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Individual earnings are higher in bigger cities. We consider three reasons: spatial sorting of initially
more productive workers, static advantages from workers’ current location, and learning by working in
bigger cities. Using rich administrative data for Spain, we find that workers in bigger cities do not have
higher initial unobserved ability as reflected in fixed effects. Instead, they obtain an immediate static
premium and accumulate more valuable experience. The additional value of experience in bigger cities
persists after leaving and is stronger for those with higher initial ability. This explains both the higher
mean and greater dispersion of earnings in bigger cities.
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1. INTRODUCTION

Quantifying the productive advantages of bigger cities and understanding their nature are among
the most fundamental questions in urban economics. The productive advantages of bigger cities
manifest in the higher productivity of establishments located in them (e.g. Henderson, 2003;
Combes et al., 2012a). They also show up in workers’ earnings. Workers in bigger cities earn
more than workers in smaller cities and rural areas. Figure 1 plots mean annual earnings for
male employees against city size for Spanish urban areas. Workers in Madrid earn 31,000 euros
annually on average, which is 21% more than workers in Valencia (the country’s third biggest
city), 46% more than workers in Santiago de Compostela (the median-sized city), and 55% more
than workers in rural areas. The relationship between earnings and city size is just as strong in
other developed countries.1 Moreover, differences remain large even when we compare workers
with the same education and years of experience and in the same industry.

1. In the U.S., workers in metropolitan areas with population above 1 million earn on average 30% more than
workers in rural areas (Glaeser, 2011). In France, workers in Paris earn on average 15% more than workers in other large
cities, such as Lyon or Marseille, 35% more than in medium-sized cities, and 60% more than in rural areas (Combes et al.,
2008).
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Figure 1

Mean earnings and city size

Higher costs of living may explain why workers do not flock to bigger cities, but that does not
change the fact that firms must obtain some productive advantage to offset paying higher wages in
bigger cities. Otherwise, firms in tradable sectors would relocate to smaller localities with lower
wages. Of course, not all firms are in tradable sectors, but as Moretti (2011) notes, “as long as there
are some firms producing traded goods in every city and workers can move between the tradable
and non-tradable sector, average productivity has to be higher in cities where nominal wages are
higher” (p. 1249). In fact, Combes et al. (2010) find that establishment-level productivity and
wages exhibit a similar elasticity with respect to city size.2

Looking at workers’ earnings instead of at firms’ productivity is worthwhile because it can
be informative about the nature of the productive advantages that bigger cities provide. There
are three broad reasons why firms may be willing to pay more to workers in bigger cities.
First, there may be some static advantages associated with bigger cities that are enjoyed while
working there and lost upon moving away. These static agglomeration economies have received
the most attention (see Duranton and Puga, 2004, for a review of possible mechanisms and
Rosenthal and Strange, 2004; Puga, 2010, and Holmes, 2010, for summaries of the evidence).
Secondly, workers who are inherently more productive may choose to locate in bigger cities.
Evidence on such sorting is mixed, but some recent accounts (e.g. Combes et al., 2008) suggest
it may be as important in magnitude as static agglomeration economies. Thirdly, a key advantage

2. It is worth stressing that it is nominal wages that one ought to study to capture the productive advantages of
cities, since they reflect how much more firms are willing to pay in bigger cities to comparable, or even the same, workers.
Having higher nominal wages offsetting higher productivity in bigger cities (keeping firms indifferent across locations) is
compatible with having no substantial differences in real earnings as higher housing prices tend to offset higher nominal
earnings (keeping workers indifferent across locations). See Glaeser (2008) for further elaboration on this point and a
thorough treatment of the spatial equilibrium approach to studying cities.
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of cities is that they facilitate experimentation and learning (Glaeser, 1999; Duranton and Puga,
2001). In particular, bigger cities may provide workers with opportunities to accumulate more
valuable experience. Since these dynamic advantages are transformed in higher human capital,
they may remain beneficial even when a worker relocates.

In this article, we simultaneously examine these three potential sources of the city size earnings
premium: static advantages, sorting based on initial ability, and dynamic advantages. For this
purpose, we use a rich administrative data set for Spain that follows workers over time and across
locations throughout their careers, thus allowing us to compare the earnings of workers in cities of
different sizes, while controlling for measures of ability and the experience previously acquired
in various other cities.

To facilitate a comparison with previous studies, we begin our empirical analysis in section 3
with a simple pooled ordinary least squares (OLS) estimation of the static advantages of bigger
cities. For this, we estimate a regression of log earnings on worker and job characteristics and
city fixed effects. In a second stage, we regress the estimated city fixed effects on a measure of
log city size. This yields a pooled-OLS elasticity of the earnings premium with respect to city
size of 0.0455. The first stage of this estimation ignores both the possible sorting of workers
with higher unobserved ability into bigger cities as well as any additional value of experience
accumulated in bigger cities. Thus, this basic estimation strategy produces a biased estimate of
the static advantages of bigger cities and no assessment of the possible importance of dynamic
advantages or sorting.

Glaeser and Maré (2001) and, more recently, Combes et al. (2008) introduce worker fixed
effects to address the issue of workers sorting on unobserved ability into bigger cities. When we
follow this strategy, the estimated elasticity of the earnings premium with respect to city size
drops substantially to 0.0241, in line with their findings. This decline is usually interpreted as
evidence of more productive workers sorting into bigger cities (e.g. Combes et al., 2008). We
show instead that this drop can be explained by workers’ sorting on ability, by the importance of
dynamic benefits in bigger cities, or by a combination of both.

We then introduce dynamic benefits of bigger cities into the analysis in Section 4. Our
augmented specification for log earnings now provides a joint estimation of the static and dynamic
advantages of bigger cities, while allowing for unobserved worker heterogeneity. By tracking the
complete workplace location histories of a large panel of workers, we let the value of experience
vary depending on both where it was acquired and where it is being used. Experience accumulated
in bigger cities is substantially more valuable than experience accumulated in smaller cities.
Furthermore, the additional value of experience acquired in bigger cities is maintained when
workers relocate to smaller cities. This suggests there are important learning benefits to working
in bigger cities that get embedded in workers’ human capital.

Our results indicate that where workers acquire experience matters more than where they use
it. Nevertheless, for workers who relocate from small to big cities, previous experience is more
highly valued in their new job location. This finding has implications for earnings profiles at
different stages of workers’ life cycle: more experienced workers obtain a higher immediate gain
upon relocating to one of the biggest cities but then see their earnings increase more slowly than
less experienced workers.

In Section 5, a final generalization of our log earnings specification explores heterogeneity
across workers in the dynamic advantages of bigger cities.3 Our estimates show that the additional

3. The relevance of heterogeneity in the growth profiles of earnings has been stressed in the macroeconomics and
labour economics literature (see, e.g., Baker, 1997; Baker and Solon, 2003 and Guvenen, 2009). We highlight here the
spatial dimension of this heterogeneity in earnings profiles and its interaction with individual ability.
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value of experience acquired in bigger cities is even greater for workers with higher ability, as
proxied by their worker fixed effects.

Once we address the sources of bias in the first stage of the log earnings estimation, we
proceed to estimate again the elasticity of earnings with respect to city size. We now distinguish
between a short-term elasticity that captures the static advantages of bigger cities—i.e. the boost
in earnings workers obtain upon moving into a big city—and a medium-term elasticity that further
encompasses the learning benefits that workers get after working in a big city for several years.
The estimated medium-term elasticity of 0.0510 is more than twice as large as the short-term
elasticity of 0.0223 implying that, in the medium term, about half of the gains from working in
bigger cities are static and about half are dynamic.

We show that the higher value of experience acquired in bigger cities can almost fully account
for the difference between pooled OLS and fixed-effects estimates of the static earnings premium
of bigger cities. This suggests that, while the dynamic advantages of bigger cities are important,
sorting may play a minor role. To verify this implication, in Section 6, we compare the distribution
of workers’ ability across cities of different sizes. This exercise relates to recent studies that also
compare workers’ skills across big and small cities, either by looking at levels of education (e.g.
Berry and Glaeser, 2005), at broader measures of skills (e.g. Bacolod et al., 2009), at measures
of skills derived from a spatial equilibrium model (e.g. Eeckhout et al., 2014), or at estimated
worker fixed effects (e.g. Combes et al., 2012b). We focus on worker fixed effects because we
are interested in capturing time-invariant ability net of the extra value of big city experience.

We find sorting based on unobservables to be much less important than previously thought.
Although there is clear sorting on observables by broad occupational skill groups (we use five
categories), within these broad groups, there is little further sorting on unobserved ability. Workers
in big and small cities are not particularly different to start with; it is largely working in cities
of different sizes that makes their earnings diverge. Workers attain a static earnings premium
upon arrival in a bigger city and accumulate more valuable experience as they spend more time
working there. This finding is consistent with the counterfactual simulations of the structural
model in Baum-Snow and Pavan (2012), which suggest that returns to experience and wage-
level effects are the most important mechanisms contributing to the overall city size earnings
premium.4 Because these gains are stronger for workers with higher unobserved ability, this
combination of effects explains not only the higher mean but also the greater dispersion of earnings
in bigger cities that Combes et al. (2012b); Baum-Snow and Pavan (2013) and Eeckhout et al.
(2014) emphasize.

2. DATA

Employment histories and earnings

Our main data set is Spain’s Continuous Sample of Employment Histories (Muestra Continua
de Vidas Laborales or MCVL). This is an administrative data set with longitudinal information
obtained by matching social security, income tax, and census records for a 4% non-stratified
random sample of the population who in a given year have any relationship with Spain’s Social
Security (individuals who are working, receiving unemployment benefits, or receiving a pension).

4. Baum-Snow and Pavan (2012) address unobserved ability by using a three-type mixture model where the
probability of a worker being of certain type is non-parametrically identified and depends, among other factors, on the
city where he enters the labour market. In our much larger sample (157,000 men observed monthly compared with 1,700
men observed annually), we can estimate a worker fixed effect and let the value of experience in cities of different sizes
vary systematically with this fixed effect.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article/84/1/106/2669971 by Sciences Library user on 29 N

ovem
ber 2021



[17:45 2/12/2016 rdw031.tex] RESTUD: The Review of Economic Studies Page: 110 106–142

110 REVIEW OF ECONOMIC STUDIES

The unit of observation in the social security data contained in the MCVL is any change in
the individual’s labour market status or any variation in job characteristics (including changes in
occupation or contractual conditions within the same firm). The data record all changes since the
date of first employment, or since 1980 for earlier entrants. Using this information, we construct
a panel with monthly observations tracking the working life of individuals in the sample. On each
date, we know the individual’s labour market status and, if working, the occupation and type of
contract, working hours expressed as a percentage of a full-time equivalent job, the establishment’s
sector of activity at the NACE three-digit level, and the establishment’s location. Furthermore,
by exploiting the panel dimension, we can construct precise measures of tenure and experience,
calculated as the actual number of days the individual has been employed, respectively, in the
same establishment and overall. We can also track cumulative experience in different locations
or sets of locations.

The MCVL also includes earnings data obtained from income tax records. Gross labour
earnings are recorded separately for each job and are not subjected to any censoring. Each source
of labour income is matched between income tax records and social security records based on
both employee and employer (anonymized) identifiers. This allows us to compute monthly labour
earnings, expressed as euros per day of full-time equivalent work.5

Each MCVL edition includes social security records for the complete labour market history
of individuals included in that edition, but only includes income tax records for the year of that
particular MCVL edition. Thus, we combine multiple editions of the MCVL, beginning with
the first produced, for 2004, to construct a panel that has the complete labour market history
since 1980 and uncensored earnings since 2004 for a random sample of approximately 4% of all
individuals who have worked, received benefits or a pension in Spain at any point since 2004. This
is possible because the criterion for inclusion in the MCVL (based on the individual’s permanent
Tax Identification Number) as well as the algorithm used to construct the individual’s anonymized
identifier are maintained across MCVL editions. Combining multiple waves has the additional
advantage of maintaining the representativeness of the sample throughout the study period, by
enlarging the sample to include individuals who have an affiliation with the Social Security in
one year but not in another.6

A crucial feature of the MCVL for our purposes is that workers can be tracked across space
based on their workplace location. Social Security legislation requires employers to keep separate
contribution account codes for each province in which they conduct business. Furthermore, within
a province, a municipality identification code is provided if the workplace establishment is located
in a municipality with population greater than 40,000 inhabitants.

The MCVL also provides individual characteristics contained in social security records, such
as age and gender, and also matched characteristics contained in Spain’s Continuous Census of
Population (Padrón Continuo), such as country of birth, nationality, and educational attainment.7

5. In addition to uncensored earnings from income tax records, the MCVL contains earnings data from social
security records going back to 1980. These alternative earnings data are either top or bottom coded for about 13% of
observations. We, therefore, use the income tax data to compute monthly earnings, since these are completely uncensored.

6. More recent editions add individuals who enter the labour force for the first time while they lose those who
cease affiliation with the Social Security. Since individuals who stop working remain in the sample while they receive
unemployment benefits or a retirement pension, most exits occur when individuals are deceased or leave the country
permanently.

7. A complete national update of the educational attainment of individuals recorded in the Continuous Census
of Population was performed in 1996, with a subsequent update by most municipalities in 2001. Further updates used
to rely on the information provided by individuals, most often when they completed their registration questionnaire
at a new municipality upon moving (a prerequisite for access to local health and education services). However, since
2009 the Ministry of Education directly reports individuals’ highest educational attainment to the National Statistical
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2.1. Sample restrictions

Our starting sample is a monthly data set for men aged 18 and over with Spanish citizenship
born in Spain since 1962 and employed at any point between January 2004 and December 2009.
We focus on men due to the huge changes experienced by Spain’s female labour force during
the period over which we track labour market experience. Most notably, the participation rate
for prime-age women (25–54) increased from 30% in 1980 to 77% in 2009. Nevertheless, some
results for women are provided in Section 4. We leave out those born before 1962 because we
cannot track their full labour histories. We also leave out foreign-born workers because we do not
have their labour histories before immigrating to Spain and because they are likely to be quite
different from natives. We track workers over time throughout their working lives to compute
their job tenure and their work experience in different urban areas, but study their earnings only
when employed in 2004–2009. In particular, we regress individual monthly earnings in 2004–
2009 on a set of characteristics that capture the complete prior labour history of each individual.8

We exclude spells workers spend as self-employed because labour earnings are not available
during such periods, but still include job spells as employees for the same individuals. This initial
sample has 246,941 workers and 11,885,511 monthly observations.

Job spells in the Basque Country and Navarre are excluded because we do not have earnings
data from income tax records for them as these autonomous regions collect income taxes
independently from Spain’s national government. We also exclude job spells in three small
urban areas and in rural areas because workplace location is not available for municipalities
with population below 40,000—and because our focus is comparing urban areas of different
sizes. Nevertheless, the days worked in urban areas within the Basque Country or Navarre, in the
three small excluded urban areas, or in rural areas anywhere in the country are still counted when
computing cumulative experience (both overall experience and experience by location). These
restrictions reduce the sample to 185,628 workers and 7,504,602 monthly observations.

Job spells in agriculture, fishing, mining, and other extractive industries are excluded because
these activities are typically rural and are covered by special social security regimes where
workers tend to self-report earnings and the number of working days recorded is not reliable. Job
spells in the public sector, international organizations, and in education and health services are
also left out because earnings in these sectors are heavily regulated by the national and regional
governments. Apprenticeship contracts and certain rare contract types are also excluded. Finally,
we drop workers who have not worked at least 30 days in any year. This yields our final sample
of 157,113 workers and 6,263,446 monthly observations.

Institute and this information is used to update the corresponding records in the Continuous Census of Population. It
is worth noting that the Ministry of Education data indicate very low mobility to pursue higher education in Spain
(Ministerio de Educación, Cultura y Deporte, 2013). This is in contrast with the high rates of job-related mobility that,
as reported below, are comparable to those of the U.S.

8. We do not study years prior to 2004 due to the lack of earnings from income tax data. We also do not study
years after 2009 due to the extreme impact of the Great Recession on Spain after that year. In particular, our fixed-effects
estimations rely on migrants to identify some key coefficients. Migrations across urban areas had remained very stable,
with around 7% of workers relocating every year since 1998 through both bad and good times, but plummeted below
3% in the Great Recession. Nevertheless, to check that our estimates are not specific to the period 2004–2009, we also
provide comparable results for 1998–2003. Since no income tax data are available prior to 2004, estimations for 1998–
2003 rely on earnings data from social security records corrected for top and bottom coding following a procedure based
on Card et al. (2013).
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2.2. Urban areas

We use official urban area definitions, constructed by Spain’s Ministry of Housing in 2008 and
maintained unchanged since then. The 85 urban areas account for 68% of Spain’s population and
10% of its surface. Four urban areas have populations above 1 million, Madrid being the largest
with 5,966,067 inhabitants in 2009.At the other end, Teruel is the smallest with 35,396 inhabitants
in 2009. Urban areas contain 747 municipalities out of the over 8,000 that exhaustively cover
Spain. There is large variation in the number of municipalities per urban area. The urban area of
Barcelona is made up of 165 municipalities, while 21 urban areas contain a single municipality.

Three urban areas (Sant Feliú de Guixols, Soria, and Teruel) have no municipality with a
population of at least 40,000, and are not included in the analysis since they cannot be identified
in the MCVL. We must also exclude the four urban areas in the Basque Country and Navarre
(Bilbao, San Sebastián, Vitoria and Pamplona) because we lack earnings from tax returns data
since the Basque Country and Navarre collect income taxes independently. Last, we exclude
Ceuta and Melilla given their special enclave status in continental Africa. This leaves 76 urban
areas for which we carry out our analysis.

To measure the size of each urban area, we calculate the number of people within 10 km of the
average person in the urban area. We do so on the basis of the 1-km-resolution population grid for
Spain in 2006 created by Goerlich and Cantarino (2013). They begin with population data from
Spain’s Continuous Census of Population (Padrón Continuo) at the level of the approximately
35,000 census tracts (áreas censales) that cover Spain. Within each tract, they allocate population
to 1×1 km cells based on the location of buildings as recorded in high-resolution remote sensing
data. We take each 1×1 km cell in the urban area, trace a circle of radius 10 km around the cell
(encompassing both areas inside and outside the urban area), count population in that circle, and
average this count over all cells in the urban area weighting by the population in each cell. This
yields the number of people within 10 km of the average person in the urban area.

Our measure of city size is very highly correlated with a simple population count (the
correlation being 0.94), but deals more naturally with unusual urban areas, in particular those that
are polycentric. Most urban areas in Spain comprise a single densely populated urban centre and
contiguous areas that are closely bound to the centre by commuting and employment patterns.
However, a handful of urban areas are made up of multiple urban centres. A simple population
count for these polycentric urban areas tends to exaggerate their scale, because to maintain
contiguity they incorporate large intermediate areas that are often only weakly connected to
the various centres. For instance, the urban area of Asturias incorporates the cities of Gijón,
Oviedo, Avilés, Mieres, and Langreo as well as large areas in between. A simple population
count would rank the urban area of Asturias sixth in terms of its 2009 population (835,231), just
ahead of Zaragoza (741,132). Our measure of scale ranks Asturias nineteenth in terms of people
within 10 km of the average person (203,817) and Zaragoza fifth (583,774), which is arguably
a more accurate characterization of their relative scale. Our measure of city size also has some
advantages over density, another common measure of urban scale, because it is less subject to the
noise introduced by urban boundaries which are drawn with very different degree of tightness
around built-up areas. This noise arises because some of the underlying areas on the basis of
which urban definitions are drawn (municipalities in our case) include large green areas well
beyond the edge of the city, which gives them an unusually large surface area and artificially
lowers their density.

It is worth emphasizing that we assign workers to urban areas at each point in time based on
the municipality of their workplace. Thus, when we talk about migrations we refer to workers
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taking a job in a different urban area. Each year about 7% of workers change jobs across urban
areas throughout our study period.9

3. STATIC BENEFITS OF BIGGER CITIES

Let us assume that the log wage of worker i in city c at time t, wict , is given by

wict =σc +μi +
C∑

j=1

δjceijt +x′
itβ+εict , (1)

where σc is a city fixed effect, μi is a worker fixed effect, eijt is the experience acquired by worker
i in city j up until time t, xit is a vector of time-varying individual and job characteristics, the
scalars δjc and the vector β are parameters, and εict is an error term.10

Equation (1) allows for a static earnings premium associated with currently working in a
bigger city, if the city fixed effect σc is positively correlated with city size. It also allows for the
sorting of more productive workers into bigger cities, if the worker fixed effect μi is positively
correlated with city size. Finally, it lets the experience accumulated in city j to have a different
value which may be positively correlated with city size. This value of experience δjc is indexed
by both j (the city where experience was acquired) and c (the city where the worker currently
works). In our estimations, we also allow experience to have a non-linear effect on log earnings
but to simplify the exposition we only include linear terms in equation (1).11

We shall eventually estimate an equation like (1). However, to facilitate comparisons with
earlier studies and to highlight the importance of considering the dynamic advantages of bigger
cities, we begin by estimating simpler and more restrictive equations that allow only for static
benefits.

3.1. Static pooled estimation

Imagine that, instead of estimating equation (1), we ignore both unobserved worker heterogeneity
and any dynamic benefits of working in bigger cities, and estimate the following relationship:

wict =σc +x′
itβ+ηict . (2)

Compared with equation (1), in equation (2) the worker fixed effect μi and the terms capturing the
differential value of experience for each city

∑C
j=1δjceijt are missing. We can estimate equation

(2) by ordinary least squares using the pooled panel of workers.

9. This annual mobility rate is roughly comparable to the one in the U.S. Using individual-level data from the
National Longitudinal Survey of Youth 1979, and restricting the sample to male native-born workers between 25 and
45 years old, we calculate that each year around 9% of workers move across metropolitan areas (defined as Core Based
Statistical Areas by the Office of Management and Budget) throughout 1983–2010.

10. The city fixed effect σc could also be time-varying and written σct instead. We keep it time-invariant here
for simplicity. In our estimations, we have tried both having time-varying and time-invariant city fixed effects. We find
that the elasticity of time-varying city fixed effects with respect to time-varying city size is the same as the elasticity
of time-invariant city fixed effects with respect to time-invariant city size. Thus, we stick with time-invariant city fixed
effects to not increase excessively the number of parameters in the richer specifications that we introduce later in the
article.

11. Note that we are not explicitly deriving equation (1) from a general equilibrium model. Instead, we start directly
from a reduced-form expression for earnings that potentially captures the contribution of static advantages, learning and
sorting to the premium associated with bigger cities. In follow up work partly motivated by the findings of this article
(De la Roca et al., 2014), we propose an overlapping generations general equilibrium model of urban sorting by workers
with heterogeneous ability and self-confidence that see their experience differ in value depending on where it is acquired
and used.
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TABLE 1
Estimation of the static city size earnings premium

(1) (2) (3) (4)

Log City indicator Log City indicator
Dependent variable earnings coefficients earnings coefficients

column (1) column (3)

Log city size 0.0455 0.0241
(0.0080)∗∗∗ (0.0058)∗∗∗

City indicators Yes Yes
Worker fixed effects No Yes

Experience 0.0319 0.1072
(0.0005)∗∗∗ (0.0018)∗∗∗

Experience2 −0.0006 −0.0014
(0.0000)∗∗∗ (0.0000)∗∗∗

Firm tenure 0.0147 0.0042
(0.0006)∗∗∗ (0.0004)∗∗∗

Firm tenure2 −0.0005 −0.0003
(0.0000)∗∗∗ (0.0000)∗∗∗

Very-high-skilled occupation 0.7752 0.2350
(0.0062)∗∗∗ (0.0057)∗∗∗

High-skilled occupation 0.4976 0.1758
(0.0046)∗∗∗ (0.0040)∗∗∗

Medium-high-skilled occupation 0.2261 0.0873
(0.0031)∗∗∗ (0.0029)∗∗∗

Medium-low-skilled occupation 0.0542 0.0152
(0.0021)∗∗∗ (0.0019)∗∗∗

University education 0.2014
(0.0037)∗∗∗

Secondary education 0.1084
(0.0022)∗∗∗

Observations 6,263,446 76 6,263,446 76
R2 0.4927 0.2406 0.1144 0.1422

Notes: All specifications include a constant term. Columns (1) and (3) include month–year indicators, two-digit sector
indicators, and contract-type indicators. Coefficients are reported with robust standard errors in parenthesis, which are
clustered by worker in columns (1) and (3). ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% levels. The R2 reported
in column (3) is within workers. Worker values of experience and tenure are calculated on the basis of actual days worked
and expressed in years.

Column (1) in Table 1 shows the results of such estimation. As we would expect, log
earnings are concave in overall experience and tenure in the firm and increase monotonically
with occupational skills.12 Having tertiary education and working under a full-time and permanent
contract are also associated with higher earnings.

Figure 2 plots the city fixed effects estimated in column (1) against log city size. We find notable
geographic differences in earnings even for observationally equivalent workers. For instance, a
worker in Madrid earns 18% more than a worker with the same observable characteristics in
Utrera—the smallest city in our sample. The largest earning differential of 34% is found between
workers in Barcelona and Lugo. Column (2) in Table 1 regresses the city fixed effects estimated
in column (1) on our measure of log city size. This yields an elasticity of the earnings premium
with respect to city size of 0.0455. This pooled OLS estimate of the elasticity of the earnings
premium with respect to city size reflects that doubling city size is associated with an approximate

12. Employers assign workers into one of ten social security occupation categories, which we have regrouped into
five skill groups. These categories are meant to capture the skills required by the job and not necessarily those acquired
by the worker.
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Figure 2

Static OLS estimation of the city size premium

increase of 5% in earnings over an above any differences attributable to differences in education,
overall experience, occupation, sector, or tenure in the firm. City size is a powerful predictor of
differences in earnings as it can explain about a quarter of the variation that is left after controlling
for observable worker characteristics (R2 of 0.2406 in column (2).13

13. We have also estimated the elasticity in a single stage by including log city size directly in the Mincerian
specification of log earnings (see Combes et al., 2008 for a discussion on the advantages of using a two-step procedure).
In this case, the estimated elasticity rises slightly to 0.0512. In addition, we have carried out alternative estimations for
the pooled OLS two-stage estimation. First, we try including interactions of city and year indicators in the first stage to
address the possibility of such city effects being time-variant. Then, in the second stage we regress all estimated city-year
indicators on time-varying log city size and year indicators. The estimated elasticity remains almost unaltered at 0.0458.
Secondly, urban economists have studied agglomeration benefits arising from local specialization in specific sectors in
addition to those related to the overall scale of economic activity in a city. Following Combes et al. (2010), we can
account for these potential benefits of specialization by including the share of total employment in the city accounted for
by the sector in which the worker is employed as an additional explanatory variable in the first-stage regression. When
we do this, the elasticity of the earnings premium with respect to city size is almost unchanged, rising only marginally
to 0.0496. This result indicates that some small but highly specialized cities do pay relatively high wages in the sectors
in which they specialize, but that this leads only to a small reduction in the earnings gap between big and small cities.
Thirdly, we may be worried about the city fixed effects being estimated on the basis of more observations for bigger
cities. This may introduce some heteroscedasticity through sampling errors, which can be dealt with by computing the
feasible generalized least squares (FGLS) estimator proposed in appendix C of Combes et al. (2008). When we do this,
the elasticity of the earnings premium with respect to city size is almost unchanged, falling slightly from 0.0455 to
0.0453. Finally, we can estimate two-way clustered standard errors by both worker and city instead of clustering just by
worker (note that these clusters are not nested because many workers move across cities). This increases computational
requirements by at least one order of magnitude, but does not change the level of statistical significance (at the 1, 5, or
10% level) of any coefficient in the table.
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The pooled OLS estimate of the elasticity of interest, 0.046 in column (2), is in line with
previous estimates that use worker-level data with similar sample restrictions. Combes et al.
(2010) find an elasticity of 0.051 for France while Glaeser and Resseger (2010) obtain an elasticity
of 0.041 for the U.S.14

The pooled OLS estimate of the elasticity of the earnings premium with respect to city size
is biased because the city fixed effects estimated from equation (2) are biased. Assuming for
simplicity that Cov(xit,μi +∑C

j=1δjceijt)=0, the resulting pooled OLS estimate of σc would be
unbiased if and only if

Cov(ιict,ηict)=0 , (3)

where ιict is a city indicator variable that takes value 1 if worker i is in city c at time t and value
0 otherwise. However, if the richer wage determination of equation (1) holds, the error term of
equation (2) includes the omitted variables:

ηict =μi +
C∑

j=1

δjceijt +εict . (4)

Hence,

Cov(ιict,ηict)=Cov(ιict,μi)+Cov(ιict,

C∑
j=1

δjceijt) �=0 . (5)

Equation (5) shows that a static cross-section or pooled OLS estimation of σc suffers from two
key potential sources of bias. First, it ignores sorting, and thus the earnings premium for city c, σc,
is biased upwards if individuals with high unobserved ability, μi, are more likely to work there, so
that Cov(ιict,μi)>0 (and biased downwards in the opposite case). Secondly, it ignores dynamic
effects, and thus the earnings premium for city c, σc, is biased upwards if individuals with more
valuable experience,

∑C
j=1δjceijt , are more likely to work there, so that Cov(ιict,

∑C
j=1δjceijt)>0

(and biased downwards in the opposite case).15

To see how these biases work more clearly, it is useful to consider a simple example. Suppose
there are just two cities, one big and one small. Everyone working in the big city enjoys an
instantaneous (static) log wage premium of σ . Workers in the big city have higher unobserved
ability, which increases their log wage by μ. Otherwise, all workers are initially identical. Over
time, experience accumulated in the big city increases log wage by δ per period relative to having
worked in the small city instead. For now, assume there is no migration. If there are n time
periods, then the pooled OLS estimate of the static big city premium σ has probability limit
plimσ̂pooled =σ +μ+ 1+n

2 δ. Thus, a pooled OLS regression overestimates the actual premium
by the value of higher unobserved worker ability in the big city (μ) and the higher average value
of accumulated experience in the big city ( 1+n

2 δ).

14. Combes et al. (2010) aggregate individual data into a city sector level data to estimate an elasticity analogous
to our pooled OLS result. Mion and Naticchioni (2009) find a lower estimate of this elasticity for Italy (0.022).

15. Strictly speaking, the actual bias in the pooled OLS estimate of σc, σ̂cpooled, is more complicated because
it is not necessarily the case that Cov(xit,μi +∑C

j=1δjceijt)=0, as we have assumed. For instance, even if we do not
allow the value of experience to vary by city, we may have overall experience, eit ≡∑C

j=1 eijt , as one of the explanatory
variables included in xit in equation (2). In this case, δjc measures the differential value of the experience acquired in
city j when working in city c relative to the general value of experience, which we may denote γ . Then plimσ̂cpooled =
σc +Cov(ιict,μi)/Var(ιict)+∑C

j=1δjcCov(ιict,eijt)/Var(ιict)+(γ − γ̂pooled)Cov(ιict,eit)/Var(ιict). Relative to the simpler
example discussed in the main text, the bias incorporates an additional term (γ − γ̂pooled)Cov(ιict,eit)/Var(ιict). In practice,
this additional term is negligible if Cov(ιict,eit) is close to zero, that is, if the total number of days of work experience
(leaving aside where it was acquired) is not systematically related to workers’ location. In our sample, this is indeed the
case: the correlation between mean experience and log city size is not significantly different from 0.
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3.2. Static fixed-effects estimation

Following Glaeser and Maré (2001) and Combes et al. (2008), an approach to address the issue
of workers sorting across cities on unobservables is to introduce worker fixed effects. Suppose
we deal with unobserved worker heterogeneity in this way, but still ignore a dynamic city size
premium and estimate the following relationship:

wict =σc +μi +x′
itβ+ζict . (6)

Compared with equation (1), the city-specific experience terms
∑C

j=1δjceijt are still missing
from equation (6), just as they were missing from equation (2). Compared with the pooled OLS
regression of equation (2), equation (6) incorporates a worker fixed effect, μi. To estimate σc we
now need a panel of workers. The worker fixed effect μi can be eliminated by subtracting from
equation (6) the time average for each worker:

(wict −w̄i)=
C∑

j=1

σc(ιict − ῑic)+(x′
it − x̄′

i)β+(ζict − ζ̄i) . (7)

Note that σc is now estimated only on the basis of migrants—for workers who are always observed
in the same city ιict = ῑic =1 every period—while all other coefficients are estimated by exploiting
time variation and job changes within workers’ lives.16

In column (3) of Table 1, we present results for this specification, which adds worker fixed
effects to the pooled OLS specification of column (1). Then, in column (4) we regress the
city fixed effects from column (3) on our measure of log city size. The estimated elasticity
of the earnings premium with respect to city size of column (4) drops substantially relative to
column (2), from 0.0455 to 0.0241.17 This drop is in line with previous studies. When worker
fixed effects are introduced, Combes et al. (2010) see a decline in the elasticity of 35%, while
Mion and Naticchioni (2009) report a larger drop of 66% for Italy. Our estimated drop of 47%
lies in between both.

Assuming again for simplicity that Cov(xit,
∑C

j=1δjceijt)=0, the resulting fixed-effects
estimate of σc is unbiased if

Cov
(
(ιict − ῑic), (ζict − ζ̄i)

)=0 . (8)

However, if the richer wage determination of equation (1) holds,

(ζict − ζ̄i)=
C∑

j=1

δjc(eijt − ēij)+(εict − ε̄i) , (9)

16. This can be a source of concern for the estimation of city fixed effects if migrants are not representative of the
broader worker population or if the decision to migrate to a particular city depends on shocks specific to a worker-city pair.
As long as workers choose their location based on their characteristics (both observable and time-invariant unobservable),
on job traits such as the sector and occupation, and on characteristics of the city, the estimation of σc will remain unbiased.
However, any unobserved time-varying factor that is correlated with the error term in equation (6)—such as a particularly
attractive wage offer in another city—will bias the estimation of city fixed effects. Nevertheless, even if people were to
migrate only when they got a particularly high wage offer, provided that this affects similarly moves to bigger cities and
moves to smaller cities, and that migration flows across cities of different sizes are approximately balanced (as they are
in our data), then the actual bias may be small.

17. The alternative estimations discussed in footnote 13 above result in similar magnitudes of this elasticity. When
allowing for city fixed effects to be time-variant it is 0.0253, when controlling for sectoral specialization it is 0.0241,
and when implementing the FGLS estimator of Combes et al. (2008) it is 0.0219. The only meaningful change in the
elasticity of the earnings premium with respect to city size occurs when we estimate it in a single stage, which gives
a lower estimate at 0.0163. As before, estimating two-way clustered standard errors by both worker and city does not
change the level of statistical significance (at the 1, 5, or 10% level) of any coefficient in the table.
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and thus

Cov
(
(ιict − ῑic), (ζict − ζ̄i)

)=Cov
(
(ιict − ῑic),

C∑
j=1

δjc(eijt − ēij)
) �=0 . (10)

Worker fixed effects take care of unobserved worker heterogeneity. However, the estimate of σc
is still biased because dynamic effects are ignored. The earnings premium for city c is biased
upwards if the value of workers’ experience tends to be above their individual averages in the
periods when they are located in city c. It is biased downwards when the reverse is true.

Again, to see how this bias works more clearly, it is instructive to use the same simple two-city
example as for the pooled OLS estimate. Like before, assume everyone working in the big city
enjoys an instantaneous (static) log wage premium of σ . Workers in the big city have higher
unobserved ability, which increases their log wage by μ. Otherwise, all workers are initially
identical. Over time, experience accumulated in the big city increases log wage by δ per period
relative to having worked in the small city instead. Since with worker fixed effects σc are estimated
only on the basis of migrants, we add migration to the example. Consider two opposite cases.

First, suppose all migration is from the small to the big city and takes place after migrants have
worked in the small city for the first m periods of the total of n periods. The fixed-effects estimate
of the static big city premium σ is now estimated by comparing the earnings of migrants before
and after moving and has probability limit plim σ̂FE =σ + 1+n−m

2 δ. With all migrants moving
from the small to the big city, the fixed-effects regression overestimates the actual static premium
(σ ) by the average extra value of the experience migrants accumulate by working in the big city
after moving there ( 1+n−m

2 δ). The estimation of equation (6) forces the earnings premium to be
a pure jump at the time of moving, while in the example the premium actually has both static and
dynamic components. Not trying to separately measure the dynamic component not only ignores
it, but also makes the static part seem larger than it is.

Consider next the case where all migration is in the opposite direction, from the big to the
small city. Suppose migration still takes place after migrants have worked in the big city for the
first m periods of the total of n periods. Now, we also need to know whether the extra value of
experience accumulated in the big city is fully portable or only partially so.Assume only a fraction
θ is portable, where 0�θ �1. The fixed-effects estimate of the static big city premium σ then

has probability limit plim σ̂FE =σ +
(

1+m
2 −θm

)
δ. With all migrants moving from the big to the

small city, the fixed-effects regression differs from the actual static premium (σ ) by the difference
between the value of the average big city experience for migrants prior to moving 1+m

2 δ and the
(depreciated) value of the big city experience that migrants take with them after leaving the big
city θmδ. If the additional value of experience accumulated in big cities is sufficiently portable,
σ is underestimated on the basis of migrants from big to small cities.18 By forcing both the static
and dynamic premium to be captured by a discrete jump, the jump now appears to be smaller
than it is. Moreover, the dynamic part is still not separately measured.

This example shows that the estimation with worker fixed effects deals with the possible
sorting of workers across cities on time-invariant unobservable characteristics. However, the
estimates of city fixed effects are still biased due to the omission of dynamic benefits. This, in
turn, biases any estimate of the static earnings premium associated with currently working in
bigger cities. Migrants from small to big cities tend to bias the static city size premium upwards
(their average wage difference across cities is “too high” because when in big cities they benefit
from the more valuable experience they are accumulating there). Migrants from big to small cities

18. Specifically, plim σ̂FE =σ +( 1+m
2 −θm

)
δ<σ provided that θ > 1

2

( 1
m +1

)
.
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tend to bias the static city size premium downwards (their average wage difference across cities
is “too low” because when in small cities they still benefit from the more valuable experience
accumulated in big cities).

In practice, the bias is likely to be small if the sample is more or less balanced in terms of
migration flows across cities of different sizes, and the learning benefits of bigger cities are highly
portable (in the example, if θ is close to 1). The first condition, that migration is balanced, holds
in our data and, likely, in many other contexts.19 The second condition, that the learning benefits
of bigger cities are highly portable, is one that we can only verify by estimating the fully fledged
specification of equation (1).

Combes et al. (2008) interpret the drop in the elasticity of the earnings premium with respect
to city size (in our case, the drop in the elasticity between columns (2) and (4) in Table 1) as
evidence of the importance of sorting by more productive workers into bigger cities. However, we
have shown that by ignoring the dynamic component of the premium, we can affect the magnitude
of the bias in the estimated static city size premium. The lower static earnings premium found
when using worker fixed effects could thus reflect either the importance of sorting by workers
across cities in a way that is systematically related to unobserved ability, or the importance
of learning by working in bigger cities, or a combination of both. We cannot know unless we
simultaneously consider the static and the dynamic components of the earnings premium while
allowing for unobserved worker heterogeneity. However, the main reason to study the dynamic
component explicitly is that it may be an important part of the benefits that bigger cities provide
in the medium term. Thus, we wish to quantify the magnitude of these dynamic benefits.

4. DYNAMIC BENEFITS OF BIGGER CITIES

We now turn to a joint estimation of the static and dynamic components of the earnings premium of
bigger cities while allowing for unobserved worker heterogeneity. This involves our full earnings
specification of equation (1), in which the value of a worker’s experience is allowed to vary
depending both on where it was acquired and on where the worker is currently employed. In
column (1) of Table 2, we add to the first-stage specification of column (3) of Table 1 the
experience accumulated in the two biggest cities—Madrid and Barcelona. We also add the
experience accumulated in the next three biggest cities—Valencia, Sevilla, and Zaragoza. We still
include overall experience in the specification, so that it now captures the value of experience
acquired outside of the five biggest cities.20 Just as we included the square of experience in earlier
specifications to let the value of additional experience decay for workers with more experience,
we also now interact experience in the two biggest cities and experience in the third to fifth biggest
cities with overall experience.21 Our results indicate that experience accumulated in bigger cities
is more valuable than experience accumulated elsewhere. For instance, the first year of experience
in Madrid or Barcelona raises earnings by 3.1% relative to having worked that same year in a
city below the top five (i.e., e0.0309−0.0008 −1). The first year of experience in a city ranked third

19. In our sample of 157,113 workers, between 2004 and 2009 there are 40,809 migrations in which a worker takes
a job in a different urban area: 8,868 migrations from the five biggest cities to smaller cities, 8,790 migrations from
smaller cities to the five biggest cities, and another 23,151 moves between cities of similar sizes.

20. It is worth noting that city indicators are still estimated on the basis of migrants. However, the value of experience
acquired in cities of different sizes is estimated on the basis of both migrants and stayers. This is because, although location
does not change for stayers, their experience changes from month to month while working.

21. In an earlier version of this article, we included the square of experience in the two biggest cities and the
square of experience in the third to fifth biggest cities instead of interacting experience in each city size class with overall
experience. Results were very similar, but the current specification allows us to capture the different effects of working
in big cities for less and more experienced workers, as discussed below.
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TABLE 2
Estimation of the dynamic and static city size earnings premia

(1) (2) (3)

Log Initial Medium-term
Dependent variable earnings premium premium

(city indicator (initial +
coefficients 7.7 years local
column (1)) experience)

Log city size 0.0223 0.0510
(0.0058)∗∗∗ (0.0109)∗∗∗

City indicators Yes
Worker fixed effects Yes

Experience first to second biggest cities 0.0309
(0.0029)∗∗∗

Experience first to second biggest cities × experience −0.0008
(0.0001)∗∗∗

Experience third to fifth biggest cities 0.0155
(0.0045)∗∗∗

Experience third to fifth biggest cities × experience −0.0006
(0.0002)∗∗

Experience 0.0912
(0.0019)∗∗∗

Experience2 −0.0011
(0.0000)∗∗∗

Experience first to second biggest × now in −0.0014
five biggest (0.0028)

Experience first to second biggest × experience 0.0000
× now in five biggest (0.0001)

Experience third to fifth biggest −0.0025
× now in five biggest (0.0043)

Experience third to fifth biggest × experience 0.0003
× now in five biggest (0.0002)

Experience outside five biggest × 0.0064
now in five biggest (0.0024)∗∗∗

Experience outside five biggest × experience −0.0002
× now in five biggest (0.0001)∗

Firm tenure 0.0044
(0.0004)∗∗∗

Firm tenure2 −0.0003
(0.0000)∗∗∗

Very-high-skilled occupation 0.2298
(0.0056)∗∗∗

High-skilled occupation 0.1745
(0.0040)∗∗∗

Medium-high-skilled occupation 0.0879
(0.0029)∗∗∗

Medium-low-skilled occupation 0.0166
(0.0019)∗∗∗

Observations 6,263,446 76 76
R2 0.1165 0.1282 0.3732

Notes: All regressions include a constant term. Column (1) includes month–year indicators, two-digit sector indicators,
and contract-type indicators. Coefficients are reported with robust standard errors in parenthesis, which are clustered by
worker in column (1). ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% levels. The R2 reported in column (1) is
within workers. Worker values of experience and tenure are calculated on the basis of actual days worked and expressed
in years. City medium-term premium calculated for workers’ average experience in one city (7.72 years).

to fifth raises earnings by 1.5% relative to having worked that same year in a city below the top
five. We have also tried finer groupings of cities by size (not reported), but found no significant
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differences in the value of experience within the reported groupings (e.g. between Madrid and
Barcelona).

We also allow for the value of experience accumulated in bigger cities to vary depending
on where it is used. For this purpose, we include interactions between years of experience
accumulated in each of three city size classes (first to second biggest, third to fifth biggest,
and outside the top five) and an indicator for currently working in one of the five biggest cities.
We also include further interactions with overall experience to allow for non-linear effects. Our
results show that the value of experience acquired in the two biggest cities, as reflected in earnings,
is not significantly different if a worker moves away to work in a city below the top five. The
same finding holds for the value of experience acquired in the third to fifth biggest cities. Both
results suggest that the additional value of experience acquired in bigger cities is highly portable.
At the same time, the positive and statistically significant coefficient on the interaction between
experience acquired outside the five biggest cities and an indicator for currently working in the
five biggest cities shows that, for workers relocating from smaller cities to the biggest, previous
experience is more highly valued in their new job location.

Overall, where workers acquire experience matters more than where they use it. A first year of
experience raises earnings an additional 3.1% if this was acquired in the two biggest cities instead
of outside the top five, regardless of where the worker is currently employed. In comparison, a
first year of experience raises earnings an additional 0.6% if this is subsequently used in the five
biggest cities instead of outside the top five, and only when that experience was gathered outside
the five biggest cities. As noted above, experience acquired in the two biggest cities is equally
valuable everywhere, as is experience acquired in the third to fifth biggest. Thus, while moving
from a small to a big city brings additional rewards to previous experience, the main effect is that
any additional experience gathered in the big city is substantially more valuable and will remain
so anywhere.

4.1. Earnings profiles

An illustrative way to present our results is to plot the evolution of earnings for workers in cities
of different sizes, calculated on the basis of the coefficients estimated in column (1) of Table 2.
In panel (a) of Figure 3, the higher solid line depicts the earnings profile over 10 years of an
individual with no prior experience working in Madrid (the largest city) relative to the earnings
of a worker with identical characteristics (both observable and time-invariant unobservable) who
instead works in Santiago de Compostela (the median-sized city). To be clear, the top solid
line does not represent how fast earnings rise in absolute terms while working in Madrid, they
represent how much faster they rise when working in Madrid than when working in Santiago.

For the worker in Madrid, the profile of relative earnings has an intercept and a slope
component. The intercept captures the percentage difference in earnings between an individual
working in Madrid and an individual working in Santiago, when both have no prior work
experience and have the same observable characteristics and worker fixed effect. This is calculated
as the exponential of the difference in estimated city fixed effects for Madrid and Santiago from
the specification in column (1) of Table 2, expressed in percentage terms. The slope component
captures the rising gap in earnings between these individuals as they each accumulate experience
in a different city. This is calculated on the basis of the estimated coefficients for experience in
the first to second biggest cities and experience in the first to second biggest cities × experience
in column (1) of Table 2.

Figure 3 shows that a worker in Madrid initially earns 9% more than a worker in Santiago,
and this gap then widens considerably, so that after 10 years the difference in earnings reaches
36%. The lower solid line depicts the earnings profile over 10 years of an individual working in
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Sevilla (the fourth largest city) relative to the earnings of a worker in Santiago. There is also a
substantial gap in the profile of relative earnings, although smaller in magnitude than in the case
of Madrid: an initial earnings differential of 3% and of 14% after 10 years.

The dashed lines in panel (a) of Figure 3 illustrate the portability of the learning advantages
of bigger cities. The top dashed line plots the difference in earnings between two individuals
with no prior work experience and identical characteristics, one who works in Madrid for 5 years
and then moves to Santiago and another one who works in Santiago during the entire 10-year
period. Up until year 5, the relative earnings profile of the worker who begins in Madrid and
then relocates is the same as that of a worker who always works in Madrid as captured by the
top solid line discussed above.22 At that point, he relocates to Santiago, and his relative earnings
drop as a result of the Santiago fixed effect replacing the Madrid fixed effect, and of the value of
the experience he acquired over the 5 years in Madrid changing following his relocation (recall
we let the value of experience vary depending not only on where it was acquired but also on
where it is being used). Since there is only a minor change in the value of experience acquired
in Madrid after moving, the 8.6% drop in earnings following relocation is almost identical to the
initial 9.4% earnings gap between Madrid and Santiago. The worker is able to retain the 14.5%
higher earnings resulting from the more valuable experience accumulated over 5 years in Madrid
after relocating to Santiago.23

From that point onwards, the additional value of the experience acquired in Madrid depreciates
slightly but a substantial gap remains relative to the benchmark of having always worked in
Santiago.24 Someone moving to Santiago after 5 years in Sevilla exhibits a qualitatively similar
relative profile, although with smaller magnitudes.

The evolution of earnings portrayed in panel (a) of Figure 3 shows that much of the earnings
premium that bigger cities offer is not instantaneous, but instead accumulates over time and is
highly portable. This perspective contrasts with the usual static view that earlier estimations of
this premium have adopted. This static view is summarized in panel (b) of Figure 3. Once again,

22. The profiles coincide over the first 5 years for the worker who stays in Madrid (solid line) and for the worker
who subsequently moves to Santiago (dashed line) by construction. However, at the end of this section we introduce
further flexibility in the estimation to let the profiles differ between stayers, migrants to big cities, and migrants from big
cities and find no significant differences among them.

23. Our specification allows the discrete loss when moving from Madrid to Santiago to differ from the discrete
gain when moving from Santiago to Madrid (through the interactions with the indicator variable “now in 5 biggest”). Our
estimates show that these discrete changes are very similar in magnitude. One interpretation is that the static component
of the Madrid earnings premium is similar for migrants going in either direction and there is very little depreciation in the
dynamic component. However, since depreciation in the dynamic component is identified only on the basis of migrants
leaving Madrid, it is difficult to distinguish such depreciation from idiosyncratic differences in the static part for those
who leave Madrid. Thus, we cannot rule out that workers self-select into moving from Madrid to Santiago when they
have a particular good fit with Santiago so that the static loss is particularly small for them. Recall that we allow the value
of experience accumulated in Madrid to depreciate both discretely at the time of moving and over time after the move. If
the discrete depreciation at the time of moving away from Madrid coincided with the idiosyncratic difference in the static
loss for those who move from Madrid to Santiago, the total discrete loss when moving from Madrid to Santiago could
still be roughly the same as the discrete gain when moving from Santiago to Madrid. Nevertheless, the fact that when
we let the value of big city experience differ between stayers, migrants to big cities, and migrants from big cities we find
no significant differences between them provides some evidence against self-selection having an important effect on our
results.

24. In our specification of column (1) of Table 2, the depreciation of experience acquired in the two biggest cities
after relocation is captured by the interaction between this variable and overall experience, since overall experience keeps
increasing after relocation. We have also tried capturing depreciation through interactions between experience in each
city size class and the time elapsed since the worker last had a job in that city size-class, but these additional interaction
terms are not statistically significant when added to our specification, suggesting that the interaction between experience
in each city size class and overall experience already does a good job in capturing depreciation.
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Figure 4

Earnings profiles relative to median-sized city, worker with and without prior experience

we depict the profile of relative earnings for a worker in Madrid or Sevilla relative to a worker in
Santiago, but now on the basis of column (3) of Table 1 instead of column (1) of Table 2. In this
view, implicit in the standard fixed-effects estimation without city-specific experience, relative
earnings for a worker in Madrid exhibit only a constant difference with respect to Santiago: a
static premium of 11% gained immediately when starting to work in Madrid and lost immediately
upon departure.25

Our findings reveal that the premium of working in bigger cities has a sizeable dynamic
component and that workers do not lose this component when moving to smaller cities. This
latter result strongly suggests that a learning mechanism is indeed behind the accumulation of
the premium.

25. Earlier papers arguing that the urban earnings premium has an important dynamic component include
Glaeser and Maré (2001), Gould (2007), and Baum-Snow and Pavan (2012). Glaeser and Maré (2001) compare the
earnings premium associated with working in a metropolitan area instead of a rural area in the U.S. across migrants
with different arrival dates. They find the premium is larger for migrants who, at the time they are observed in the data,
have already spent some time in a metropolitan area than for those who have only recently arrived. Relative to their
work, instead of comparing earnings in rural areas with those of all urban areas combined, our estimations compare
earnings across cities of different sizes; instead of comparing workers with different arrival dates in cities our estimations
track workers’ job history in different cities and explicitly allow the value of their experience to vary depending on
where it is acquired and used; we also study complementarities between learning in cities and unobservable skills and
simultaneously consider static advantages, dynamic advantages, and sorting to explain the earnings premium of bigger
cities. Gould (2007) finds in a structural estimation that white-collar workers in U.S. rural areas earn more if they have
previously worked in a metropolitan area. Baum-Snow and Pavan (2012) also estimate a structural model and find that
returns to work experience in big cities can account for about two-thirds of the wage gap between large and small
metropolitan areas in the U.S.
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In Figure 4, we explore how the earnings premium of working in bigger cities varies depending
on the worker’s prior experience. The higher solid line is the same as in panel (a) of Figure 3,
plotting the difference in earnings between two individuals with no prior work experience and
identical characteristics, one who works in Madrid during the entire 10-year period and another
one who works in Santiago. The higher dashed line compares instead two individuals with 5
years of previous work experience in Santiago and identical characteristics, one who migrates to
Madrid and works there during the next 10 years and another one who remains in Santiago. The
dashed line comparing experienced workers has a higher intercept and a flatter subsequent profile
than the solid line comparing inexperienced workers. This is because the 5 years of prior work
experience in Santiago bring 3% higher returns in Madrid than in Santiago. However, a worker
with 5 years of prior work experience benefits less from acquiring additional experience in Madrid
than an inexperienced worker (over 10 years, the gain in earnings from acquiring experience in
Madrid instead of Santiago is 31% for a worker with 5 years of prior work experience in Santiago
and 36% for a worker with no prior work experience).

4.2. Short-term and medium-term city size earnings premia

After having addressed two key sources of bias in the estimation of city fixed effects in an earnings
regression (by including worker fixed effects and by allowing the value of experience to vary
depending on where it is acquired and used), we can now estimate the elasticity of the static
earnings premium with respect to city size in the second stage of our estimation. In column (2)
of Table 2, we regress the city indicators estimated in column (1) on log city size and obtain
an elasticity of 0.0223. This estimate is not significantly different from the static fixed-effects
estimate in column (4) of Table 1. As we already stated, the bias in the static fixed-effects estimate
would tend to be small if the direction of migration flows is balanced (as in our data) and the
learning benefits of bigger cities are portable. The estimates of our dynamic specification show
that experience accumulated in bigger cities remains roughly just as valuable when workers
relocate. This is good news, because it implies that existing fixed-effects estimates of the static
gains from bigger cities are accurate and robust to the existence of important dynamic effects.

Studying the static earnings premium from currently working in bigger cities alone, however,
ignores that there are also important dynamic gains. To study a longer horizon, we can estimate
a medium-term earnings premium that incorporates both static and dynamic components. To this
end, we add to each city fixed effect the estimated value of experience accumulated in that same
city evaluated at the average experience in a single location for workers in our sample (7.72
years). The estimated elasticity of this medium-term earnings premium with respect to city size,
presented in column (3) of Table 2, is 0.0510.

When comparing the 0.0510 elasticity of the medium-term earnings premium with respect to
city size in column (3) of Table 2 with the 0.0223 elasticity of the short-term static premium in
column (2) we notice that in the medium term, about half of the gains from working in bigger
cities are static and about half are dynamic.

Note also that the 0.0510 elasticity of the medium-term earnings premium with respect to
city size in column (3) of Table 2 is not significantly different from the standard static pooled
OLS estimate in column (2) of Table 1. This suggests that the drop in the estimated elasticity
between a standard static pooled OLS estimation and a standard static fixed-effects estimation
is not due to sorting but to dynamic effects. When estimating the medium-term elasticity, we
have brought dynamic effects in (by incorporating the additional value of experience acquired
in bigger cities evaluated at the mean experience in a single location into the second stage), but
left sorting on unobserved time-invariant ability out (by including worker fixed effects in the first
stage). The fact that this takes us back from the magnitude of the static fixed-effects estimate to
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Figure 5

Dynamic fixed-effects estimation of the medium-term city size premium

the magnitude of the static pooled OLS estimate indicates that learning effects can fully account
for the difference.

An alternative way of reaching the same conclusion is to allow the value of experience to
vary depending on where it is acquired in the pooled OLS estimation. This amounts to estimating
the first-stage specification in column (1) of Table 2 without worker fixed effects. When we then
regress the estimated city indicators on log city size, we obtain a static short-term elasticity of
0.0320. Hence, not including worker fixed effects to deal with sorting but accounting for dynamic
effects separately notably reduces the pooled OLS estimate of the static city size premium. Again,
this suggests that the drop in the estimated elasticity between a standard static pooled OLS
estimation and a standard static fixed effects estimation is mainly to dynamic effects rather than
sorting. Finally, if we then add dynamic effects back in to compute the medium-term elasticity
based on this extended pooled OLS estimation (by adding to each city fixed effect the estimated
value of experience accumulated in that same city evaluated at the average experience) we obtain
an elasticity of 0.0489, reinforcing the conclusion that dynamic effects are behind the difference
between existing pooled OLS and fixed-effects estimates.

This finding not only underscores the relevance of the dynamic benefits of bigger cities that
this article emphasizes, it also suggests that sorting on unobservables may not be very important.
We return to this issue later in the article.

While our estimate of the medium-term benefit of working in bigger cities resembles a basic
pooled OLS estimate, our methodology allows us to separately quantify the static and the dynamic
components and to discuss the portability of the dynamic part. Furthermore, the estimation of
the combined medium-term effect is more precise. Figure 5 plots the estimated medium-term
premium against log city size. Compared with the plot for the pooled OLS specification in
Figure 2, log city size explains a larger share of variation in medium-term earnings across cities
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(R2 of 0.3732 versus 0.2406). In fact, we observe that many small- and medium-sized cities
now lie closer to the regression line. One reason why some cities are outliers in the pooled
OLS estimation is that they have either relatively many or relatively few workers who have
accumulated substantial experience in the biggest cities. Workers in cities far above the regression
line in Figure 2, such as Tarragona-Reus, Girona, Manresa, or Huesca have accumulated at least
7% of their overall experience in the five biggest cities. Workers in cities far below the regression
line in Figure 2, such as Santa Cruz de Tenerife, Ourense, Valle de la Orotava, Elda-Petrer, or
Lugo have accumulated less than 2% of their overall experience in the five biggest cities. At the
same time, the two biggest cities, Madrid and Barcelona, are now further above the regression
line reflecting the large returns to experience accumulated there which increase earnings over the
medium term.

4.3. Addressing the endogeneity of city sizes

We have addressed the biases arising in the first-stage estimation of column (1) in Table 2
from not taking into account sorting on unobservables nor the differential value of experience
accumulated in bigger cities. However, a potential source of bias remains in the second-stage
estimation of columns (2) and (3). The association between the earnings premium and city size is
subject to endogeneity concerns. More precisely, an omitted variable bias could arise if some city
characteristic simultaneously boosts earnings and attracts workers to the city, thus increasing its
size. We may also face a reverse causality problem if higher earnings similarly lead to an increase
in city size.

The extant literature has already addressed this endogeneity concern and found it to be of
small practical importance (Ciccone and Hall, 1996; Combes et al., 2010). Relative city sizes are
very stable over time (Eaton and Eckstein, 1997; Black and Henderson, 2003). If certain cities
are large for some historical reason that is unrelated with the current earnings premium (other
than through size itself), we need not be too concerned about the endogeneity of city sizes. Thus,
following Ciccone and Hall (1996), we instrument current city size using historical city-size data.
In particular, our population instrument counts the number of people within 10 km of the average
resident in a city back in 1900.26

Following Combes et al. (2010), we also use land fertility data. The argument for using land
fertility as an instrument is that fertility was an important driver of relative city sizes back
when the country was mostly agricultural, and these relative size differences have persisted, but
land fertility is not directly important for production today (agriculture accounted for 60% of
employment in Spain in 1900 compared with 4% in 2009). In particular, we use as an instrument
the percentage of land within 25 km of the city centre that has high potential quality. Potential
land quality refers to the inherent physical quality of the land resources for agriculture, biomass
production, and vegetation growth, prior to any modern intervention such as irrigation.27

26. We obtain historical population data from Goerlich et al. (2006) who construct decennial municipality
population series using all available censuses from 1900 to 2001, keeping constant the areas of municipalities in 2001.
As we do for current urban area size, we measure urban area size in 1900 with the number of people within 10 km of
the average person in the urban area. Since we lack a 1-km-resolution population grid for 1900, we distribute population
uniformly within the municipality when performing our historical size calculations.

27. The source of the land quality data is the CORINE Project (Coordination of Information on the Environment),
initiated by the European Commission in 1985 and later incorporated by the European Environment Agency into its
work programme (European Environment Agency, 1990). We calculate the percentage of land within 25 km of the city
centre with high potential quality using Geographic Information Systems (GIS). The city centre is defined as the centroid
of the main municipality of the urban area (the municipality that gives the urban area its name or the most populated
municipality when the urban area does not take its name from a municipality).
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In addition to these instruments used in previous studies, we incorporate four additional
instruments. A city’s ability to grow is limited by the availability of land suitable for construction.
Saiz (2010) studies the geographical determinants of land supply in the U.S. and shows that
land supply is greatly affected by how much land around a city is covered by water or has slopes
greater than 15%. Thus, we also use as instruments the percentage of land within 25 km of the city
centre that is covered by oceans, rivers, or lakes and the percentage that has slopes greater than
15%.28 The next instrument we include is motivated by the work of Goerlich and Mas (2009).
They document how small municipalities with high elevation, of which there are many in Spain,
lost population to nearby urban areas over the course of the twentieth century. An urban area’s
current size, for a given size in 1900, could thus be affected by having high-elevation areas nearby.
The instrument we use to incorporate this fact is the log mean elevation within 25 km of the city
centre. Our final instrument deals with historical transportation costs. Roman roads were the basis
of Spain’s road network for nearly 1700 years and this may have favoured population growth of
cities with more Roman roads. Recent roads built as the country has grown and suburbanized
are no longer determined by the Roman road network, and instead seem to be mostly affected
by roads built by the Bourbon monarchs in the eighteenth century (Garcia-López et al., 2015).
However, to the extent that relative city sizes are very persistent, Roman roads may help predict
relative city sizes today. Thus, we also use as an instrument the number Roman road rays crossing
a circle drawn 25 km from city centre.29

Table 3 gives the first and second stages of our instrumental variable estimation. The first-
stage results in column (1) show that the instruments are jointly significant and also individually
significant.30 They are also strong. The F-statistic (or Kleinberger–Papp rk Wald statistic) for
weak identification exceeds all thresholds proposed by Stock and Yogo (2005) for the maximal
relative bias and maximal size. The LM test confirms our instruments are relevant as we reject
the null that the model is underidentified. We can also rule out potential endogeneity of the
instruments: the Hansen-J test cannot reject the null of the instruments being uncorrelated with
the error. Lastly, according to the endogeneity test, the data do not reject the use of OLS.

Column (2) of Table 3 shows that instrumenting has only a small effect on the elasticity of
the short-term premium with respect to city size (it is 0.0203, compared with 0.0223 in Table 2).
Similarly, column (3) shows that the elasticity of the medium-term premium with respect to city
size is also almost unchanged by instrumenting (it is 0.0530, compared with 0.0510 in Table 2).
In fact, a Hausman test fails to reject that instrumental variables are not required to estimate these
elasticities. This is in line with the consensus among urban economists that the endogeneity of
city sizes ends up not being an important source of concern when estimating the benefits of bigger
cities (Combes et al., 2010).

28. Geographic information on the location of water bodies in and around urban areas is computed using GIS and
the digital map of Spain’s hydrography included with Goerlich et al. (2006). Slope is calculated on the basis of elevation
data from the Shuttle Radar Topographic Mission (Jarvis et al., 2008), which record elevation for points on a grid 3
arc-seconds apart (approximately 90 m).

29. The number of Roman road rays 25 km from each city centre is computed using GIS and the digital map of
Roman roads of McCormick et al. (2008).

30. The percentage of water within 25 km of the city centre has a positive sign in the first stage regression.
Intuitively, water bodies have a negative effect on land supply but also a positive effect on land demand through their
amenity value. The first stage of the instrumental variable estimation suggests that the latter dominates and the net effect
of water bodies around a city is positive. While in some other European countries water may also affect city size through
navigable waterways used for transportation, Spain does not have any major navigable waterways used historically for
transportation. It is for this reason that we use Roman roads instead of historically navigable waterways as an additional
instrument.
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TABLE 3
IV estimation of the dynamic city size earnings premium

(1) (2) (3)

Dependent variable Log Short-term Medium-term
size premium premium

Instrumented log city size 0.0203 0.0530
(0.0079)∗∗∗ (0.0143)∗∗∗

Log city size 1900 0.6489
(0.0810)∗∗∗

High-quality land within 25 km of city centre (%) 0.0151
(0.0065)∗∗

Water within 25 km of city centre (%) 0.0059
(0.0029)∗∗

Steep terrain within 25 km of city centre (%) −0.0134
(0.0057)∗∗

Log mean elevation within 25 km of city centre 0.2893
(0.0834)∗∗∗

Roman road rays 25 km from city centre 0.0674
(0.0372)∗

Observations 76 76 76
R2 0.6503 0.1271 0.3726

F-test weak ident. (H0: instruments jointly insignificant) 25.2482 25.2482
P-value LM test (H0: model underidentified) 0.0236 0.0236
P-value J test (H0: instruments uncorr. with error term) 0.3025 0.2051
P-value endog. test (H0: exogeneity of instrumented var.) 0.5757 0.5998

Notes: All regressions include a constant term. Column (1) is the first-stage regression of log city size on a set of
historical population and geographical instruments. Columns (2) and (3) are second-stage regressions of city premia on
instrumented log city size. Coefficients are reported with robust standard errors in parenthesis. ∗∗∗, ∗∗, and ∗ indicate
significance at the 1, 5, and 10% levels. The F-statistic (or Kleinberger–Papp rk Wald statistic) reported on the weak
instruments identification test exceeds all thresholds proposed by Stock and Yogo (2005) for the maximal relative bias
and maximal size.

4.4. Addressing other potential sources of bias

We now report several additional robustness checks we have performed to address other potential
sources of bias in our estimates. One remaining source of concern is the possible existence of an
“Ashenfelter dip” in earnings prior to migration. Ashenfelter (1978) observed that the earnings
of participants in a government training programme often fell immediately before entering the
programme. This pre-programme dip in earnings has been found to arise in multiple contexts and
when it occurs it can lead to an overestimate of the effect of the programme (Heckman and Smith,
1999). Similarly, our estimates of a city size premium could be upwardly biased if earnings tended
to fall immediately prior to workers relocating across cities. To ensure this is not the case, we
add to our specification in column (1) of Table 2 indicator variables for workers who relocate
across cities for each of the eight quarters prior to and after the migration event.31 This allows
us to establish the time pattern of the effect on migrants’ earnings of working in bigger cities
non-parametrically. Figure 6 visualizes these results by showing how the earnings of a worker
who works in Santiago for 5 years and then moves to Madrid change in the 3 years prior to
leaving Santiago and in the 3 years after arriving in Madrid compared to those of a worker with
identical characteristics who remains in Santiago. We can see that there is no indication of an
“Ashenfelter dip” in relative earnings prior to migration and that the evolution of the big city

31. We also include indicator variables for movers in the third year before and after the migration event. We exclude
from the estimation those workers who relocate more than once in 2004–2009.
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Figure 6

Non-parametric pre- and post-migration earnings profile relative to median-sized city

earnings premium for the migrant relative to the stayer follows a similar profile to our benchmark
parametric specifications.

Another potential issue when interpreting our results arises from the importance of migrants
for our estimation. We have already noted that both migrants and stayers contribute to estimating
the values of experience acquired in different cities. However, it is worthwhile checking whether
these values differ between movers and stayers. Furthermore, it could be the case that workers tend
to move across cities only when they face a job opportunity that offers a particularly promising
earnings path at their new destination or when earnings in their current location have followed a
particularly disappointing path. If this type of self-selection into migration is important, migrants
from small to big cities will typically see a steep earnings increase after they move to the big city,
and will tend to bias the estimated big city premium upwards. Migrants from big to small cities
will typically see a relatively flat earnings path prior to leaving the big city, and will tend to bias
the estimated big city premium downwards. Note that even if such opposing biases arise, they
may tend to cancel out since migration flows across cities of different sizes are approximately
balanced in our data. Nevertheless, we would like to assess whether differences like these are
important. To this end, we augment our specification of column (1) of Table 2 to let the values
of experience acquired in different cities vary between stayers, migrants who move into the five
biggest cities and migrants who move out of the five biggest cities. More specifically, we interact
the experience acquired in the top two cities and in cities ranked third to fifth (as well as their
interactions with overall experience) with indicator variables of migrants in both directions.32

Migrants exhibit higher returns to overall experience, which translate into steeper earnings profiles
relative to stayers regardless of their final destination. And yet, what matters for our estimates of

32. Again, we drop migrants who move more than once in the estimation period.
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the dynamic gains from bigger cities is that the estimated additional value of experience acquired
in the two biggest cities or in the third to fifth biggest cities is not statistically different between
stayers, migrants to big cities, or migrants from big cities.

Finally, an important sample restriction involves the period being studied. Our estimates are
based on regressing individual monthly earnings in 2004–2009 on a set of characteristics that
capture the complete prior labour history of each individual. As noted in Section 2, this is because
prior to 2004 we have all job characteristics for the worker but lack earnings from income tax data.
We would like to check that our findings are not specific to the period 2004–2009, since during
the first 4 years of this 6-year period Spain was experiencing an intense housing boom. To this
effect, we repeat our estimations for the preceding 6-year period, 1998–2003.33 Since uncensored
income tax are only available from 2004 onwards, estimations for 1998–2003 rely on earnings
data from social security records corrected for top and bottom coding following a procedure based
on Card et al. (2013).34 We obtain similar elasticities of earnings with respect to city size for the
period 1998–2003 as in our baseline estimates for 2004–2009. The short-term earnings elasticity
of 0.0247 is similar to our estimate of 0.0223 for the period 2004–2009 in column (2) of Table 2,
whereas the medium-term elasticity of 0.0439 is somewhat lower than our estimate of 0.0510 in
column (3) of Table 2. One potential reason for this drop in the medium-term elasticity is that for
older individuals measures of overall experience and city-specific experience are left-censored in
1998–2003, which may reduce the estimated returns to city-specific experience and, hence, the
medium-term earnings premium.35 On the whole, however, our estimated elasticities of earnings
with respect to city size appear to be robust to the period of analysis.

We have also explored removing two other sample restrictions. Our results have focused on
men, given the huge changes experienced by Spain’s female labour force during the period over
which we track labour market experience. Repeating our estimations for women shows that they
have a much lower city size earnings premia than men. In particular, we obtain a medium-term
earnings elasticity with respect to city size of 0.0229 for women, compared with the 0.0510
medium-term elasticity for men in column (3) of Table 2. It is a well-established fact in the labour
literature on gender differences that returns to experience are substantially lower for women,
even when using—as we do—measures of actual experience instead of potential experience
(Blau and Kahn, 2013). Our estimates for women confirm this finding and show that the same
additional experience increases women’s earnings by only about half as much as it increases
men’s. Moreover, the additional value of accumulating that additional experience in Madrid or
Barcelona as opposed to outside the five biggest cities is also only about half as large for women.

33. Ayuso and Restoy (2007) estimate that during 1998–2002 the price-to-rent ratio for Spanish housing was below
its long-run equilibrium. It then shot up markedly above its long-run equilibrium before dropping down again from 2008
onwards.

34. In particular, since we are interested in worker moves across cities while Card et al. (2013) study worker moves
across firms, we treat cities in our procedure as they treat firms in theirs to correct for top and bottom coding. We
run 300 Tobit regressions by groups of age, occupation, and year (five age groups × ten occupations × 6 years) and
include as explanatory variables sets of indicator variables for level of education, temporary contract, part-time contract
and month. Given that our baseline specification incorporates a worker fixed effect, we further include as in Card et al.
(2013) the worker’s mean of log daily wages (excluding the current wage) and the fractions of top or bottom censored
wage observations over his career (again excluding the current censoring status). Moreover, since their specification also
incorporates firm fixed effects, instead of including the annual mean of wages in the firm and firm size as regressors, we
include the annual mean of wages in the city and our measure of city size. Using the coefficients of these Tobit regressions
(including the estimated variance), we proceed to simulate earnings only for capped observations. Further details of the
estimation and simulation procedures and results are available upon request.

35. In order to keep constant the ages of individuals in the estimation samples for 1998–2003 and 2004–2009
(i.e. individuals aged 18–47), we include in the former period individuals who were born between 1957 and 1961 for
whom experience is only available since 1980, typically after several years of having entered the labour force.
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We have also excluded job spells in the public sector, international organizations, and in
education and health services because of their heavily regulated earnings. As expected, including
job spells in these regulated sectors lowers the magnitude of earnings premia (a reduction from
0.0510 to 0.0431 in the elasticity of the medium-term earnings premium with respect to city size).
This implies that the gains from working in big cities are larger in the private sector.

5. THE INTERACTION BETWEEN ABILITY AND THE LEARNING BENEFITS OF
BIGGER CITIES

Following Baker (1997), a large literature emphasizes that there is substantial heterogeneity in
earnings profiles across workers, which has crucial implications for income dynamics and choices
made over the life cycle (see Meghir and Pistaferri, 2011, for a review). In the previous section, we
have shown that an essential part of the advantages associated with bigger cities is that they provide
steeper earnings profiles. Given that both higher individual ability and experience acquired in
bigger cities can increase earnings faster, we now explore whether there are complementarities
between them, i.e. whether more able workers enjoy greater learning advantages from bigger
cities.

A simple approach is to classify workers into different ability types based on observables,
for instance, their educational attainment or occupational skills. We can then interact indicators
for these observable ability types with the differential value of experience in cities of different
sizes. When we try this, the estimation results (not reported) show that the additional value of
experience accumulated in bigger cities is not significantly different across these types, defined
by observable indicators of ability. Given that our dependent variable is log earnings, this implies
that accumulating an extra year of experience in Madrid, for example, instead of in Santiago,
gives rise to the same percentage increase in earnings for workers with a college degree or in the
highest occupational category than for workers with less education or lower occupational skills.
This leads us to shift our attention to a broader definition of skills, using worker fixed effects to
capture unobserved innate ability.

To incorporate our interaction between ability and the learning benefits of bigger cities into
our framework, suppose the log wage of worker i in city c at time t, wict , is given by

wict =σc +μi +
C∑

j=1

(δj +φjμi)eijt +x′
itβ+εict . (11)

In this specification, we allow the value of experience accumulated in a city to differ for individuals
with different levels of unobserved ability. More specifically, relative to equation (1), we allow the
value of experience accumulated in cities of different sizes to have not only a common component
δj, but also an additional component φj that interacts with the worker effect μi. We can estimate
equation (11) recursively. Given a set of worker fixed effects (for instance, those coming from
estimating equation (1) which corresponds to φj =0), we can estimate equation (11) by ordinary
least squares, then obtain a new set of estimates of worker fixed effects as

μ̂i = wict − σ̂c −∑C
j=1δ̂jeijt −x′

it β̂

1+∑C
j=1φ̂jeijt

, (12)

then, given these new worker fixed-effects estimate again equation (11), and so on until
convergence is achieved.36

36. In our empirical estimations, we include non-linear terms that allow the differential value of experience
accumulated in cities of different sizes to vary with the amount of previously acquired experience. The equations in
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Table 4 shows the results of our iterative estimation. Relative to column (1) of Table 2 we
have added interactions between experience and ability (estimated worker fixed effects). The
interactions are statistically significant and large in magnitude.

To get a better sense of the magnitudes implied by the coefficients of Table 4, Figure 7 uses
these to recalculate the earnings profiles of Figure 3 for workers of different ability. The top solid
line depicts the difference in earnings between working in Madrid and working in the median-sized
city, Santiago de Compostela, for a high-ability worker (in the 75th percentile of the estimated
overall worker fixed-effects distribution). The top dashed line repeats the comparison between
Madrid and Santiago for a low-ability worker (in the 25th percentile of the estimated overall
worker fixed-effects distribution). After 10 years, the difference in earnings between working in
Madrid and working in Santiago for the high-ability worker has built up to 39%. For the low-
ability worker, the difference is instead 33%. The difference in earnings between Sevilla and
Santiago after 10 years is 14% for the high-ability worker and 12% for the low ability worker.37

Overall, these results reveal that there is a large role for heterogeneity in the dynamic benefits
of bigger cities. Experience is more valuable when acquired in bigger cities and this differential
value of experience is substantially larger for workers with higher ability.

6. SORTING

Our estimations separately consider the static advantages associated with workers’ current
location, learning by working in bigger cities and spatial sorting. However, we have so far left
sorting mostly in the background. Some of the evidence discussed above suggests that sorting
across cities on unobservables is not very important. Nevertheless, it is possible that there is sorting
on observables. We would also like to provide more direct evidence that sorting on unobservables
is unimportant by comparing the distribution of workers’ ability across cities of different sizes.

The concentration in bigger cities of workers with higher education or higher skills associated
with their occupation has been widely documented for the U.S. (e.g. Berry and Glaeser, 2005;
Bacolod et al., 2009; Moretti, 2012; Davis and Dingel, 2013).Asimilar pattern can be observed in
Spain. In Table 5, we compare the distribution of workers across our five skill categories in cities
of different sizes.38 Very-high-skilled jobs (those requiring at least a bachelors or engineering
degree) account for 10.9% of the total in Madrid and Barcelona, compared with 6.3% in the third
to fifth biggest cities, and with 3.5% in cities below the top five. High-skilled jobs (those typically
requiring at least some college education) also account for a higher share of the total the bigger the
city size class. At the other end, workers employed in medium-low-skilled and low-skilled jobs
are more prevalent the smaller the city size category. These differences are strong evidence of

the text omit the interaction terms with overall experience to simplify the exposition and for consistency with our earlier
discussion.

37. Since reference groups for solid and dashed lines are workers with different levels of ability, the reader should
not interpret the vertical gap between a solid and a dashed line for the same city as the difference in the earnings between
worker types in that city. To obtain such premium, one should further add to the earnings gap the extra value of overall
(as opposed to city-specific) experience attained by high-ability workers. See the interactions between experience (or
experience squared) and the worker fixed effect in column (1) of Table 4.

38. These skill groups are the same we used as controls in our regressions. They are based on categories assigned
by employers to workers in their social security filings and are closely related to the level of formal education required
for the job. For instance, social security category 1 (our “very-high-skilled occupation” category) corresponds to jobs
requiring an engineering or bachelors degree and top managerial jobs. Note that it is the skill required by the job and not
those acquired by the worker that determine the social security category. For instance, someone with a law degree will
have social security category 1 (our “very-high-skilled occupation” category) if working as a lawyer, and social security
category 7 (included in our “medium-low-skilled” category) if working as an office assistant.
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TABLE 4
Estimation of the heterogeneous dynamic and static city size earnings premia

(1) (2) (3)

Log Initial Medium-term
Dependent variable earnings premium premium

(city indicator (initial +
coefficients 7.7 years local
column (1)) experience)

Log city size 0.0243 0.0495
(0.0061)∗∗∗ (0.0108)∗∗∗

City indicators Yes
Worker fixed effects Yes

Experience first to second biggest cities 0.0293
(0.0022)∗∗∗

Experience first to second biggest cities × experience −0.0007
(0.0001)∗∗∗

Experience third to fifth biggest cities 0.0143
(0.0043)∗∗∗

Experience third to fifth biggest cities × experience −0.0006
(0.0003)∗∗

Experience 0.0979
(0.0007)∗∗∗

Experience2 −0.0009
(0.0000)∗∗∗

Experience first to second biggest × worker fixed effect 0.0097
(0.0030)∗∗∗

Experience first to second biggest × experience −0.0001
× worker fixed effect (0.0001)

Experience third to fifth biggest cities 0.0042
× worker fixed effect (0.0045)

Experience third to fifth biggest × experience −0.0001
× worker fixed effect (0.0002)

Experience × worker fixed effect 0.0632
(0.0034)∗∗∗

Experience2× worker fixed effect −0.0021
(0.0001)∗∗∗

Experience first to second biggest −0.0034
× now in five biggest (0.0022)

Experience first to second biggest × experience 0.0001
× now in five biggest (0.0001)

Experience third to fifth biggest × −0.0029
now in five biggest (0.0045)

Experience third to fifth biggest × experience 0.0003
× now in five biggest (0.0003)

Experience outside five biggest × 0.0022
now in five biggest (0.0024)

Experience outside five biggest × experience 0.0000
× now in five biggest (0.0001)

Observations 6,263,446 76 76
R2 0.1228 0.1352 0.3439

Notes: All regressions include a constant term. Column (1) also includes firm tenure and its square, occupation indicators,
month–year indicators, two-digit sector indicators, and contract-type indicators. Coefficients in column (1) are reported
with bootstrapped standard errors in parenthesis which are clustered by worker (achieving convergence of coefficients
and mean squared error of the estimation in each of the 100 bootstrap iterations). Coefficients in columns (2) and (3) are
reported with robust standard errors in parenthesis. ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5, and 10% levels. The
R2 reported in column (1) is within workers. Worker values of experience and tenure are calculated on the basis of actual
days worked and expressed in years. City medium-term premium calculated for workers’ average experience in one city
(7.72 years).
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Figure 7

Earnings profiles relative to median-sized city, high- and low-ability worker

TABLE 5
Comparison of occupational groups across cities of different sizes

Occupational groups (%)

Very-high- High- Medium-high Medium-low Low-
skilled skilled skilled skilled skilled

First to second biggest cities 10.9 13.8 24.2 41.7 9.4
Third to fifth biggest cities 6.3 10.9 21.0 48.2 13.8
Other cities 3.5 7.9 18.4 54.0 16.1

Notes: Employers assign workers into one of ten social security categories which we regroup into five occupational skill
categories. Shares are averages of monthly observations in the sample.

sorting based on observable worker characteristics. Big cities have more engineers, economists,
and lawyers than small cities. However, is it also the case that big cities attract the best within
each of these observable categories? To answer this question, we now compare across cities of
different sizes the distribution of workers’ ability as measured by their estimated fixed effects
from our earnings regressions.

Panel (a) in Figure 8 plots the distribution of worker fixed effects in the five biggest cities
(solid line) and in cities below the top five (dashed line) based on our full earnings specification
with heterogeneous dynamic and static benefits of bigger cities (Table 4, column (1)), which also
controls for occupational skills. Since many workers move across cities, we must take a snapshot
on a specific date in order to assign workers to cities. We assign the fixed effect of each individual
(estimated using their entire history) to the city where he was working in May 2007. We can see
that both distributions look alike (we do a formal comparison below that confirms how close they
are). This suggests that there is little sorting on unobservables: the distribution of workers’ innate
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Figure 8

Comparisons of worker fixed-effects distributions across cities

ability (as measured by their fixed effects), after controlling for our five broad occupational skill
categories, is very similar in big and small cities.

Other recent papers also compare measures of workers’ ability that are not directly observed
across cities of different sizes, and find relevant differences. In particular, Combes et al. (2012b)
study worker fixed effects from wage regressions for France. The key difference with respect to our
comparison in panel (a) of Figure 8 is that their worker fixed effects come from a specification that
does not allow the value of experience to differ across cities of different sizes nor for heterogeneous
effects. To facilitate the comparison between our results and theirs, we now move towards their
specification in two steps.

Panel (b) of Figure 8 repeats the plot of panel (a), but now constrains the dynamic benefits
of bigger cities to be homogenous across workers (worker fixed effects in this panel come from
Table 2, column (1)). While the distributions of worker fixed effects in the five biggest cities
and the corresponding distribution in smaller cities have approximately the same mean, the
distribution in bigger cities exhibits a higher variance. This is the result of forcing experience
acquired in bigger cities to be equally valuable for everyone, so the ability of workers at the top
of the distribution appears larger than it is (this estimation mixes the extra value that big city
experience has for them with their innate ability), while the ability of workers at the bottom of
the distribution appears smaller than it is. Hence, by ignoring the heterogeneity of the dynamic
benefits of bigger cities we can get the erroneous impression that there is greater dispersion of
innate ability in bigger cities.
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Panel (c) leaves out any dynamic benefits of bigger cities and plots worker fixed effects
from a purely static specification. We have seen that a static fixed-effects estimation such as that
of column (3) in Table 1 gives roughly correct estimates of city fixed effects. Nevertheless, it
yields biased estimates of worker fixed effects that incorporate not only time-invariant unobserved
worker characteristics that affect earnings, but also the time-varying effect of experience in bigger
cities and its interaction with time-invariant skills. In particular, estimation of μ on the basis of
equation (6) if wages are determined as in equation (11) results in a biased estimate of μ:

plim μ̂iFE =μi(1+
C∑

j=1

φj ēij)+
C∑

j=1

δj ēij . (13)

If we do not take this bias into account, it could appear from the estimated fixed effects that
workers in bigger cities have higher ability on average even if the distribution of μ in small and
big cities were identical. Estimation based on equation (11) yields instead plim μ̂i =μi.

The comparison in panel (c) corresponds to the same comparison of fixed effects carried out
by Combes et al. (2012b). They find a higher mean and greater dispersion of worker fixed effects
in bigger cities for France, which is also what this panel shows for Spain. The higher mean
and variance for bigger cities is amplified in the distribution of log earnings, plotted in panel
(d). Combes et al. (2012b) carefully acknowledge that their estimated fixed effects capture
“average skills” over a worker’s lifetime. In contrast, panel (a) separates innate ability from
the cumulative effect of the experience acquired in different cities, showing that differences arise
as a result of the greater value of experience acquired in bigger cities, and are further amplified
for more able workers. Restated, it is not that workers who are inherently more able (within each
broad skill category) choose to locate in bigger cities, it is working in bigger cities that eventually
makes them more skilled.

Another recent paper comparing skills across cities of different sizes is Eeckhout et al. (2014).
Instead of measuring skills through worker fixed effects, Eeckhout et al. (2014) use real wages
as a measure of skills. They argue that if workers are freely mobile across cities, then any spatial
differences in utility must correspond to differences in ability. Their comparison resembles that
of panel (b), with similar means and greater variance in bigger cities. In their context, this implies
that workers at the top of the earnings distribution in bigger cities get paid more than necessary
to offset their greater housing costs relative to the workers at the top of the earnings distribution
in smaller cities, which would indicate the former are being compensated for being more skilled.
Workers at the lower end of the distribution in big cities get paid less than necessary to offset their
greater housing costs, which would indicate they are less skilled than their small city counterparts.

Eeckhout et al. (2014) explain greater skill dispersion in bigger cities through what they
call extreme skill complementarity, i.e. workers with the highest skills benefit most from having
workers with the lowest skills in their same city and vice versa. This explanation is very appealing
across different broad observable skill categories. To use one of their examples, a top surgeon or
a top lawyer in New York City, given the value of her time, benefits greatly from the ease to hire
in that city low-skilled services at her job (catering, administrative assistance) and home (child
care, schooling and help in the household).39 At the same time, the argument is harder to make

39. A complementary explanation at the low end of the skill distribution has to do with the differential value by
skill of big city amenities. If a server at a McDonald’s restaurant in New York City does not make sufficiently more than
a server at a McDonald’s in Kansas City to offset the difference in housing costs, it may be not because the server in New
York City is that much worse at her job, but because big city amenities (public transportation, an established network of
earlier immigrants that helps new low-skilled immigrants settle, etc.) make it worthwhile to remain in a big city even if
wages are not that much higher.
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TABLE 6
Comparison of earnings and worker fixed-effects distributions, five biggest versus other cities

Worker fixed-effects estimation Shift Dilation Mean square R2 Obs.
(Â) (D̂) quantile diff.

Worker fixed effects, heterogeneous dynamic 0.0009 1.0854 1.7e-03 0.9738 90,628
and static premium (Table 4, column (1) (0.0026) (0.0090)∗∗∗
Worker fixed effects, homogenous dynamic – 0.0039 1.1633 8.8e-03 0.9974 90,628
and static premium (Table 2, column (1) (0.0071) (0.0078)∗∗∗
Worker fixed effects, static premium 0.1571 1.1670 5.6e-02 0.9908 90,628
(Combes et al., 2012b) (0.0050)∗∗∗ (0.0066)∗∗∗
Log earnings 0.2210 1.2153 0.11 0.9825 90,628

(0.0031)∗∗∗ (0.0073)∗∗∗

Notes: The table applies the methodology of Combes et al. (2012a) to approximate the distribution of worker fixed effects
in the five biggest cities, FB(μi), by taking the distribution of worker fixed effects in smaller cities, FS(μi), shifting it by
an amount A, and dilating it by a factor D. Â and D̂ are estimated to minimize the mean quantile difference between the
actual big city distribution FB(μi) and the shifted and dilated small city distribution FS ((μi −A)/D). M(0,1) is the total
mean quantile difference between FB(μi) and FS(μi). R2 =1−M(Â, D̂)/M(0,1) is the fraction of this difference that can
be explained by shifting and dilating FS(μi). Coefficients are reported with bootstrapped standard errors in parenthesis
(re-estimating worker fixed effects in each of the 100 bootstrap iterations). ∗∗∗, ∗∗, and ∗ indicate significance at the 1, 5,
and 10% levels.

within occupational skill group, which would imply the top surgeon benefiting particularly from
working with a mediocre surgeon. Our results point to a different story within broad skill groups:
the innate ability of surgeons or lawyers in big cities and in smaller places is not that different to
start with, it is working in bigger cities and the experience this provides that makes those working
there better over time on average. Since big city experience not only improves skills but also
benefits most those with higher innate ability, this also creates a greater dispersion of earnings
within occupational group in bigger cities.40

Table 6 performs a formal comparison of the plotted distributions, using the methodology
developed by Combes et al. (2012a) to approximate two distributions. In particular, we
approximate the distribution of worker fixed effects in the five biggest cities, FB(μi), by taking
the distribution of worker fixed effects in smaller cities, FS(μi), shifting it by an amount A,
and dilating it by a factor D. Â and D̂ are estimated to minimize the mean quantile difference
between the actual big city distribution FB(μi) and the shifted and dilated small city distribution
FS ((μi −A)/D).41

The top row compares the distributions of worker fixed effects from our full specification with
heterogeneous dynamic and static benefits of bigger cities (Table 4, column (1). The second row
forces these benefits to be homogenous across workers. The third row constrains the benefits of
bigger cities to be purely static. The bottom row compares log earnings. The table confirms what
was visually apparent from Figure 8.

Starting from the bottom row, earnings are higher on average in bigger cities. The shift
parameter is Â=0.2210, indicating that average earnings are 24.7% (i.e. e0.2210 −1) higher in
the five biggest cities. Earnings are also more dispersed in bigger cities. The dilation parameter
is D̂=1.2153 indicating that the distribution of earnings in the five biggest cities is amplified by
that factor relative to the distribution in smaller cities.

40. Our explanation is consistent with Baum-Snow and Pavan (2013), who point to the importance of differences
in the returns to unobservable skills to explain the higher variance of earnings in bigger cities.

41. Combes et al. (2012a) also allow for truncation of one distribution to approximate the other. We find no
significant truncation when comparing our two distributions, and so in Table 6 we restrict ourselves to shift and dilation.
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Moving one row up, the distribution of worker fixed effects from a static specification also
exhibits a higher mean and greater dispersion in bigger cities. However, the estimated shift and
dilation parameters are smaller than those for earnings, and the distributions are more similar (the
mean squared quantile difference is 5.6e−02 instead of 0.1149). To facilitate the comparison
with Combes et al. (2012b), the only controls included in this specification are the sector of
employment, age, and the square of age. The greater similarity of the resulting worker fixed-effect
distributions than that of the log earnings distributions indicates that sector and age account for
an important fraction of differences in earnings across cities.

The next row up introduces dynamic effects. This brings the distributions even closer (the
mean squared quantile difference is reduced by another order of magnitude). The estimated shift
parameter is not statistically significantly different from zero, indicating both distributions are
centred on the same mean. However, the distribution of worker fixed effects is still more dispersed
in the five biggest cities (D̂=1.1633).

The top row corresponds to our full specification. Once we allow experience in bigger cities to
be more valuable and workers with higher innate ability to take greater advantage of this, worker
fixed effects exhibit very similar distributions in big and small cities (the mean squared quantile
difference is reduced by almost another order of magnitude). The estimated shift parameter is not
statistically significantly different from zero, indicating both distributions have the same mean.
The dilation parameter shows that there is slightly more dispersion in bigger cities. However, the
value is substantially closer to 1 (which would mean no additional dispersion in bigger cities)
than before.42

Several recent studies (Combes et al., 2012b; Baum-Snow and Pavan, 2013; Eeckhout et al.,
2014) emphasize that earnings are higher on average and also exhibit greater dispersion in bigger
cities. Our results in this section indicate this is partly due to the concentration of specific sectors
and occupations in them (controlling for them and other observables takes us from panel (d) to
panel (c) in Figure 8) and partly due to the greater value of experience in bigger cities and the
complementarity between big city experience and individual ability (controlling for them takes us
to panel (a), where the distributions become very similar). Thus, within very broad occupational
skill groups, there appears to be little sorting by innate ability. Instead, workers in bigger cities
attain higher earnings on average precisely thanks to working there, which provides them with
static advantages and also allows them to accumulate more valuable experience. Because more
able workers benefit the most and less able workers the least from working in bigger cities, a
similar distribution of underlying ability translates into greater dispersion of earnings in bigger
cities. In sum, workers in big and small cities are not particularly different in unobservable skills
to start with, it is working in cities of different sizes that makes their earnings diverge.

42. Relative to the Combes et al. (2012b) specification two rows below, the top row of Table 6 makes two changes.
First, it introduces dynamic effects from working in bigger cities and allows them to be heterogeneous across workers.
Secondly, it introduces additional controls for observable characteristics. It is the first of those changes that makes most
of the difference. To confirm this, we have also computed fixed effects removing controls from our full specification
(leaving it as in Table 4, column (1), but without controlling for firm tenure, occupation, sector, nor contract-type). This
results in an estimated shift parameter of Â=0.0117, indicating a difference in means for the fixed-effects distribution of
just 1.2%. This compares with a difference in means of 0.1% for the fixed-effects distributions of our full specification
with controls and a difference in means of 17% for the fixed-effects distributions when we use the Combes et al. (2012b)
specification. The estimated dilation parameter is D̂=1.1039 and the mean squared quantile difference is 3.1e−03. This
confirms that sorting is not very important whether conditional or unconditional on observables, after we take out the
effect of accumulating experience in different cities.
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7. CONCLUSIONS

We have examined three reasons why firms may be willing to pay more to workers in bigger cities.
First, there may be some static advantages associated with bigger cities. Secondly, bigger cities
may allow workers to accumulate more valuable experience. Thirdly, workers who are inherently
more productive may choose to locate in bigger cities. Using a large and rich panel data set for
workers in Spain, we provide a quantitative assessment of the importance of each of these three
mechanisms in generating earnings differentials across cities of different sizes.

We find that there are substantial static and dynamic advantages from working in bigger cities.
The medium-term elasticity of earnings (after 7 years) with respect to city size is close to 0.05.
About one-half of these gains are static and tied to currently working in a bigger city. About
another half accrues over time as workers accumulate more valuable experience in bigger cities.
Furthermore, workers are able to take these dynamic gains with them when they relocate, which
we interpret as evidence that learning in bigger cities is important. Workers with more education
and higher skills are disproportionately present in bigger cities, but within broad skill categories
it is not the case that more able workers sort into bigger cities.

In the process of deriving our results, we also make some methodological progress. We confirm
that estimations of the static city size premium that use worker fixed effects to address sorting,
but ignore the learning advantages of bigger cities, provide an accurate estimate of the purely
static gains. However, besides not capturing learning, they overestimate the importance of sorting
because they mix innate ability with the extra value of big city experience. Once we disentangle
innate ability and the value of accumulated experience, cities of different sizes have quite similar
distributions of unobserved worker ability.

Overall, we conclude that workers in big and small cities are not particularly different in terms
of innate unobserved ability. It is working in cities of different sizes that makes their earnings
diverge. The combination of static gains and learning advantages together with the fact that
higher-ability workers benefit more from bigger cities explain why the distribution of earnings
in bigger cities has higher mean and higher variance.
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