposition 4 implies that ĉ > 0 exists such that ℓ(ĉ) = 1. Therefore, increasing
returns magnifies the initial advantage of a location given by the value of c when
c > ĉ because raising γ above 0 increases a(γ). The opposite holds when c < ĉ.
Furthermore, the intensity of the effect of increasing returns increases with the
value of c > ĉ.

(ii) Assume that γ = 0. In this case, we have

a(δ) = c
1 + 2δ

δ + 1 + δ2 .

Setting γ = 0 in (24), we obtain the following closed-form solution for function
g:

ω
1+ε
ε = c

1+ε
α

(
1 + 2δ

1 + δ + δ2

) 1+ε
α

ρψ.

Since the term between parentheses is larger than 1 for all δ > 0, an increase in
δ from δ = 0 to δ = (

√
3 − 1)/2 ≃ 0.366 03 shifts function g upwards. As function

f remains unaffected, it follows from Lemma 6 in Appendix J that ℓ∗ increases.
On the other hand, when δincreases over ((

√
3 − 1)/2,1), ℓ∗ decreases.

L. Proof of Proposition 5
(i) When δ = 0 and γ ̸= γm, from Lemmas 2 and 3, f(ρ) > g(ρ,γ) when ρ

slightly exceeds ρm, while the opposite inequality holds when ρ is close enough
to ρM . Hence, by relocating a small subset of individuals from ij to kl, the com-
muting pattern s becomes different from the equilibrium pattern s∗. Hence, given
our definition of stability, we compare the equilibrium and off-equilibrium utility
levels. For this to be possible, we must determine the conditional equilibrium
vectors of wages and land rents W(s) and R(s). We show in Appendix H that,
for α > 1/2, these vectors exist, are unique and continuous in s. Hence, by
the intermediate value theorem, the equilibrium condition f(ρ) = g(ρ,γ) has an
interior solution ρ∗ ∈ (ρm,ρM ).
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(ii) We show the existence and unstability of the two corner equilibria.
Consider first the wage pattern W0 = 0 < W1, hence ω = w = 0. The
utility-maximizing commuting flows (7) imply that, at the central location i = 0,
labor supply = 0 =⇒ A0 = 0 =⇒ labor demand = 0. The land-market clearing
condition λ(r,w) = 1 takes the form of (C.1), which means r∗ = r , i.e., ρ∗ = ρM .

Assume now that L∗
0 = 1 (the proof for L∗

−1 = L∗
1 = 1/2 goes along the same

lines). Consider an individual ν such that, for all i ∈ {−1,0,1}, ν’s match values
satisfy zij(ν) = 0 for j = 0, ± 1. Clearly, ν is indifferent between working at
the center and working at the periphery (in both cases, she enjoys zero utility).
Consider a positive-measure set of individuals whose tastes are close to those
of ν and whose utility-maximizing choice is ij = 00. Relocating them (together
with ν) from ij = 00 to kl = 01, we have V01(ν,s) > 0 because W 1(s) > 0.
Using the complementary slackness condition (αAjL

α−1
j N1−α

j −Wj)Lj = 0, there
exists a positive-measure subset of individuals who are strictly better-off working
at location j = 1. As a result, the corner equilibrium L∗

0 = 1 is an unstable
equilibrium.

(iii) Last, we show that M∗
i > 0 for all i. Assume that R∗

i = 0 at i. Because
there is a location j such that W ∗

j > 0, households who choose the pair ij enjoys
an infinite utility level, which implies sij > 0. These households’ land demand is
thus infinite while the land supply is finite, a contradiction. Q.E.D.

M. Lemma 7
Lemma 7. There exists a function F (ρ) independent of γsuch that an interior equilibrium
ρ∗is stable if and only if F (ρ∗) > 1. This function is continuous over (ρm,ρCR)and over
(ρCR,ρM ), satisfies F (ρm) = F (ρM ) = 0, and has a vertical asymptote at ρ = ρCR.
Proof: The proof involves four steps.
Step 1. We first show the existence of a unique conditional equilibrium price for
a symmetric commuting s such that sij > 0 for all i,j when α > 1/2.

Because Li > 0 for i = 0, ± 1, the first-order conditions for the production
sector yields the equilibrium conditions:

Wj = αAj

(
Nj
Lj

)1−α
, (M.1)

Rj = (1 − α)Aj

(
Lj
Nj

)α
. (M.2)

51



Furthermore, we also know that housing market clearing at location i yields:

Hi =
β

Ri

n

∑
j=1

sijWj . (M.3)

Plugging (M.1) and (M.2) into (M.3), and using the land market balance
condition Ni +Hi = 1, we get:

Hi = 1 −Ni =
αβ

(1 − α)Ai

(
Ni
Li

)α n

∑
j=1

sijAj

(
Nj
Lj

)1−α
,

(1 − α)Ai (1 −Ni)

(
Ni
Li

)−α
= αβ

n

∑
j=1

sijAj

(
Nj
Lj

)1−α
,

(1 − α)Ai

(
Ni
Li

)−α
= (1 − α)AiLi

(
Ni
Li

)1−α
+ αβ

n

∑
j=1

sijAj

(
Nj
Lj

)1−α
.

Because s is symmetric, this system of equations becomes:

(1 − α)A0

(
N0

L0

)−α
= [(1 − α)L0 + αβs00]A0

(
N0

L0

)1−α
+ 2αβs01A1

(
N1

L1

)1−α

(1−α)A1

(
N1

L1

)−α
= αβs10A0

(
N0

L0

)1−α
+[(1 − α)L1 + αβ(s11 + s1,−1)]A1

(
N1

L1

)1−α

Dividing one equation by the other and using Ai = Lγi for i = 0, ± 1, we get:

n−αℓγ+α =
[(1 − α)L0 + αβs00] ℓ

γ
(
n
ℓ

)1−α
+ 2αβs01

αβs10ℓγ
(
n
ℓ

)1−α
+ (1 − α)L1 + αβ(s11 + s1,−1)

(M.4)

Because (M.1) and (M.2) imply

n−αℓγ+α = r, ℓγ
(n
ℓ

)1−α
= w, (M.5)

we have

wαr1−α = ℓγ =

(
L0

L1

)γ
. (M.6)
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Likewise, combining (M.4) and (M.5), we get:

r =
[(1 − α)L0 + αβs00]w+ 2αβs01

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
. (M.7)

A sufficient condition for the system (M.6) – (M.7) to have a unique solution
(w(s),r(s)) is that the graph of the relationship (M.7) between w and r intersects
the downward-sloping curve given by (M.6) from below. The RHS of (M.7) is the
ratio of two positive linear increasing functions of w. Because the elasticity of a
linear increasing function with a positive intercept never exceeds 1, the elasticity
of the RHS of (M.7) w.r.t. w is always larger than −1. Restating (M.6) as

r = ℓ
γ

1−αw− α
1−α

shows that the elasticity of the RHS of this expression w.r.t. w equals −α/(1−α),
which is smaller than −1 when α > 1/2.
Step 2. Denote by

(
W(s),R(s)

)
the equilibrium price vector conditional to an

arbitrary commuting pattern s that belongs to a neighborhood of an interior
equilibrium commuting pattern s∗, and let w(s) and r(s) be the corresponding
wage ratio and the land-price ratio:

w(s) ≡ W 0(s)
W 1(s)

and r(s) ≡ R0(s)
R1(s)

.

Consider the following two types of relocations: 0j → 1j (changing place of
residence but not the workplace) and i0 → i1 (changing the workplace but not
the place of residence). Observe that, in equilibrium, for each individual ν, we
have:

V ∗
0j(ν)

V ∗
1j(ν)

=
z0j(ν)

z1j(ν)
(r(s∗))−β , (M.8)

V ∗
i0(ν)

V ∗
i1(ν)

=
zi0(ν)

zi1(ν)
w(s∗). (M.9)

If the individual ν is indifferent between 0j and 1j for some j = {−1,0,1},
switching from 0j to 1j makes this individual strictly worse off if and only if
r(s∗) decreases when a small subset of residents (almost indifferent between 0j
and 1j) of measure ∆ is moved from 0 to 1, i.e.,

∂r(s∗)
∂s1j

− ∂r(s∗)
∂s0j

< 0 (M.10)
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because (M.8) and (M.10) imply that V ∗
0j(ν)/V

∗
1j(ν) increases above 1.

Likewise, using (M.9) if ν is an individual indifferent between i0 and i1 for
some i = {−1,0,1}, switching from i0 to i1 makes ν strictly worse off if and only
if w(s∗) increases when a small subset of households (almost indifferent between
i0 and i1) of measure ∆ is moved from 0 to 1, i.e.,

∂w(s∗)
∂si1

− ∂w(s∗)
∂si0

> 0. (M.11)

Step 3. We now show that the land-price ratio r(s∗) always satisfies the equi-
librium condition (M.10). Under a relocation of residents from 0j to 1j (or,
equivalently, from 1j to 0j) for j = 0,1, the numerator in the RHS of (M.7)
decreases pointwise, while the denominator increases pointwise. Therefore, the
curve (M.7) shifts downwards in the (w,r)-plane, while the curve (M.6) remains
unchanged. Because (M.7) intersects (M.6) from below, this implies a reduction in
r(s). Hence, (M.10) holds.
Step 4. It remains to check when (M.11) holds. To this end, we study when
the relocation of a ∆−measure subset of households from i0 to i1 for i = 0, ± 1
leads to an increase in the relative wage w(s). As a result, two cases must be
distinguished: (i) a relocation of households from 00 to 01 and (ii) a relocation of
households from 10 to 11.

Taking the log-differential of (M.6) yields:

αd logw+ (1 − α)d log r = γ(d logL0 − d logL1). (M.12)

Two cases may arise.
(i) Assume that

ds00 = −∆, ds01 = ds0,−1 = ∆/2,

dsij = 0 otherwise.

In this case, (M.12) becomes:

α d logw+ (1 − α) d log r = γ

(
ds00

L0
− ds01

L1

)
= −γ∆

(
1

2L1
+

1
L0

)
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Taking the log-differential of (M.7) yields:

d log r =
d [((1 − α)L0 + αβs00)w+ 2αβs01]

[(1 − α)L0 + αβs00]w+ 2αβs01
− d [αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)]

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
.

(M.13)
Because

d [((1 − α)L0 + αβs00)w+ 2αβs01] = −∆ (1 − α+ αβ)w+αβ∆+((1 − α)L0 + αβs00)wd logw,

while

d [αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)] = (1 − α)
∆

2
+ αβs10wd logw,

(M.13) becomes

d log r =
[

− (1 − α+ αβ)w+ αβ

((1 − α)L0 + αβs00)w+ 2αβs01
− 1

2
1 − α

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
∆

+

[
((1 − α)L0 + αβs00)w

((1 − α)L0 + αβs00)w+ 2αβs01
− αβs10w

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
d logw

Plugging this expression into (M.12), we get:

d logw =
−γ
(

1
2L1

+ 1
L0

)
+ (1 − α)

[
(1−α+αβ)w−αβ

((1−α)L0+αβs00)w+2αβs01
+ 1

2
1−α

αβs10w+(1−α)L1+αβ(s11+s1,−1)

]
α+ (1 − α)

[
((1−α)L0+αβs00)w

((1−α)L0+αβs00)w+2αβs01
− αβs10w

αβs10w+(1−α)L1+αβ(s11+s1,−1)

] ∆.

When α > 1/2, the denominator in d logw is always positive because each
bracketed term of the denominator is smaller than 1. As a result, the stability
condition d logw > 0 holds if the numerator is positive:

(1 − α+ αβ)w− αβ

((1 − α)L0 + αβs00)w+ 2αβs01
+

1
2

1 − α

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
>

γ

1 − α

(
1
L0

+
1

2L1

)
.

(M.14)
(ii) We now assume that
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ds11 = −ds10 = ∆/2, ds−10 = −ds−1,−1 = −∆/2,

dsij = 0 otherwise.

Hence, (M.12) becomes:

αd logw+ (1 − α) d log r = γ

[
ds10 + ds−10

L0
− ds11

L1

]
= −γ∆

(
1

2L1
+

1
L0

)
Because

d [((1 − α)L0 + αβs00)w+ 2αβs01] = −∆ (1 − α)w+((1 − α)L0 + αβs00)wd logw

and

d [αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)] = αβ
∆

2
w+ (1 − α)

∆

2
+ αβs10wd logw,

(M.13) becomes

d log r =
[

− (1 − α)w

((1 − α)L0 + αβs00)w+ 2αβs01
− 1

2
1 − α+ αβ

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
∆

+

[
((1 − α)L0 + αβs00)w

((1 − α)L0 + αβs00)w+ 2αβs01
− αβs10w

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
d logw.

Plugging this expression for d log r into (M.12), we get:

d logw =
−γ
(

1
2L1

+ 1
L0

)
+ (1 − α)

[
(1−α)w

((1−α)L0+αβs00)w+2αβs01
+ 1

2
1−α+αβ

αβs10w+(1−α)L1+αβ(s11+s1,−1)

]
α+ (1 − α)

[
((1−α)L0+αβs00)w

((1−α)L0+αβs00)w+2αβs01
− αβs10w

αβs10w+(1−α)L1+αβ(s11+s1,−1)

] ∆.

If α > 1/2, the denominator in d logw is always positive. Hence, the stability
condition d logw > 0 becomes:
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(1 − α)w

((1 − α)L0 + αβs00)w+ 2αβs01
+

1
2

1 − α+ αβ

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
>

γ

1 − α

(
1
L0

+
1

2L1

)
.

(M.15)
When α > 1/2, the inequalities (M.14) and (M.15) are necessary and sufficient

for an interior equilibrium to be stable.
We now rewrite these two conditions in terms of the variable ρ only. Using

Lemma 2 and the equilibrium relationship ω
1+ε
ε = f(ρ), as well as ρ = r−βε,

ω = wε, and η = αβ/(1 − α), (M.14) and (M.15) become

f(ρ) + 1
2(1 + η)ρ−

1
βε [f(ρ)]

ε
1+ε

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ
>

γ

1 − α

(
[f(ρ)]

ε
1+ε

2(ϕρ+ 1 + ϕ2)
+

1
ρ+ 2ϕ

)
, (M.16)

(1 + η) f(ρ) +
(

1
2ρ

− 1
βε − η

)
[f(ρ)]

ε
1+ε

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ
>

γ

1 − α

(
[f(ρ)]

ε
1+ε

2(ϕρ+ 1 + ϕ2)
+

1
ρ+ 2ϕ

)
,

(M.17)
Solving the equilibrium condition f(ρ) = g(ρ; γ) w.r.t. γ yields

γ =
α

1 + ε

log
(
ρ−ψf(ρ)

)
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
) .

Plugging this expression into (M.16) – (M.17), we get:

Φ(ρ) ≡ 2(1 − α)(1 + ε)(ϕρ+ 1 + ϕ2)

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ

×
f(ρ) +

(
1
2ρ

− 1
βε + η

2ρ
− 1
βε

)
[f(ρ)]

ε
1+ε

[f(ρ)]
ε

1+ε (ρ+ 2ϕ) + 2(ϕρ+ 1 + ϕ2)

×
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
)

α log (ρ−ψf(ρ))
> 1,
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Ψ (ρ) ≡ 2(1 − α)(1 + ε)(ϕρ+ 1 + ϕ2)

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ

×
(1 + η) f(ρ) +

(
1
2ρ

− 1
βε − η

)
[f(ρ)]

ε
1+ε

[f(ρ)]
ε

1+ε (ρ+ 2ϕ) + 2(ϕρ+ 1 + ϕ2)

×
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
)

α log (ρ−ψf(ρ))
> 1.

Last, we set:

F(ρ) ≡ min {Φ(ρ),Ψ (ρ)} ,

which is independent of ρ. Verifying F(ρ) > 1 can be done numerically for any
vector of parameters by plotting F(ρ) as a function of the variable ρ. Q.E.D.

N. Proof of Proposition 6
Under weak increasing returns, given Lemmas 2 and 3, f and g must intersect

exactly once. Furthermore, because f(1) < 1 < g(1; γ), the intersection must
occur at ρ∗ < 1. Because ρ∗ > ρL, we have

f(ρL) > f(ρ∗) = g(ρ∗) > g(ρL) (N.1)

because f is decreasing by Lemma 2 and g is increasing in ρ by Lemma 3. As
shown by (D.1), g(ρL) is independent of γ. Combining this with (N.1), we obtain
f(ρL)− g(ρL; γ) > 0. Because f(ρ∗)− g(ρ∗; γ) = 0 while f − g is decreasing by
Lemmas 2 and 3, we have ρL < ρ∗ for all γ < α/ε, which amounts to ℓ∗ > 1.

We now study the impact of γ on (i) ρ∗, (ii) ω∗and (iii) ℓ∗.
(i) Because ∂g(ρ; γ)/∂γ > 0, applying the implicit function theorem to (25)

leads to
dρ∗

dγ
=

∂g(ρ; γ)/∂γ
∂f ′(ρ)/∂ρ− ∂g(ρ; γ)/∂ρ

∣∣∣∣
ρ=ρ∗

< 0,

where the numerator is positive because ρ∗ > ρL while the denominator is
negative because f(ρ) is decreasing and g(ρ; γ) is increasing in ρ.

(ii) Differentiating (23) with respect to γ, we obtain:

1 + ε

ε
ω

1
ε
dω∗

dγ
=
df

dρ

dρ∗

dγ
> 0.

(iii) From Lemma 6, dℓ∗/dγ > 0. Q.E.D.
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O. Proof of Proposition 7
Step 1. Consider first the case when the spatial discount factor is small (ϕ < ϕ),
so that ρm < ρL < 1 < ρM holds. Therefore, for ∆ > 0 sufficiently small, we have:

ρm +∆ < ρL −∆ < ρL +∆ < 1 < ρM .

If γ is sufficiently close to α/ε (but still such that γ > α/ε holds), Lemma 3
implies the following inequalities:

g(ρm +∆; γ) < f(ρm +∆),

g(ρL −∆; γ) > f(ρL −∆),

g(ρL +∆; γ) < f(ρL +∆),

g(ρM ; γ) > f(ρM ) = 0,

where the last inequality holds because (24) implies that, for γ > α/ε, g(ρ; γ) > 0
for all ρ > 0 while f(ρM ) = 0 for any γ by definition of ρM . Therefore, by
continuity of f and g, (25) has at least three distinct solutions, which we denote as
follows:

ρM > ρ⋆2 > ρ⋆3.

Furthermore, the properties of function g imply the following:

limγε↘α ρ
⋆
1 = ρM ,

limγε↘α ρ
⋆
2 = ρL,

limγε↘α ρ
⋆
3 = ρm.

The solution ρ⋆2 matches the equilibrium of Proposition 6. As for the other two
solutions, ρ⋆1 and ρ⋆3, when γ is close enough to α/ε, we have ρ⋆2 > 1 > ρ⋆3.

As γ ↘ α/ε, it follows from Lemma 3 that f(ρ⋆2) and f(ρ⋆3) converge, respec-
tively, to 0 and ∞, which implies:

lim
γε↘α

ω⋆1 = 0 and lim
γε↘α

ω⋆3 = ∞.

Hence, ω⋆1 < 1 < ω⋆3 when γε is close enough to α. It then follows from (24)
that

lim
γε↘α

ℓ⋆1 = 0 and lim
γε↘α

ℓ⋆3 = ∞.
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Step 2. Consider now the case where the spatial discount factor is high (ϕ > ϕ).
Then, we know from Lemma 5 that there exists a value η ∈ (0,1) such that

ρL ≤ ρm < 1 < ρM (O.1)

is satisfied for η ≥ η, while ρm < ρL < 1 < ρM holds otherwise. Under (O.1),
there is a small ∆ > 0 such that the following inequalities hold:

g(ρM −∆; γ) < f(ρM −∆),

g(ρM ; γ) > f(ρM ) = 0.

while ρ⋆ > 1 when γ slightly exceeds α/ε.
Furthermore,

lim
γε↘α

(ω∗
1 )

ε
1+ε = f(ρM ) = 0.

Because limγε↘α ω
⋆
1 = 0, ω⋆1 < 1 when γε is sufficiently close to α.

Last, using (7), we have:
lim
γε↘α

ℓ⋆1 = 0.

Q.E.D.

A P. Proof of Proposition 8
First, we show the existence and uniqueness of an equilibrium. The equilib-

rium condition (25) can be restated as follows:

1
ϕρ+ 1 + ϕ2

1 + η 1+ϕ2−2ϕρ
1+ 1
βε

ϕρ+1+ϕ2

1 + η ρ−ϕρ
− 1
βε

ρ+2ϕ


λ

= ρµ
ρ

ρ+ 2ϕ
, (P.1)

where λ and µ are defined by

λ ≡ γε− α

γ + α
> 0 and µ ≡ γε− α− (1 − α)(1 + ε)

βε(γ + α)
.

The first term of the LHS of (P.1) decreases in ρ; the second term also decreases
because the numerator decreases while the denominator increases in ρ. Therefore,
the LHS of (P.1) is a decreasing function of ρ. Furthermore, the RHS of (P.1)
increases from 0 to ∞ in ρ when µ > 0. It is readily verified that µ > 0 if and only
if

γ >
1 + ε

(1 − β)ε
− α.
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Hence, (P.1) has a unique solution ρ∗.
We now show that ℓ∗ converges monotonically toward 1 when γ > γs in-

creases. Using (7), we obtain

log ℓ∗ = − 1
γε/α− 1

log
(
(ρ∗)

1
η ρ∗ + 2ϕ
ϕρ∗ + 1 + ϕ2

)
. (P.2)

Because ρ∗ > ρL under strong increasing returns, the expression under the
log is greater than 1 and thus the RHS of (P.2) is negative. Furthermore, as ρ∗

decreases with γ, the RHS of (P.2) increases with γ. In addition, the first of the
RHS goes to 0 when γ goes to infinity. Consequently, ℓ∗ converges to 1. Q.E.D.
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