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1 Introduction
How do people arrange themselves when they are free to choose work and

residence locations, when commuting is costly, and when some economic mecha-
nism rewards the concentration of employment? This is the fundamental question
of urban economics. To address it, we must specify the mechanism that rewards
the concentration of employment and how strongly it operates. We consider three
such mechanisms; first nature productivity advantages, local increasing returns to
scale (IRS), and productivity spillovers. We characterize the resulting equilibrium
city in a simple geography populated by agents with heterogenous preferences
over workplace-residence pairs. We find that the equilibrium configuration of the
city and spatial variation in rents and wages are sensitive to these foundations in
surprising ways.

First nature productivity advantages, IRS, and productivity spillovers are all
widely regarded as “agglomeration forces”, i.e., economic mechanisms that lead
to the agglomeration of economic activity. Because first nature advantage confers
an advantage on particular places, and productivity spillovers and returns to scale
confer productivity advantages on agglomerations of employment, it is assumed
that they must lead to such agglomerations. We demonstrate that this relationship
holds only for first nature productivity advantages. The relationship between
IRS, spillovers, and the agglomeration of residence and employment is more
complicated.

Equilibrium requires that profits be zero in all locations. An increase in
returns to scale upsets this equilibrium condition as productivity increases more
rapidly in more densely populated places. An increase in wages or rents in the
more productive place can drive down profits to restore equilibrium. Alterna-
tively, a shift of employment away from the more productive place means that
larger returns to scale operates on locations whose differences in employment
are smaller. This decreases productivity differences across locations and can also
restore equilibrium. That is, in equilibrium IRS can be a force for dispersion,
not for agglomeration. Our results demonstrate that this logic is not purely
hypothetical. It operates in an empirically plausible part of the parameter space.

To understand the effects of productivity spillovers on the agglomeration of
employment, consider an equilibrium in which location A has an advantage in
productivity relative to other locations. In equilibrium, employment concentrates
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and wages and rents are correspondingly higher in location A. As productivity
spillovers increase, production that occurs near location A also benefits from the
higher productivity in A, but without the same high wages and rents. Thus, as
productivity spillovers increase, production disperses from location A. That is,
productivity spillovers can operate as a force for dispersion not agglomeration.
We establish that logic governs equilibrium in the empirically relevant part of the
parameter space when both spillovers and IRS are small.

Our model is organized around agents with heterogenous preferences over
pairs of workplace and residence locations. Although preferences are not usually
regarded as an agglomeration force, we find that preference heterogeneity leads
to an ‘average preference for central employment and residence’. The intuition
behind such average preferences can be seen in a Ricardian or Armington trade
model. When a location must trade with every other location, the central location
has an advantage as the place where average freight costs are lowest. In our
more complicated framework, average preferences for centrality arise because an
average household commutes everywhere with positive probability.

Multiple equilibria are pervasive in our framework when IRS operates. We
consider two notions of stability as possible equilibrium refinements. The first is
an ‘iterative stability condition’ and the second is a novel notion of stability loosely
related to trembling hand perfection. It is well known that a conventional stability
condition must hold in a neighborhood of a fixed point if numerical methods are
to converge to the fixed point.1 We show that this iterative stability condition is
not robust to alternative formulations of the equilibrium conditions with the same
solutions. This implies that fixed-point algorithms cannot generally be relied on
to find all possible equilibria in models with multiple equilibria. We avoid this
problem by solving our model analytically. This, in part, motivates our use of a
highly stylized geography. This problem also motivates our definition of a novel
stability condition. This notion of stability is similar to game theoretic notions of
stability, like trembling hand perfection. It has two important advantages. The
first is conceptual. Like our model, our notion of stability is static. Second, it is
tractable, and we provide an algorithm that allows us to determine whether any
particular equilibrium is stable. This allows us to show that the corner equilibria

1For fixed point algorithms to converge, it is necessary that the Jacobian of the objective have
eigenvalues with absolute value less than one at the fixed point.
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that are pervasive under IRS are unstable, along with any equilibria that are ‘near
enough’ to these corner equilibria.

These results are important for three reasons. First, cities are among the most
important economic phenomena of the modern world. More than half the world’s
population lives in them and this share is rising rapidly. Understanding why cities
are organized as they are is an economic problem of the first order. While there is
an important existing literature on this question, it applies to a subset of the cases
we consider. Existing results impose exogenous restrictions on location choices;
are restricted to cases where the rewards for concentration are ‘small enough’
that multiple equilibria do not arise; restrict attention to technologies where
only spillovers operate; or consider specific numerical examples. In contrast,
we provide a complete characterization of equilibrium in much of the parameter
space and allow productivity spillovers, IRS, and first nature advantage.

Second, there is a large literature investigating the magnitude of ‘agglom-
eration economies’ by estimating how wages vary with employment density.
Our results will suggest that the interpretation of such empirical relationships
is subtle: absent increasing returns to scale, preference heterogeneity leads to a
negative relationship between wages and density; for sufficiently high levels of
increasing returns to scale, the wage premium for density begins to decrease;
productivity spillovers across locations may have opposite effects from increasing
returns to scale. Thus, learning about the foundations of agglomeration, that is,
the foundations of cities, from common research designs may be more difficult
than has previously been understood.

Third, our model has many features in common with models used in the liter-
ature on quantitative spatial models (QSM). Given this, much of the intuition that
governs equilibrium behavior in our model should be relevant to the empirically
based frameworks on which the QSM literature is based. In particular, that IRS
and productivity spillovers have different implications, the presence of an average
preference for central work and residence, and the pervasiveness of multiple
equilibria, should all inform efforts to formulate quantitative spatial models that
strive to represent real economies.
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2 Literature
We can usefully partition the literature into an older urban economics lit-

erature and a more recent literature on QSM. Most papers in classical urban
economics assume that households are homogeneous, or that there are a small
number of types; space is continuous and uniform, whether on a line or in a
plane; and equilibrium cities are symmetric around a single exogenously selected
point. The most influential model in this literature is the monocentric city model.
This workhorse model rests on the assumption that the location of work is fixed
exogenously at the center and households choose only their location of residence,
although the model is otherwise quite general (Fujita, 1989).

The scarcity of papers describing conditions under which technological
spillovers lead to spatial concentration of production testifies to the difficulty
of characterizing equilibrium when both firms and households choose their lo-
cations. The first general statement of this problem appears in a pair of papers,
Ogawa and Fujita (1980) and Fujita and Ogawa (1982). These landmark papers
consider a simple setting where firms choose only their location and households
choose only their places of work and residence, but firm productivity in each
location benefits from spillovers from every location, with distant spillovers less
beneficial than those nearby. The two papers differ in two important ways. First,
productivity spillovers decay linearly with distance in Ogawa and Fujita (1980)
and exponentially in Fujita and Ogawa (1982). Second, Ogawa and Fujita (1980)
provides an analytical description of equilibrium, while Fujita and Ogawa (1982)
provides only numerical results.

Lucas and Rossi-Hansberg (2002) revisit Fujita and Ogawa (1982) with two
main changes. First, they allow firms and households to substitute between con-
sumption and land. Second, they generalize the Fujita and Ogawa’s description
of spillovers in order to decompose it into pure spillovers and global increasing
returns. They establish general existence and uniqueness results, but otherwise
rely on numerical methods. They restrict attention to ‘weak enough’ global
increasing returns and do not consider comparative statics around this parameter
at all. Rather, they develop numerical comparative statics around changes in their
pure spillovers measure. In a related work, Berliant et al. (2002) consider a city
where the technology is a Cobb-Douglas function of land, labor and capital and
spillovers depend on the average capital investment multiplied and a proxy for

4



the spatial distribution of firms. They show that a monocentric city emerges
under conditions similar to those in Ogawa and Fujita (1980) and Lucas and
Rossi-Hansberg (2002).

These papers differ in the details of how they describe productivity spillovers,
but all lead to the same basic conclusion. Productivity spillovers create an ag-
glomeration force and land scarcity acts as a dispersion force. As the magnitude
of spillovers increases relative to the cost of commuting, a monocentric city
eventually emerges as the equilibrium outcome.

We extend this literature in three main ways. First, the classical urban eco-
nomics literature considers only productivity spillovers, not IRS or first nature
advantages. Second, we provide a more complete characterization of equilib-
rium. Third, we consider heterogeneous agents. Because our specification of
heterogeneity nests ‘no heterogeneity’ as a limit case, this is a strict generalization
of this older literature.

Quantitative spatial models (QSM) have recently been brought to bear on
problems of urban economics (see Redding and Rossi-Hansberg (2017) for a
survey). In this literature, cities consist of discrete sets of locations rather than
continuous spaces, and are described by realistic rather than stylized geographies.
In addition, this literature considers heterogenous households rather than the ho-
mogeneous agents of classical urban economics. Finally, where the older literature
tends to focus on analytic solutions and qualitative results, QSM focuses on the
numerical evaluation of particular comparative statics in models that describe
particular real world locations.

The QSM literature draws on a long history of scholarship on discrete choice
models. Space is discrete and is described by a matrix of pairwise commuting
costs. These matrices are typically constructed to describe commuting costs be-
tween pairs of neighborhoods in the empirical application of interest. Households
have heterogenous preferences over work-residence pairs and each household
selects a unique pair. Locations are heterogenous in their amenities and produc-
tivity, and the possibility of endogenous agglomeration economies is sometimes
considered. These features all appear in our model.

In an important series of papers, Allen and Arkolakis (with coauthors) study
the existence and uniqueness of equilibrium in spatial models similar to ours.
Briefly, Allen and Arkolakis (2014) considers a model with a reduced form de-
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scription of the land market. There is no land market in the model by Allen,
Arkolakis and Takahashi (2020). Allen, Arkolakis and Li (2020) set the shares
of residential and commercial land in each neighborhood exogenously. Allen,
Arkolakis and Li (2015) is difficult to compare to our model because they “con-
sider a general firm technology (e.g. it could be constant or decreasing returns to
scale)” (p.4), which seems to rule out IRS (see their equation (10)). While some
of the Arkolakis and Allen results can probably be adapted to our setting, we do
not investigate this possibility because our existence proof is straightforward and
because our focus is on a characterization of multiple equilibria, an issue that the
Arkolakis and Allen theorems do not address.

We contribute to this second literature in a number of ways. First, we provide
a complete characterization of equilibrium throughout much of the parameter
space. The existing literature restricts attention to parts of the parameter space
where equilibrium is unique.2 We characterize equilibrium for arbitrary levels of
IRS. Second, we provide a number of new results. We establish the pervasive and
surprising existence of corner equilibria. We establish that IRS can sometimes act
to disperse employment rather than concentrate it. We establish that, in parts of
the parameter space, increases in spillovers and IRS have opposite effects on the
equilibrium configuration of employment. Finally, we establish that heterogeneity
of preferences over workplace-residence location pairs gives rise to an average
preference for central work and residence.

3 Model, equilibrium, and solution method
A Model

A city consists of three locations i,j = −1,0,1. Each location is endowed
with one unit of land. This geography is the simplest with which to examine
when activities concentrate in a land scarce center or disperse to a land abundant
periphery. Simultaneously, it is also rich enough to exhibit novel and surprising
behavior, and to refine our intuition about how economic forces operate to form
equilibrium cities. As is always the case with models that have a small number
of locations (e.g., Krugman (1991) or most trade models), our setting precludes
immediate empirical application, and may rule out yet more complex phenomena.

2Allen and Donaldson (2022) is a partial exception that also studies parts of the parameter
space ‘close’ to the region where equilibria are unique.
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Against this, our approach has the advantages of tractability and transparency,
and much of the intuition that we derive appears to be general.

The city is populated by a continuum [0,1] of households and by a competitive
production sector whose size is endogenous. All households choose a residence
i, a workplace j, their consumption of housing, and a tradable numeraire good.
Households have heterogenous preferences over workplace-residence pairs, and
household types parameterize preferences. Each household ν ∈ [0,1] has a
type z(ν) ≡ (zij(ν)) ∈ R3×3

+ , a vector of non-negative real numbers, one for
each possible workplace-residence pair ij. The mapping z(ν) : [0,1] → R3×3

+ is
such that the distribution of types is the product measure of 9 identical Fréchet
distributions:

F (z) ≡ exp

(
−∑

i
∑
j

z
−ε
ij

)
. (1)

Thus, ε ∈ (0,∞) describes the heterogeneity of preferences. An increase in ε

reduces preference heterogeneity and conversely.
Households commute between workplace and residence. Commuting from i

to j involves an iceberg cost τij ≥ 1. This cost is the same for all households and
τij = 1 if and only if i = j. Commuting costs affect household utility directly.3

A household that lives at i and works at j has an indirect utility

Vij(ν) = zij(ν)BiDj
Wj

τijR
β
i

, (2)

where Wj is the wage paid at location j and Ri the land rent at i. In this
expression, Bi stands for exogenous residential amenities at location i and Dj

for exogenous amenities at the workplace j. Wages are the only source of income
because land rent accrues to absentee landlords and constant returns to scale
production guarantees that equilibrium profits are zero.

Using (1) – (2), the share sij of households who choose the location pair ij
equals

sij =

[
BiDjWj/

(
τijR

β
i

)]ε
∑r ∑s

[
BrDsWs/

(
τrsR

β
r

)]ε , (3)

3These preferences are widely used in quantitative models, e.g., Ahlfeldt et al. (2015), Monte et
al. (2018) and Heblich et al. (2020) to mention a few.
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where the equality stems from the Fréchet distribution assumption. All choices
are simultaneous.

Equations (1) – (2) are well-known from the literature and apply to any
geography. We now turn to the specific features of the linear city.

First, the iceberg commuting cost matrix is τ−1,−1 τ−1,0 τ−1,1

τ0,−1 τ0,0 τ0,1

τ1,−1 τ1,0 τ1,1

 =

 1 τ τ2

τ 1 τ

τ2 τ 1

 , (4)

where τ > 1.
Second, the simple structure of the commuting cost matrix (4) facilitates

introducing a measure of spatial frictions which encapsulates both the commuting
cost τ and preference heterogeneity ε, i.e., the spatial discount factor defined by

ϕ ≡ τ−ε. (5)

The spatial discount factor ϕ ∈ (0,1) decreases with the level of commuting
costs (τ ↑) and increases with the heterogeneity of the population (ε ↓). Hence,
ϕ may be high because either commuting costs are low, or the population is very
heterogeneous, or both. It is easy to see that ϕ → 1 when τ → 1 or ε → 0, while
ϕ → 0 when τ → ∞ or ε → ∞. This last relationship is of particular interest.
When ε → ∞ the heterogeneity of preferences disappears, so examining behavior
as we approach this limit allows us to examine the implications of removing
preference heterogeneity from the model.

Third, define a spatial pattern X = (X−1,X0,X1) as a triple that specifies
the values of variable X at each location i. Given our geography and to ease
comparison with the urban economics literature, we focus on symmetric spatial
patterns where X1 = X−1. We use lower case letters to indicate ratios of central
to peripheral values in any given symmetric pattern, e.g., b = B0/B1, d = D0/D1,
w = W0/W1, r = R0/R1.

Finally, define
ρ ≡

(
br−β

)ε
, ω ≡ (dw)ϵ. (6)

Recalling that b is the relative residential amenity and d the relative workplace
amenity, ω is the amenity-adjusted relative wage and ρ the inverse amenity-adjusted
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relative rent. In the interests of brevity, we will generally refer to ρ as the amenity-
adjusted relative rent. When context precludes confusion with r and w, we will also
refer to ρ and ω simply as relative rents and wages.

Using symmetry and (4) – (6), the commuting flows (3) can be restated as

 s11 s10 s1−1

s01 s00 s0−1

s−11 s−10 s−1−1

 =
1

ρω+ 2ϕ(ρ+ ω) + 2(1 + ϕ2)

 1 ϕω ϕ2

ϕρ ρω ϕρ

ϕ2 ϕω 1

 . (7)

The appeal of equation (7) is that ρ and ω uniquely determine the commuting
flows through very simple algebraic expressions.

Let Mi and Lj be the mass of residents and workers at i,j = 0,1:

M0 = s00 + 2s01, M1 = s10 + (1 + ϕ2)s11,

L0 = s00 + 2s10, L1 = s01 + (1 + ϕ2)s11.
(8)

Equations (7) – (8) imply labor market clearing and population balance:

L0 + 2L1 = M0 + 2M1 = 1.

Let Hi be the amount of residential land and Ni the amount of commercial
land at location i. Because each location i is endowed with one unit of land, land
market4 clearing also requires

Hi +Ni = 1. (9)

Assume that the numeraire is produced under perfect competition and the
production functions at locations j = 0,1 are, respectively,

Y0 = A0L
α
0N

1−α
0 , Y1 = A1L

α
1N

1−α
1 , (10)

where Aj is location-specific TFP and 0 < α < 1. In line with the literature,
we assume that increasing returns are localized while spillovers obey a negative
exponential function across locations,

A0 = C0L
γ
0 + 2δL1, A1 = C1L

γ
1 + δL0 + δ2L1. (11)

4To allow for corner equilibria, this condition should be written as (Hi +Ni − 1)Ri = 0.
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Recalling our convention of denoting centrality ratios with lower case letters,
we have m = M0/M1, ℓ = L0/L1, h = H0/H1, n = N0/N1, a = A0/A1, and
c = C0/C1. These are the ratios of central to peripheral quantities of residents,
employment, residential land, commercial land, TFP, and first nature productivity.

Cost minimization implies that the relative demands for production factors
are given by

Wj

Rj
=

α

1 − α

Nj
Lj

. (12)

Dividing the relative demand at i = 0 by the relative demand at i = 1, we get:

r

w
=

ℓ

n
. (13)

To satisfy the zero profit condition, unit cost must equal the price of the
numeraire, i.e.,

1
Ai

(
Wi

α

)α ( Ri
1 − α

)1−α
= 1. (14)

Dividing (14) at i = 0 by the corresponding condition at i = 1 yields

wαr1−α

a(ℓ)
= 1, (15)

where a(ℓ) is the ratio of central and peripheral TFP,

a(ℓ) ≡ A0

A1
=

C0
(

ℓ
ℓ+2

)γ
+ 2δ

ℓ+2

C1

(
1
ℓ+2

)γ
+ δ ℓ+δℓ+2

. (16)

The expressions for TFP in (11) and relative TFP in (16) allow a parametric
description of the three economic forces conventionally regarded as foundations
for agglomerations of economic activity; first nature technical advantage, local
increasing returns to scale, and spillovers. When γ = δ = 0 and c ̸= 1, then
the center and periphery have different first nature advantages, but production is
CRS and there are no spillovers. When δ = 0, c = 1 and γ > 0, we have local
IRS, but no spillovers. Finally, when γ = 0 , c = 1 and δ > 0, then spillovers
affect productivity, but there is no local IRS or first nature advantage. Therefore,
this description of TFP permits an investigation of how the organization of a city
changes with the intensity and the mechanism that rewards the concentration of
employment.
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The expressions for TFP in (11) and relative TFP in (16) also describe the
particular productivity processes on which much of the urban economics liter-
ature is based as special cases. For example, once we set δ = 0, Ciccone and
Hall (1996), Duranton and Puga (2004) and Allen and Arkolakis (2014) specify
location-specific returns to scale just as in equation (16). On the other hand, if
we set IRS to zero and adjust for our discrete geography, our definition of TFP
mirrors Fujita and Ogawa (1982). In Fujita and Ogawa (1982), TFP at a location x

in a linear city is given by

TFP (x) =
∫ ∞

−∞
L(y)e−σ|x−y|dy, (17)

To see the correspondence between (17) and (11), let one unit of employment at
one unit distance from x contribute δ = e−σ to TFP, and at two units of distance,
contributes δ2 = e−2σ.5 Notice that this suggests δ = 1 as the upper bound of δ.

B Equilibrium
We can now define a spatial equilibrium,

Definition 1 A spatial equilibrium is a vector of spatial patterns for real quantities
and prices such that: (i) all households make utility-maximizing choices of workplace,
residence, housing, and consumption; (ii) the production sector minimizes cost in all
locations; (iii) production sector makes zero profit in all locations; and (iv) all markets at
each location clear.

We now turn to a characterization of equilibrium. To begin, define

η ≡ αβ

1 − α
> 0, (18)

ψ ≡ (1 − α)(1 + ε)

αβε
=

1 + ε

ηε
. (19)

Proposition 1 shows that in equilibrium, employment, commercial land, and
residential land patterns can all be expressed in terms of just ρ and ω.

5Lucas and Rossi-Hansberg (2002) and Ahlfeldt et al. (2015) use two very similar but slightly
different versions of (17). This complicates comparisons of results.
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Figure 1: Graphical demonstration of equilibrium for a range of parameter values.

(7) ρ0 < ρL and γ < γm (b) ρ0 < ρL and γ > γm

ω
1+ε
ε ω

1+ε
ε

ρ ρ

(c) ρ0 > ρL and γ < γm (d) ρ0 > ρL and γ > γm

ω
1+ε
ε ω

1+ε
ε

ρ ρ

Notes: These figures illustrate equilibrium in twelve different cases. In all panels, f is
given by the red line. The blue lines describe g. In the left two panels, darker colors of
blue indicate smaller values of γ and in the right two panels darker colors of blue indicate
larger values of γ.
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Proposition 1 Spatial equilibrium is uniquely determined by ρ and ω. In particular,

L0 =
ω(ρ+ 2ϕ)

ω(ρ+ 2ϕ) + 2(ϕρ+ 1 + ϕ2)
, L1 =

1 − L0

2
(20)

N0 =
ρ+ 2ϕ

ρ+ 2ϕ+ ηρ
(

1 + 2dϕω− 1+ε
ε

) , N1 =
1 + ϕρ+ ϕ2

1 + ϕρ+ ϕ2 + η

(
ϕω

1+ε
ε

d + 1 + ϕ2
)
(21)

H0 = 1 −N0, H1 = 1 −N1. (22)

Proof: See Appendix A.
This proposition requires four comments. First, although Proposition 1 re-

stricts attention to variables required for later derivations, all endogenous quan-
tities in the economy can written in terms of ρ and ω. Second, the proof of
Proposition 1 shows that the expressions for L (20) follow immediately from
utility maximization, while the expressions for H and N , (21) and (22), also
require market clearing. Third, the labor supply ratio, ℓ, will play an important
role in our analysis. Using Proposition 1, this ratio may be written

ℓ(ρ,ω) ≡ L0

L1
= ω

ρ+ 2ϕ
ϕρ+ 1 + ϕ2 . (23)

Finally, and as expected, equilibrium labor supply at the central location increases
with the relative wage, w and decreases with the relative land rent, r. It follows
immediately from the definition of ℓ(ρ,ω) that the heterogeneity parameter ε is
the elasticity of the labor supply ratio with respect to the wage ratio w.

C Solution method
We can use Proposition 1 to write the cost minimization and zero profit

conditions (13) and (15) in terms of ρ and ω. Loosely, if we solve the two
resulting equations for ω and equate them, we are left with a single equation
in ρ that is sufficient to determine the interior equilibria. Proposition 2 provides
the foundation for stating this result precisely.

Proposition 2 Assume γ ̸= γm ≡ α/ε. Then, a pair (ρ∗,ω∗) is an interior equilibrium
if and only if it solves the two equations:

ω
1+ε
ε = f(ρ) ≡ d

ϕb
1
β ρ− 2ηϕρ1+ 1

βε + (1 + ϕ2)(1 + η)b
1
β

(1 + η)ρ1+ 1
βε + 2ϕρ

1
βε − ηϕb

1
β

, (24)

13



ω
1+ε
ε =

 g(ρ; γ) ≡ Φ
1

α−γερ
αψ
α−γε

(
ρ+2ϕ

ϕρ+1+ϕ2

) γε
α−γε

1+ε
ε when δ = 0,[

1
Ψ a(ℓ(ρ,ω))

] 1+ε
α
ρψ when δ > 0,

(25)

where Φ ≡ cεψηdαεψηb−αεψ and Ψ ≡ b
α
η d−α.

Proof: See in Appendix B.
Equations (24) and (25) are complicated, but the intuition behind them is

simple. The expression for f results from substituting L and N from Proposition
1 into equation (13). Equation (13) follows directly from cost minimization. The
expression for L in Proposition 1 follows immediately from utility maximization,
while the expressions for N0, and N1, (21) and (22), also require market clearing.
Thus, f describes a locus of amenity adjusted relative prices, (ρ,ω), satisfying cost
minimization, utility maximization, and land market clearing. Simplifying, we
call f the market-clearing locus. Note that because f does not require the zero
profit condition to hold, parameters that affect productivity directly, c, δ, and γ,
do not appear in equation (24).

The expression for g, or more generally, equation (25), results from substi-
tuting (23) into (15). Equation (15) follows from cost minimization and the zero
profit condition, and (23) directly from utility maximization. Thus, g describes
a locus of relative prices satisfying cost minimization, utility maximization, and
zero profits (but not land market clearing). Simplifying, we call g the zero-profit
locus.

Recalling the definition of a spatial equilibrium, a pair of amenity adjusted
relative prices (ρ,ω) that lies on the market clearing and zero profit curves is
an equilibrium. When δ = 0 and there are no productivity spillovers we can
equate (24) and (25) to arrive at a single equation in ρ that determines the interior
equilibria. In this case, we study the equilibrium behavior of our discrete linear
city by studying the solution(s) of the equation,

f(ρ) = g(ρ; γ). (26)

We show the existence of an interior equilibrium by showing that (26) has an
interior solution. We determine the number of possible interior equilibria by
determining the number of interior solutions of (26).

We cannot apply this solution method when δ > 0. In this case, the left
hand side of (25) is transcendental and no closed form expression for ω exists.

14



The remainder of the section considers the case when δ = 0. We postpone our
treatment of the case when δ > 0 to section 6. Note that when γ = γm, g is
discontinuous, and so this case requires special attention.

Lemma 1 in Appendix C establishes that, as shown by the red line in all panels
of figure 1, the market clearing locus, f(ρ), is a positive, continuous function that
declines monotonically from a positive asymptote at ρm, to zero at ρM . To develop
intuition about market clearing locus, consider an increase in ω that reflects an
increase in the central wage W0. As W0 increases, cost minimizing central firms
substitute away from central labor towards land and utility maximizing central
households spend more on residential land. If the central land market is to clear,
R0 must increase and, therefore, ρ decrease. This gives the required negative
relationship between ω and ρ along f . Mechanically, ω goes to zero or infinity
as W0 or W1 approaches zero. Lemma 1 also shows that ρm and ρM are the
corresponding corner values of ρ along f . It follows that the relationship between
ρ and ω must be negative along f for ρ between ρm and ρM , and that values of ρ
outside this interval imply economically irrelevant negative wages.

The left two panels of figure 1, (7) and (c), describe g for three different values
of γ < γm, with dark blue the smallest, light blue the largest, medium blue in
between. The right two panels, (b) and (d), are the same as the left, but consider
γ > γm. Here, the light blue line traces g for the smallest value of γ, dark blue
uses the largest value, medium blue is intermediate value, and all three are greater
than γm. In all panels, the light blue line describes g for a value of γ that is close
to the singularity γm and darker colors are progressively further away.

Lemma 2 in Appendix D establishes three properties of g. For γ < γm, g is an
increasing function that converges to an increasing step function as γ approaches
γm from below. For γ > γm, g is a decreasing function that converges to a
decreasing step function as γ approaches γm from above. Finally, the unique
value of ρ at which the step occurs, ρL, is strictly between zero and one.

Our intuition about the behavior of the zero profit locus is based on the
observation that as γ increases, there are three quantities that can adjust to
preserve the zero profit condition given in (14), wages, rents, and employment
(because Ai = Lγi ). For small values of γ, we can ignore changes in Ai when we
think about how the zero profit locus behaves.6 When wages go up in a location,

6When 0 < Li < 1, for γ small, Li is close to one unless Li is close to zero.
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preserving the zero profit condition requires that rent must decline. This gives
us a negative relationship between w and r, and thus, the positive relationship
between ω and ρ that we see in the two left panels of figure 1.

As γ increases beyond γm, Ai becomes more sensitive to changes in γ, partly
because Lγi becomes more sensitive to small adjustments in employment.7 As a
consequence, increases in γ lead mechanically to changes in the wage, and still
larger changes of the same sign in Ai. Preserving the zero profit condition now
requires that wages and rents must move in the same direction. Thus, we have a
positive relationship between w and r, or the negative relationship between ω and
ρ that we see in the right two panels of figure 2.

The singularity in g that arises when γ = γm and ρ = ρL arises as employment
concentrates entirely in the center or periphery (on the zero profit locus). In this
case, the relative zero profit condition (26) becomes invariant to changes in relative
wages and thus creates the step in g.

Figure 1 permits a graphical solution of equation (26), and hence a description
of equilibrium for the particular examples illustrated in the figure. This figure
suggests two main conclusions about equilibrium changes when returns to scale
increase. First, when γ < γm, the market clearing and zero profit loci, f and
g, cross exactly once for a positive value ρ, so a unique, interior equilibrium
generally exists. Second, when γ > γm, f and g may cross more than once.
Thus, γm ≡ α/ε is a threshold value of γ, below which there is a unique interior
equilibrium, and above which multiple interior equilibria may occur.

Lemmas 1 and 2 in Appendix guarantee that the location of the step in g lies
to the left of the zero of f , that is, that ρL < ρM . However,the step in g can lie
above the asymptote of f , as in the top two panels of figure 1, or below, as in the
bottom two panels. That is, ρL can be larger or smaller than ρm. The top two
panels of figure 1, (7) and (b), describe the case when the asymptote of f lies to
the left of the step in g, i.e., ρm < ρL, while the bottom two panels, (c) and (d),
describe the opposite case.

Lemma 3 in Appendix E provides necessary and sufficient conditions for
ρL > ρm. Informally, lemma 3, establishes that we have ρm < ρL if commuting
costs are high or the demand for commercial land is sufficiently large relative

7Barring corner outcomes, Li is strictly between zero and one. As a result, Lγ
i is decreasing in

γ and ∂Lγ
i /∂Li is increasing in γ.
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to the demand for residential land. Conversely, if commuting costs are low and
the demand for commercial land is low, then ρm > ρL. We will see below that
equilibrium depends importantly on which condition holds.

4 Constant returns to scale
To begin, we consider a benchmark case when production is constant returns

to scale, and there are no spillovers or first nature advantages. The following
proposition characterizes the unique spatial equilibrium.

Proposition 3 Suppose γ = δ = 0 and b = c = d = 1. Then, there exists a unique
equilibrium. The equilibrium has the following properties: (i) the equilibrium is interior;
(ii) 0 < ω∗, ρ∗ < 1; (iii) if ψ > 1, then ℓ∗ > 1, i.e., the equilibrium employment pattern
is bell-shaped; (iv) as ε → ∞ the equilibrium becomes flat.

Proof: See Appendix F.
Recalling the definitions of ρ and ω, 0 < ρ∗ < 1 and 0 < ω∗ < 1 mean

that equilibrium land rent is higher in the center and the wage lower. This is
surprising. Even without first nature advantages, spillovers, or returns to scale,
equilibrium agglomeration still occurs.8

To understand why this occurs, consider the problem of a household faced
with a choice of location and residence when wages and rents are the same in all
locations. If we let V = W/Rβ , then using (2), such a household’s discrete choice
problem is

max
ij


z−1,−1V , z−1,0

τ V , z−1,1
τ2 V

z0,−1
τ V , z0,0V , z0,1

τ V
z1,−1
τ2 V , z1,0

τ V , z1,1V

 .

This is the standard way of stating a discrete choice problem, except that we
arrange the nine choices in a matrix so that the row choice corresponds to a
choice of residence and choice of column to a choice workplace.

Suppose we restrict households to all choose a central residence. Because the
distribution of idiosyncratic tastes is identical for all location pairs, the average

8Proposition 3 seems to contradict Starrett’s (1978) result that states that in a homogeneous
space each location is an autarky at any competitive equilibrium. Recall here that Starrett assumes
a finite number of agents. Here, we work with a continuum of agents and the theorem does not
apply.
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payoff for a household at a central residence is

E
(

max
{z0,−1

τ
V , z0,0V ,

z0,1

τ
V
})

= Γ

(
ε− 1
ε

)(
1 +

2
τ ε

)1/ε

V . (27)

If, instead, we restrict households to choose a peripheral residence, then

E
(

max
{
z−1,−1V ,

z−1,0

τ
V ,

z−1,1

τ2 V
})

= Γ

(
ε− 1
ε

)(
1 +

1
τ ε

+
1
τ2ε

)1/ε

V . (28)

Because τ > 1, it follows that the average payoff for a household in a pe-
ripheral residence is less than an average household in a central residence. By
symmetry, exactly the same logic applies to the choice of employment. This
occurs despite the fact that wages and rents are the same in all locations. In
this sense, this discrete choice problem creates an average preference for residence
and employment in the central location. Proposition 3 tells us that in equilibrium,
these preferences are capitalized into lower central wages and higher central rents.
While our model is simple, this phenomena appears to be general. If we exclude
empirically uninteresting geographies like circles, most remaining location sets
have a center in the sense of this example.

Against the two centralizing forces of average preferences are set two centrifu-
gal forces. There is twice as much land in the periphery as the center. Because
land contributes to utility and productivity, the scarcity of central land incen-
tivizes the movement of employment and residence to the periphery. Whether
the center ends up relatively specialized in residence or employment depends on
which of the two activities has the highest demand for land, and this activity will
locate disproportionately in the land abundant periphery.

Proposition 3 makes this intuition precise. Agglomeration of production
occurs at the center when ψ > 1 holds. Using the definition of ψ (19) we have

αβ

1 − α
<

1 + ε

ε
.

Recalling that α is the labor share in production and β the land share of con-
sumption, we see that αβ is the share of every dollar of firm revenue used for
residential land. Thus the left hand side of this expression is the ratio of the
indirect demand for residential land in production to the demand for land in
production. As this ratio increases, the importance residential of land increases
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relative to commercial land, and we expect to see residential activity concentrated
in the periphery where land is abundant and production in the center where it is
scarce. This is precisely what Proposition 3 says.

It is tempting to think that the average preference for central work and resi-
dence is a response to commuting costs. This is not correct. From Proposition 3,
when ε → ∞ and preferences become homogeneous, we approach a perfectly flat
equilibrium for any τ . Inspection of (27) and (28) shows why this occurs. When
ε → ∞, (27) and (28) are identical. Commuting costs alone are not sufficient to
create an average preference for central work or residence.9

Proposition 3 describes equilibrium in the limit as dispersion in household
preferences disappears. We have also investigated the case when households are
exactly homogeneous. In this case, a perfectly flat world is always an equilibrium,
but surprising other equilibria can also arise if transportation costs are not too
low.10 Together with the discussion above, this demonstrates the sensitivity of
equilibrium to preference heterogeneity. This, in turn invites questions about
the extent to which equilibrium depends on the exact form and distribution of
preference heterogeneity. While these questions are beyond the scope of this
research, it is an important area for future research.

5 First nature
We now turn attention to conventional sources of agglomeration. We begin

with an examination of first nature productivity advantages. To isolate the role
of first nature productivity advantages, we consider the case when production is
constant returns to scale, γ = 0, and there are no spillovers, δ = 0, although we
impose no restrictions on residential and workplace amenities.

The following proposition characterizes the corresponding unique spatial
equilibrium.

Proposition 4 Suppose γ = δ = 0. Then, there exists a unique equilibrium; this
equilibrium is interior. The equilibrium labor pattern becomes more concentrated as c

9It also follows from (27) and (28) that the average payoff of the choice of central versus
peripheral workplace converge toward each other when τ goes to either 1 or ∞. In other words,
extreme values of commuting costs foster convergence to a flat equilibrium, very much like high
or low trade costs lead to dispersion in new economic geography models with heterogeneous
consumers (Tabuchi and Thisse, 2002; Behrens and Robert-Nicoud, 2015).

10Proofs available from the authors on request.
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increases. There exists a threshold level c > 0 such that the equilibrium labor pattern
is: (i) (1/2, 0,1/2) when c ↘ 0; (ii) U-shaped, (L1,L0,L1) with 0 < L0 < L1, when
0 < c < c; (iii) flat (1/3, 1/3, 1/3) when c = c; (iv) bell-shaped, (L1,L0,L1) with
L0 > L1 > 0, when c < c < ∞; (v) (0,1,0) when c ↗ ∞.

Proof: See Appendix G.
Although we make no assumption about the values of b and d, the threshold

value c depends on these parameters.
Proposition 4 shows that any symmetric employment pattern may be sus-

tained as a spatial equilibrium for some value of c, and that employment concen-
trates where first nature productivity is greatest. This seems unsurprising, but
requires two comments. First, Proposition 4 describes the relationship between
first nature productivity and equilibrium employment patterns. It is silent about
the residential pattern and commuting behavior. We conjecture that choosing b

and d in addition to c would also identify these other endogenous quantities. Sec-
ond, Proposition 4 resembles Proposition 2 in Ahlfeldt et al. (2015). However, our
result slightly extends the Ahlfeldt et al. result by mapping out the relationship
between first nature advantages and equilibrium outcomes.

6 Spillovers and increasing returns
We now consider a city where, in addition to arbitrary first nature advantages,

increasing returns or to scale or productivity spillovers operate at low levels. More
precisely, we compare the impact of local increasing returns and technological
spillovers in the vicinity of γ = 0 and δ = 0 for arbitrary first nature productivity
advantages. In doing so, we restrict attention to empirically relevant values of the
two parameters.11

Proposition 5 Consider an economy with arbitrary first nature productivity. Then,

(i) There exists a unique threshold ĉ > 0 such that increasing γ slightly above 0
increases central employment if c > ĉ. When c < ĉ, increasing γ slightly above
0 increases peripheral employment.

11Estimates of agglomeration economies suggest that IRS and spillover effects, γ and δ, are
much less than one (Rosenthal and Strange, 2020).
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(ii) There exists a unique threshold c̃ > 0 such that increasing δ slightly above 0
increases central employment if c < c̃. When c > c̃, increasing δ slightly above
0 increases peripheral employment.

Proof: See Appendix H.
The first part of the proposition is expected. Increasing returns magnify the

initial first-nature productive advantage of a location. Increasing γ raises the
relative TFP a(γ) if and only if the equilibrium under constant returns is such
that ℓ > 1. Thus, if first nature concentrates employment in the center, IRS
increases this concentration. Furthermore, when c > ĉ, the greater the relative
initial advantage is, the greater is the impact of increasing returns.

The second part of Proposition 5 is more surprising. If first nature advantage
leads to sufficiently high central employment, then spillovers encourage periph-
eral employment because the productivity gains generated by the center are large.
Conversely, if first nature advantages sufficiently high peripheral employment,
then spillovers increase central employment. The intuition behind this result
is clear. If first nature advantage leads to the concentration of employment in
either the center or the periphery, then spillovers allow firms to benefit from this
concentration of employment without competing for space in the most productive
location.

Summarizing, we have (1) if c < min {c̃,c} or c > max {c̃, ĉ}, changes to
increasing returns and spillovers have opposite effects on the employment dis-
tribution, and (2) if c ∈ (min {c̃, ĉ} , max {c̃, ĉ}), changes to increasing returns and
spillovers have similar effects on the employment distribution. That is, we expect
qualitatively similar comparative statics for IRS and spillovers if and only if first
nature advantages do not strongly favor the center or the periphery.

Proposition 5 establishes that conflating ‘IRS’ and ‘spillovers’ as ‘agglomera-
tion forces’ is wrong on two counts. First, IRS and spillovers are distinct economic
forces which may have different effects on an equilibrium city. Second, spillovers
need not act as an agglomeration force at all.

Note that Proposition 5 does not contradict the conclusion in, e.g., Fujita and
Ogawa (1982), that productivity spillovers can lead to an equilibrium where em-
ployment is concentrated in a central disk center and commuting workers reside
in the peripheral ring. Such results arise in the absence of first nature advantages
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Figure 2: Equilibrium correspondence between ρ and γ.
ρ0 < ρL ρL < ρ0

m s m s
=

Notes: In both panels the x-axis is γ and the y-axis is ln ρ. The left panel illustrates all
interior equilibria as γ varies when ρ0 < ρL. The right panel shows the case where
ρL < ρ0. Solid lines indicate stable equilibria and dashed lines indicate unstable
equilibria, where stability is defined as in Section 8.

when spillovers are sufficiently large. In contrast, Proposition 5 requires the
presence of first nature advantages and that spillovers be sufficiently small.

Because of the difficulty of analyzing transcendental equilibrium conditions,
and because of the availability of results in the literature relevant to this part of the
parameter space (e.g., Fujita and Ogawa (1982), Lucas and Rossi-Hansberg (2002)
and Berliant et al. (2002)) we now turn our attention to the analysis of equilibrium
in economies where returns to scale operates.

7 Increasing returns
We now turn attention to the role of increasing returns to scale. To focus

attention on returns to scale, we rule out spillovers, and ask what happens as γ
increases.

The following proposition characterizes the set of equilibria under increasing
returns, γ > 0, when spillovers do not operate.

Proposition 6 Assume δ = 0. If γ > 0, then (i) an interior equilibrium always exists;
(ii) there exist two corner equilibria. These corner equilibria are such that the employment
patterns are given, respectively, by (0,1,0) and (1/2,0,1/2). (iii) In both corner and
interior equilibria, each location hosts a positive mass of residents.

Proof: See Appendix I.
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Part (i) of Proposition 6 is exactly what we would expect from inspection of
figure 1; throughout the range of increasing returns, the market clearing locus,
f , and the zero profit locus, g, always have at least one interior intersection.
Likewise, the Fréchet distribution for the support of the zij in the indirect utility
function (2) is unbounded, so we expect that every location will always have
residents, as required by part (iii).

Part (ii) of Proposition 6 is surprising. In spite of the unbounded support of
the zij , not every residence-workplace pair must be populated in equilibrium. An
inspection of the production technology in equation (10) solves the puzzle. If the
amount of land devoted to production is zero in a location, then the marginal
product of labor is also zero. With a competitive labor market this requires that
the wage also be zero, and hence, by inspection of (2), that the utility of any
worker at this location be zero. These corner equilibria appear to depend sensi-
tively on the multiplicative structure of our Cobb-Douglas production function.

With existence established, we now turn to a characterization of equilibrium
as γ increases from zero. We begin by introducing terminology to describe the
three important domains of returns to scale. We establish below that these ranges
are associated with qualitatively different equilibrium behavior.

Definition 2 Increasing returns to scale are: (i) weak if 0 < γ < γm ≡ α/ε; (ii) moderate
if γm ≤ γ ≤ γs; or (iii) strong if γ > γs.

As we describe above, γm = α/ε is the value of γ at which the zero profit
locus switches from an increasing to a decreasing function of ρ. Because γm → 0
as ε → ∞, it follows that the population must be heterogeneous for weak returns
to scale to occur. Recalling that α is the labor elasticity of production, and that
ε is the elasticity of relative labor supply (23) to relative wages, the threshold
γm is increasing in the sensitivity of production to labor and decreasing in the
sensitivity of labor supply to wages.

Like γm, γs is also a threshold value. Anticipating our results below, figure 2
illustrates the equilibrium correspondence between ln ρ and γ. To define γs, we
solve the equilibrium condition f(ρ) = g(ρ; γ) for γ to get

γ(ρ) =
log
(
ρ−bf(ρ)

)
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
) .
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The function γ(ρ) may be obtained by reversing the axes in figure 2(a). We define
γs as the global maximizer of γ(ρ) subject to ρm ≤ ρ ≤ 1. Considering again the
correspondence in figure 2(a), we see that γs is also the threshold value of γ at
which the two lower equilibrium branches merge and disappear.12

Weak increasing returns

The next proposition describes the equilibrium when increasing returns to scale
are weak.

Note that, without a restriction on c, Proposition 4 implies that any configura-
tion of employment may emerge as an equilibrium outcome. Therefore, to isolate
the effect of γ, in what follows, we assume that there is no first nature production
advantage (c = 1), although we usually do not restrict relative amenities b and d.

Proposition 7 Assume δ = 0 and c = 1. (i) If 0 < γ < γm, then there is a unique
interior equilibrium. (ii) Furthermore, if ψ > 1 holds, then the equilibrium employment
pattern is bell-shaped and

dℓ∗

dγ
> 0,

dρ∗

dγ
< 0 <

dω∗

dγ
.

Proof: See Appendix J.
In the region of weak IRS, equilibrium is largely determined by the same

forces that operate when the technology is constant returns to scale. That is, the
average preferences for central work and residence draw activity into the center
and the relative abundance of peripheral land pulls it out. As scale economies
increase, the central location becomes increasingly attractive for employment, the
central land price capitalizes higher central productivity, and the central wage
rises in response to the increase in the marginal product of labor.

The comparative statics in Proposition 7 holds whenever 0 < γ < γm. The
generality of this result conceals the fact that distinct equilibrium regimes arise
when ρm < ρL and ρL < ρm.

When ρm < ρL, high commuting costs encourage households to work where
they live or land hungry production faces pressure to disperse to the periphery
(or both). An equilibrium in such an economy has low levels of commuting

12Interestingly, we can show that γm = γs when ρm ≥ ρL and γm < γs when ρm < ρL.
Therefore, the region of moderate increasing returns to scale does not exist unless the step in the
zero profit locus is to the right of the asymptote of the market clearing locus, i.e., ρm < ρL.
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and dispersed production. Thus, when ρm < ρL, low levels of IRS do not lead to
equilibrium cities where employment or residence is highly concentrated in either
the center or periphery. Panel (a) of figure 1 illustrates this case.13

In contrast, when ρL ≤ ρm, low commuting costs allow households to separate
work and residence locations in response to a small wage premium, and produc-
tivity is not sensitive to the relatively abundant land of the periphery. In this case,
IRS compounds the average preference for central employment to concentrate
employment in the center, and households are able to cheaply disperse their
residences to the land abundant periphery. An equilibrium in such an economy
involves concentrated employment and high levels of commuting. Thus, when
ρL < ρm, low levels of IRS lead to equilibrium cities where employment is highly
concentrated in the center and residence in the periphery. The monocentric city
arises endogenously.14

Figure 2 shows the equilibrium relationship between γ and ln ρ for numerical
examples satisfying ρm < ρL in panel (a) and ρL < ρm in panel (b). In both panels,
the x-axis is γ and the y-axis is ln ρ. Both figures show all interior equilibria,
but not the corner equilibria required by Proposition 6. Both figures anticipate
our analysis of stability in Section 8 and indicate stable equilibria with a solid
line and unstable equilibria with a dashed line. Consistent with our results in
Propositions 3 and 7, figure 2 shows that ρ decreases from near one as γ increases
in a neighborhood of zero. As γ increases towards γm, we see that ρ continues
to decrease. Comparing panels (a) and (b) we see the two distinct equilibrium
regimes that arise as γ increases toward the threshold of the weak IRS domain
when ρm < ρL and ρL < ρm.

Moderate increasing returns

When γ > γm, the market clearing locus, f , remains unchanged, but the zero
profit locus, g, changes from an increasing to a decreasing function. When f

and g are both decreasing, they need not cross at all, and may cross more than
once. Thus, zero or many equilibria are possible. Proposition 6 establishes that an

13More formally, as γ approaches γm, the zero profit locus converges to an increasing step
function with the step at ρL. Hence, the curves f and g must cross near ρL as γ increases towards
γm. Because ρm < ρL, it follows that this intersection must occur when f is away from its
asymptote at ρm. Therefore, the equilibrium value of ω grows with γ but remains bounded.

14Formally, when ρL ≤ ρm, as γ approaches γm, the intersection of f and g occurs near the
asymptote of f . As a result, the value of ω at which the two curves intersect becomes large.
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equilibrium exists. Figure 1 suggests that for intermediate values of γ, that f and
g cross one or three times. The following proposition formalizes this intuition.

Proposition 8 Assume δ = 0 and c = 1. If γ is slightly above γm, then

i. if ρm < ρL, there exist two interior equilibria, (ρ∗1 ,ω∗
1 ) and (ρ∗3 ,ω∗

3 ), such that,
ω∗

1 > 1 > ω∗
3 and ρ∗1 < 1 < ρ∗3 , as well as a third interior equilibrium. As γ ↘ γm,

the first two equilibrium employment patterns converge to (1/2,0,1/2) and (0,1,0),
while the third equilibrium is interior.

ii. if ρm ≥ ρL, there exists a unique interior equilibrium (ρ∗,ω∗) such that, ω∗ <

1 and ρ∗ > 1. Furthermore, as γ ↘ γm, the equilibrium employment pattern
converges to (1/2,0,1/2).

Proof: See Appendix K.
The logic underlying part (i) of Proposition 8 is visible in panel (b) of figure 1.

The medium blue line describes the case of moderate increasing returns. In this
case, g crosses f three times. At the first intersection point, we have ρ∗1 < 1 and
ω∗

1 > 1; at the second, we see that ρ∗2 approaches ρL as γ decreases toward γm; at
the third intersection point, we have ρ∗3 > 1 and ω∗

3 < 1. The value ω∗
1 (resp., ω∗

3 ) in
turn requires that employment occurs primarily in the center (resp., periphery).

The light blue line in panel (b) describes g when γ is just above γm. As gamma
approaches this threshold, for one of the two new equilibria ω grows without
bound (and occurs outside the frame of the figure) while ω approaches zero in the
other equilibrium. That is, just above the threshold, these two equilibria approach
corner patterns where all employment is either central or peripheral.

The corresponding logic for part (ii) of Proposition 8 is visible in panel (d) of
figure 1. As in panel (b), the medium blue line describes the case of moderate
increasing returns. In this case, g crosses f only once. The light blue line in panel
(b) describes g when γ is just above γm. As gamma approaches this threshold,
the single intersection of f and g occurs at progressively larger values of ω as g
converges to a decreasing step function. In the limiting case, as γ approaches γm
from above, the single equilibrium occurs when all employment is concentrated
in the periphery. Figure 2 summarizes the results of Proposition 8.

That part (i) of Proposition 8 establishes the emergence of multiple equilibria
seems unsurprising. We expect sufficiently strong IRS to give rise to multiple
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equilibria. Part (i) also describes an equilibrium branch which continues behavior
form the weal IRS case. This is the central, interior equilibrium branch in panel
(a) of figure 2. That the logic governing behavior in the case of weak IRS should
sometimes survive a small increase in γ above γm also seems unsurprising.

Two results in Proposition 8 are less expected. First, we see in part (ii)
that multiple equilibria need not emerge as returns to scale increase. When
commuting costs are low and land is less productive, i.e. ρm > ρL, there is only
a single equilibrium when γ is weak or moderate. Thus, increasing returns is
necessary for multiple equilibria, but not sufficient.

Second, Propositions 7 and Proposition 8 together imply a discontinuous
change in the only possible equilibrium city when ρL < ρm and γ varies around
γm. This discontinuity is clearly visible in panel (b) of figure 2. It is equally clear
that this discontinuity follows from the fact that the zero profit curve switches
from an increasing to a decreasing step function around this singular point.

These results require two comments. First, notice that Proposition 8 char-
acterizes equilibrium just above the threshold separating weak and moderate
increasing returns, γm. It is natural to expect that the behavior we observe near
γm persists throughout the full range of moderate increasing returns, as in the
example illustrated in Figure 2. In fact, we cannot rule out the possibility of
more complicated equilibrium behavior for values of γ just below γs, although
we did not find a counter example to contradict the conjecture that the results of
Proposition 8 hold throughout the range of moderate increasing returns.

Second, Proposition 8 establishes qualitatively different equilibrium behavior
around γ = γm when ρm < ρL and conversely. Recalling that ρL < ρm describes
the case when commuting costs and the land share of production are both low, we
expect that the location of employment to be more sensitive to changes in returns
to scale than in the opposite case. This intuition is consistent with our finding in
Proposition 8.

Strong increasing returns

Careful inspection of figure 1 shows that the market clearing and zero profit
curves cross only once and that a single interior equilibrium persists when γ

is larger than a threshold γs, regardless of whether ρm < ρL or ρL < ρm. The
following theorem extends and makes precise this intuition.
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Proposition 9 Assume δ = 0 and c = 1. If γ > 1+ε
(1−β)ε − α ≥ γs, then there exists a

unique interior equilibrium. Furthermore, the equilibrium employment pattern gets flatter
as γ rises and converges to the uniform pattern when γ → ∞.

Proof: See Appendix L.
As γ increases beyond γm, only a single interior equilibrium persists. This

equilibrium involves a moderate value of ω, so that employment is more or less
evenly distributed across the three locations. In this region of the parameter space,
as returns to scale increase, it leads households to distribute themselves more
uniformly, and in the limiting case, to a perfectly flat equilibrium.

Inspection of figure 1 makes it clear why this result occurs. As γ increases
beyond γm, the zero profit curve, g, diverges from the step function g(ρ,γm) and as
this occurs, the intersection of f and g occurs at values of ρ that are progressively
nearer to one.

Figure 2 summarizes this result. As γ increases beyond the threshold γs,
regardless of the relative magnitude of ρm and ρM , we see that ln ρ moves back
towards zero, so that increases in γ beyond the threshold of the strong increasing
returns equalizes central and peripheral rents.

This result is novel and surprising in two regards. First, as expected Proposi-
tion 7 shows that for low levels of returns to scale, increases in γ lead to increased
concentration of employment in the center. However, Proposition 9 shows that
beyond a certain point, this relationship reverses and further increases in returns
to scale lead to a more equal distribution of employment. Thus, IRS is not
an agglomeration force over its entire possible range. At some point, it causes
employment to disperse. This seems surprising. Second, even in environments
where IRS leads to multiple equilibria (as expected), sufficiently high returns to
scale leads, once again, to unique equilibria. The ability of increases in returns to
scale to eliminate multiple equilibria is also novel and surprising.

To our knowledge, Proposition 9 is new to the literature. While it has long
been understood that increasing returns to scale could lead to multiple equilibria,
the idea that sufficiently high increasing returns leads, once again, to a unique
equilibrium is novel. Even more surprising, this equilibrium involves more
dispersion of production as the degree of increasing returns rises.

Note that dispersion of employment in response to increases in returns to
scale also arises when returns to scale are moderate. We see in Proposition 8(i)
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that along the equilibrium branches where employment is highly concentrated in
the center or the periphery employment concentration decreases in response to
increases in γ.

To understand this result consider the zero profit condition given in equation
(14). As returns to scale increase, so does TFP. If profits are to remain constant,
some other quantity must adjust. The candidates are wages, rents and employ-
ment (on which TFP also depends). The need for adjustment is compounded if
labor migrates to more productive places and further increases their productivity.
It is clear that if land rent and wages go up, this offsets the increase in produc-
tivity and restores the zero profit condition. However, Proposition 9 shows that
equilibrium increases in wages and rents are not always sufficient to preserve
the zero profit condition. Once returns to scale are sufficiently high, restoring
the zero profit condition is accomplished by dispersing employment to reduce
productivity.

8 Stability
We have seen that multiple equilibria can arise in much of the parameter

space. In such cases, it is common to appeal to stability as a selection device. This
leads to the question of how to define stability.

One candidate, particularly relevant for the literature on quantitative spatial
models, is to say that an equilibrium is stable if an iterative process will converge
to it. Formally, if equilibria are defined by f(ρ) = g(ρ) then equilibria are fixed
points of h(ρ) = ρ, for h(ρ) ≡ f−1(g(ρ)). In this case, it is well known that an
iterative process will find a fixed point ρ∗ if and only if |h′(ρ∗)| < 1. Surprisingly,
this notion of stability is not well defined. There are two problems.

Recalling that our fixed point is defined by f(ρ) = g(ρ), it is clear that
there are two alternative ways of stating the fixed point problem. First, as
ρ = h(ρ) ≡ f−1(g(ρ)), and alternatively, as ρ = h̃(ρ) ≡ g−1(h(ρ)). Both
representations have the same solutions, but their stability properties are opposite.
It is straightforward to show that for any solution of this problem, |h′(ρ∗)| < 1
if and only if |h̃′(ρ∗)| > 1. Thus, the iterative stability of any given solution to
the fixed point problem that defines equilibrium depends sensitively on arbitrary
decisions about the representation of the fixed point problem. Thus, iterative
stability is not well defined and iterative methods cannot be expected to find all
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of equilibria of an economy when multiple equilibria exist.
To understand the second problem, observe that for any 0 < θ < 1, the

equation h(ρ) = θρ+ (1 − θ)ρ also defines solutions of f(ρ) = g(ρ), so that fixed
points of h̃(ρ) = [(h(ρ) − (1 − θ)ρ)/θ] = ρ are also solutions of f(ρ) = g(ρ).
However, the stability properties of this second equation may be different from
the original. By choosing θ sufficiently small, we guarantee that |h̃′(ρ∗)| > 1.
Thus, this second argument leads to the same conclusion as the first. Iterative
stability is not well defined and iterative methods cannot be expected to find all of
equilibria of and economy when multiple equilibria exist. Note that the standard
practice of starting the iterative algorithm from a variety of initial conditions does
not respond these problems.

These problems with computational methods motivate our interest in analyt-
ical methods and solutions. The discussion above demonstrates that we cannot
rely on numerical methods to find all of the equilibrium configurations of an
economy if we do not at least know how many equilibria there are. This leads
us, in turn, to depart from the practice of the modern quantitative literature of
studying models with arbitrary geographies, in favor of our more tractable three
location linear city.

An alternative approach to stability involves specifying state variables for
the economy and adjustment process for these state variables. This approach
to stability is well know (e.g., Krugman 1991). In the context of our problem,
symmetry implies that we must determine the values of three variables to obtain
the equilibrium outcome. For example, it is sufficient to know L0, M0, and s00

to determine all the sij , and hence the vector {M,L,H,N,W,R}. To implement
notion of stability, we must specify an adjustment process describing how L0, M0

and s00 respond to a perturbation. Stability is then well defined in the resulting
dynamic system. This approach is subject to two problems. First, it is likely
to be intractable. Second, it must rest on ad hoc descriptions of the adjustment
process, and we suspect that the stability of any particular equilibrium is likely to
be sensitive to these assumptions.

These difficulties lead us to a more game-theoretic notion of stability. In
the spirit of trembling hand perfection, we say that an equilibrium is stable if
households want to return to the equilibrium when an arbitrarily small measure
of them are displaced. This definition of stability has three advantages. First, like
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our model, it is static and does not require an explicit description of time. Second,
and unlike the other candidate definitions of stability, it has explicit behavioral
foundations. Third, as we demonstrate, it is tractable.

Let ij and kl be two arbitrary location pairs; ij = kl (location pairs are equal)
when i = k and j = l hold simultaneously and distinct otherwise. We say that an
equilibrium is unstable if, for some ij ̸= jk, for any arbitrarily small ∆ > 0, there
is a subset of individuals of mass ∆ who strictly prefer the location pair kl, which
differs from their utility-maximizing pair ij, when a perturbation moves them all
to kl. In other words, the subset of individuals who have been moved away from
ij do not want to move back. Otherwise, the equilibrium is stable.

The key issue is to determine the subset of individuals to use to check whether
the equilibrium is unstable. In what follows, we assume that this subset is formed
by individuals whose types are close to those of an individual indifferent between
her equilibrium pair ij and another location pair kl.

Consider an equilibrium commuting pattern s∗≡(s∗ij), which could be interior
or corner, and two location pairs, ij and kl, such that ij ̸= kl and s∗ij > 0. We say
that an individual ν ∈ [0,1] is indifferent between ij and kl if and only if

V ∗
ij(ν) = V ∗

kl(ν) ≥ V ∗
od(ν), (29)

for every location pair od such that od ̸= ij and od ̸= kl. Lemma 5 in Appendix
M establishes that such an individual always exists.

With this definition in place, we can now state our definition of stability
formally.

Definition 3 Consider an arbitrarily small subset of individuals of measure ∆ > 0 who
choose ij and have types close to z(ν) ∈ Sij where ν is indifferent between ij and
kl ̸= ij. If this individual is strictly better off when she and her neighboring individuals
are relocated from ij to kl, the spatial equilibrium is unstable. Otherwise, the spatial
equilibrium is stable.

The motivation for this definition is as follows. If the relocation of a small
group of almost indifferent individuals from ij to kl makes the indifferent agent
strictly better off, then, by continuity there is a non-negligible subset of individu-
als who strictly prefer kl to ij. Hence, these individuals will never switch back to
ij. On the contrary, if the indifferent individual never becomes strictly better off
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for any small subset, no other individual strictly prefers a different location pair.
Hence, all the individuals will be willing to switch back to ij.

By relocating a small subset of individuals from ij to kl, the commuting
pattern s becomes different from the equilibrium pattern s∗. Hence, for our
definition of stability to make sense, we must be able to compare the equilibrium
and off-equilibrium utility levels. For this to be possible, we must determine the
conditional equilibrium vectors of wages and land rents W(s) and R(s). We show
in Appendix N that, for α > 1/2, these vectors exist, are unique and continuous
in s.

This definition of stability equips us to study the stability of the equilibria
identified in Proposition 6. We start with corner equilibria and show in Appendix
O that these equilibria are unstable. This result is easy to understand. Consider
the agglomerated corner equilibrium L∗ = (0,1,0). No single individual wants
to move to, say, location 1 because her marginal productivity would be zero.
This is why (0,1,0) is an equilibrium employment pattern. By contrast, when a
small subset of workers happens to be at j = 1, the marginal product of labor,
and therefore the incomes, of individuals whose tastes are close to those of the
indifferent individual are high. As a consequence, they do not want to move back
to location 0. If we rely on stability to select among multiple equilibria, it means
that we can ignore the corner equilibria. This result has the potential to greatly
simplify quantitative exercises based on this family of models.

By Proposition 6, interior equilibria always exist. In appendix P, Proposition
10 provides a simple test for checking the stability of any interior equilibria. Ap-
plying this test to the examples illustrated in figure 2 allows us to determine the
stability of each possible equilibrium for the relevant parameter values. In figure
2, we indicate stable equilibria with a heavy solid line, and unstable equilibria
with a lighter dashed line.

While our results do not permit general conclusions about the stability of
equilibria, they demonstrate that stable equilibria need not exist and that multiple
stable equilibria are also possible.

9 Conclusion
Understanding how people arrange themselves when they are free to choose

work and residence locations, when commuting is costly, and when some eco-
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nomic mechanism rewards the agglomeration of employment, is one of the
defining problems of urban economics. We address this problem by combining
a discrete choice model of location, the stylized geographies of classical urban
economics, and a production function that allows for first nature advantages, IRS,
and productivity spillovers. We provide a complete description of equilibria in
much the parameter space.

Besides accounting identities, an equilibrium must satisfy two main condi-
tions: all households choose their most preferred workplace-residence pair and
profits must be zero everywhere. Of these two, the first is familiar from widely
used discrete choice models of spatial equilibrium. The second is less well studied
and has two surprising implications. First, equilibrium agglomeration of employ-
ment is first increasing and then decreasing in the strength of returns to scale.
When increasing returns to scale are strong enough, the zero profit condition is
preserved, in part, by dispersing employment. Second, productivity spillovers
can act to disperse employment. Productivity spillovers allow firms to benefit
from high productivity locations without paying the rent and wage premium
required to locate in them. It is enough to be near. Of the three conventional
foundations for economic agglomerations that we consider, only the comparative
statics for first nature behave as expected: employment concentrates where first
nature productivity is greater.

Despite its wide use, our conventional description of preference heterogeneity
implies a previously unnoticed foundation for agglomeration. A population of
households with heterogenous preferences over workplace-residence pairs has
an average preference for central work and residence. Absent any property of
production that rewards the concentration of employment, a city comprised of
such households has denser central employment and residence.

Even in a stylized geography, the relationship between economic fundamen-
tals and equilibrium is complicated. This is true throughout the parameter space,
but particularly in the region of moderate returns to scale. As we see in figure
2, it is in this region where multiple interior equilibria arise, where equilibrium
comparative statics can be discontinuous, and where increasing to returns to scale
begins to disperse employment. Given this, it is natural to ask whether such
values of returns to scale are empirically relevant.

The relevant threshold level of IRS is γm = α/ε, the lower boundary of the
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region of moderate returns to scale. In a modern economy, the labor share of
production, α, is about 0.6, while the range of commonly used estimates for ε is
about [5,7]. Taking the ratio of these values, we have γm in [0.085,0.12]. Estimates
of the wage elasticity of population for modern, developed country cities that
control for sorting and first-nature productivity are often around 0.05. However,
the raw correlation between wages and density is larger, as are estimates for
developing countries. This suggests that γm will sometimes lie in an empirically
relevant part of the parameter space.

For much of the past generation, a principal activity of urban economists
has been the estimation of ‘agglomeration economies’, the relationship between a
measure of productivity and the size or density of city employment. Our results
suggest that this empirical relationship describes a reduced form for a complex
interaction between first nature, IRS, productivity spillovers, and preference het-
erogeneity. Refining our understanding of the foundations of agglomeration
requires research designs that will permit us to distinguish these fundamentals.

To illustrate, consider a regression of the form,

ln Wagei = A0 +A1 ln Employmenti

where i indexes cities or sub-city spatial units and the coefficient A1 is widely
regarded as a measure of agglomeration economies.

Assuming that only IRS and first nature operate, rearranging our zero profit
condition (15) we have

lnWi = K +
γ

α
lnLi +

[
lnCi +

(1 − α)

α
lnRi

]
, (30)

for K ≡ ln[α−α(1 − α)−(1−α)], while the expression for utility maximizing labor
supply (2) gives us,

Lj = ∑
i

[
BiDjWj/

(
τijR

β
i

)]ε
∑r ∑s

[
BrDsWs/

(
τrsR

β
r

)]ε .

If we interpret the parenthetical expression in (30) as an error term, then
it is immediate that our model requires the reinterpretation of the standard
agglomeration equation. The coefficient of Li is not returns to scale, but the
ratio of returns to scale and the labor share of production. These expressions
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also offer guidance for the resolution of the endogeneity of the Li in equation
(30). Because first nature advantage is part of the error term, measures of first
nature advantage will not satisfy the exclusion restriction, while transportation
costs predict labor supply, but do not appear directly in the error term. Further
elaboration of the theoretical implications of spatial general equilibrium for the
estimation of economic fundamentals related to productivity seems like a natural
area for further research.

Our results also have implications for research based on quantitative spatial
models. Two observations will illustrate. First, Heblich et al. (2020) estimate
a model with many features in common with ours. They demonstrate that
a reduction in commuting costs following the opening of the subway in 19th
century London precipitates a dramatic reorganization of the city. Loosely, prior
to the subway, employment and residence were dispersed and commuting was
relatively rare, and after the subway, the locations of residence and employment
separated as people commuted to central employment from peripheral residences.
According to the discussion following Proposition 7, high commuting costs en-
courage households to work where they live, while low commuting costs allow
households to separate work and residence locations. Thus, the phenomena
observed in London correspond closely with comparative static in our model in
a large part of the parameter space. This argues for the external validity of the
comparative static evaluated in Heblich et al. (2020). At a minimum, their finding
does not require all of the many peculiarities of London to arise.

Second, as a rule, quantitative spatial models often share many features with
the one considered here, and so may be expected to exhibit at least some of the
same complicated behavior. The possibility of complex behavior in a neighbor-
hood of the boundary between the weak and moderate returns to scale together
with the empirical relevance of this threshold suggests that efforts to investigate
the possibility of multiple equilibria are appropriate. As we have shown, conver-
gence of fixed point algorithms fails to serve as an equilibrium selection criterion
under multiple equilibria, because it is not robust to the algebraic form of the
equilibrium conditions. Thus, an investigation of multiple equilibria appears
to require new techniques. Taking as given that an analytic characterization is
infeasible, one possibility is to reformulate the equilibrium conditions in different
ways, and to apply a fixed point algorithm to each such formulation.

35



References

Ahlfeldt, G. M., Redding, S. J., Sturm, D. M., and Wolf, N. (2015). The economics
of density: Evidence from the berlin wall. Econometrica, 83(6):2127–2189.

Allen, T. and Arkolakis, C. (2014). Trade and the topography of the spatial
economy. The Quarterly Journal of Economics, 129(3):1085–1140.

Allen, T., Arkolakis, C., and Li, X. (2015). Optimal city structure. Yale University,
mimeograph.

Allen, T., Arkolakis, C., and Li, X. (2020a). On the equilibrium properties of
network models with heterogeneous agents. Technical report, National Bureau
of Economic Research.

Allen, T., Arkolakis, C., and Takahashi, Y. (2020b). Universal gravity. Journal of
Political Economy, 128(2):393–433.

Allen, T. and Donaldson, D. (2020). Persistence and path dependence in the spatial
economy. Technical report, National Bureau of Economic Research.

Behrens, K. and Robert-Nicoud, F. (2015). Agglomeration theory with heteroge-
neous agents. Handbook of regional and urban economics, 5:171–245.

Berliant, M., Peng, S.-K., and Wang, P. (2002). Production externalities and urban
configuration. Journal of Economic Theory, 104(2):275–303.

Ciccone, A. and Hall, R. E. (1996). Productivity and the density of economic
activity. The American Economic Review, 86(1):54–70.

Duranton, G. and Puga, D. (2004). Micro-foundations of urban agglomeration
economies. In Handbook of regional and urban economics, volume 4, pages 2063–
2117. Elsevier.

Fujita, M. (1989). Urban economic theory: Land use and city size. Cambridge
University Press.

Fujita, M. and Ogawa, H. (1982). Multiple equilibria and structural transition of
non-monocentric urban configurations. Regional Science and Urban Economics,
12(2):161–196.

Heblich, S., Redding, S. J., and Sturm, D. M. (2020). The making of the mod-
ern metropolis: evidence from london. The Quarterly Journal of Economics,
135(4):2059–2133.

Krugman, P. (1991). Increasing returns and economic geography. Journal of political
economy, 99(3):483–499.

36



Lucas, R. E. and Rossi-Hansberg, E. (2002). On the internal structure of cities.
Econometrica, 70(4):1445–1476.

Monte, F., Redding, S. J., and Rossi-Hansberg, E. (2018). Commuting, migration,
and local employment elasticities. American Economic Review, 108(12):3855–90.

Ogawa, H. and Fujita, M. (1980). Equilibrium land use patterns in a nonmono-
centric city. Journal of Regional Science, 20(4):455–475.

Redding, S. J. and Rossi-Hansberg, E. (2017). Quantitative spatial economics.
Annual Review of Economics, 9:21–58.

Rosenthal, S. S. and Strange, W. C. (2020). How close is close? the spatial reach of
agglomeration economies. Journal of economic perspectives, 34(3):27–49.

Starrett, D. (1978). Market allocations of location choice in a model with free
mobility. Journal of economic theory, 17(1):21–37.

Tabuchi, T. and Thisse, J.-F. (2002). Taste heterogeneity, labor mobility and eco-
nomic geography. Journal of Development Economics, 69(1):155–177.

37



Online Appendix

A. Proof of Proposition 1
As commuting flows (7) are uniquely determined by ρ and ω, it suffices to

express the equilibrium patterns — the labor pattern (L0,L1), the residential pop-
ulation pattern (M0,M1), the housing pattern (H0,H1), the commercial land-use
pattern (N0,N1), the wage pattern (W0,W1), and the land rent pattern (R0,R1) —
as functions of ρ, ω, and (sij), or equivalently, as functions of r, w and (sij).

The land-use pattern. Consider the complementary slackness conditions for
producer’s profit maximization:(

αAiL
α−1
i N1−α

i −Wi

)
Li = 0, with αAiL

α−1
i N1−α

i −Wi ≤ 0 and Li ≥ 0,[
(1 − α)AiL

α
i N

−α
i −Ri

]
Ni = 0, with (1 − α)AiL

α
i N

−α
i −Ri ≤ 0 and Ni ≥ 0.

These complementary slackness conditions imply that

AiL
α
i N

1−α
i =

WiLi
α

=
RiNi
1 − α

.

Hence, the demands for commercial land are given by

N0 =
1 − α

α

W0L0

R0
, N1 =

1 − α

α

W1L1

R1
.

Using (8), we obtain expressions for the commercial land demands:

N0 =
1 − α

α

W0

R0
(s00 + 2s10), N1 =

1 − α

α

W1

R1

[
(1 + ϕ2)s11 + s01

]
. (A.1)

Next, plugging the commuting flows (7) into the market demand functions for
residential land, Hi ≡ ∑j sij

βWj

Ri
, and using w = W0/W1, we obtain expressions

for the residential land demands:

H0 = β
W0

R0

(
s00 + 2w−1s01

)
, H1 = β

W1

R1

[
(1 + ϕ2)s11 +ws10

]
. (A.2)

Computing the ratios, Hi/Ni, for i = 0,1, and using (9),

H0

N0
=

1 −N0

N0
= η

s00 + 2dω− 1
ε s01

s00 + 2s10
,

H1

N1
=

1 −N1

N1
= η

(1 + ϕ2)s11 + d−1ω
1
ε s10

(1 + ϕ2)s11 + s01
,

where η is given by (18). Solving for N0 and N1, and using (7), we arrive at
expressions (21) – (22) for the land-use patterns.
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Wages and land rents. The ratios Wi/Ri, i = 0,1, are pinned down by
combining (A.1) and (A.2) with the land-market clearing conditions (9):

W0

R0
=

α

1 − α

[
(1 + η)s00 + 2s10 + 2ηw−1s01

]−1
;

W1

R1
=

α

1 − α

[
(1 + ϕ2)(1 + η)s11 + s01 + ηws10

]−1
.

Restating the zero-profit conditions (14) as

Ri = αα(1 − α)1−αAi

(
Wi

Ri

)−α
,

and plugging the ratios Wi/Ri into the RHSs, we obtain land rents as functions
of r, w, and sij :

Ri =

(1 − α)A0
[
(1 + η)s00 + 2s10 + 2ηw−1s01

]α , i = 0;

(1 − α)A1
[
(1 + ϕ2)(1 + η)s11 + s01 + ηws10

]α , i = 1.

Plugging the land rents back into the ratios Wi/Ri, we obtain the wages as
functions of r, w, and sij :

Wi =

αA0
[
(1 + η)s00 + 2s10 + 2ηw−1s01

]−(1−α) , i = 0;

αA1
[
(1 + ϕ2)(1 + η)s11 + s01 + ηws10

]−(1−α) , i = 1.

Q.E.D.

B. Proof of Proposition 2
Using (7) and (A.1) – (A.2), we can define the relative demand for land, λ(r,w),

as follows:

N0 +H0

N1 +H1
= λ(r,w) ≡ (1 + η)dεw1+εbεr−βε + 2ϕdεw1+ε + 2ηϕbεr−βε

ϕbεr−βε + ηϕdεw1+ε + (1 + ϕ2)(1 + η)

1
r

. (B.1)

Because each location has one unit of land, the relative supply of land is equal
to one. In equilibrium, the relative demand for land equals the relative supply of
land: λ(r,w) = 1. Using (B.1) and (6), the condition λ(r,w) = 1 becomes:

(1 + η)d−1ω
1+ε
ε ρ+ 2ϕd−1ω

1+ε
ε + 2ηϕρ

ϕρ+ ηϕd−1ω
1+ε
ε + (1 + ϕ2)(1 + η)

= b1/βρ−
1
βε ,

whose solution in ω
1+ε
ε yields (24).

2



To derive (25), let us restate (15), using (6) and (23), as follows(
d−1ω

1
ε

)α (
b

1
β ρ−

1
βε

)1−α
= a

(
ω

ρ+ 2ϕ
1 + ϕρ+ ϕ2

)
, (B.2)

where a(·) is the relative TFP given by (16). Equation (B.2) defines implicitly a
function ω

1+ε
ε = g(ρ,γ,δ). If δ > 0, then the g-function cannot be expressed in

closed form but can be written as a fixed point given by the second line of (25).
When δ = 0, the g-function can be expressed in closed form. Indeed, in this case,
(B.2) takes the form

d−α
(
ω

1+ε
ε

) α
1+ε
(
b

1
β ρ−

1
βε

)1−α
= c

(
ω

1+ε
ε

) γε
1+ε
(

ρ+ 2ϕ
1 + ϕρ+ ϕ2

)γ
,

whose solution in ω
1+ε
ε delivers the first line of (25). Q.E.D.

C. Lemma 1
Lemma 1 The f -function in the RHS of (24) has the following properties:

(i) there exist ρm > 0 and ρM > ρm, such that f(ρ) > 0 if and only if ρm < ρ < ρM ;
(ii) f(ρ) decreases from ∞ to 0 over (ρm,ρM ).

Proof. The proof follows directly from the properties of the relative demand
for land, λ(r,w), given by (B.1).

The relative demand for land decreases with the relative land price r. Indeed,
computing the elasticity of the relative demand for land w.r.t. r, we get:

−∂ lnλ(r,w)
∂ ln r

=

1 +
(1 + η)βε

[(
1 − ϕ2 + (1 + 2ϕ2)η

)
dεw1+ε + ηϕ

(
dεw1+ε)2

+ 2ηϕ(1 + ϕ2)
]
bεr−βε

rλ(r,w) [ϕbεr−βε + ηϕdεw1+ε + (1 + ϕ2)(1 + η)]
2 ,

where the RHS is clearly positive. Also, the relative demand for land increases
with the relative wage w. Computing the elasticity of λ(r,w) w.r.t. the relative
wage w, we get:

∂ lnλ(r,w)
∂ lnw

=

(1 + η)(1 + ε)
[
ϕb2εr−2βε +

(
1 + 3ϕ2 + η(1 − ϕ2)

)
bεr−βε + 2ϕ(1 + ϕ2)

]
w1+ε

rλ(r,w) [ϕbεr−βε + ηϕdεw1+ε + (1 + ϕ2)(1 + η)]
2 ,
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where the RHS is clearly positive. This result reflects two effects: (i) a higher
wage leads to substituting labor with land in production; (ii) the citizens, who
are commuting-averse, tend to live in locations offering higher wages.

To derive ρm and ρM , consider two extreme cases.
Extreme case 1: w = 0. The condition λ(r,w) = 1 becomes:

λ(r,0) ≡ 2ηϕbεr−βε

ϕbεr−βε + (1 + ϕ2)(1 + η)

1
r
= 1. (C.1)

The equation λ(r,0) = 1 has a unique solution r > 0.
Extreme case 2: w = ∞. The condition λ(r,w) = 1 becomes:

λ(r,∞) ≡
(

1 + η

ηϕ
bεr−βε +

2
η

)
1
r
= 1. (C.2)

The equation λ(r,∞) = 1 has a unique solution r > r > 0. That r > r

follows from ∂ lnλ(r,w)
∂ lnw > 0, which implies λ(r,∞) > λ(r,0) for every given r,

hence λ(r,∞) = 1 = λ(r,0) < λ(r,∞), which implies r > r.

The above analysis brings us to two important conclusions:

• the equilibrium condition λ(r,w) = 1 defines an increasing relation between
r and w, hence it defines a decreasing relation between ω and ρ;

• while the equilibrium condition λ(r,w) = 1 can hold for any w ≥ 0 (includ-
ing w = 0 and w = +∞), it can hold only for a limited range of relative land
rents: r ∈ [r,r].

Because ω
1+ε
ε = f(ρ) is just an equivalent way of writing the equilibrium

condition λ(r,w) = 1, which defines a decreasing relationship between ρ and
ω, we have f ′(ρ) < 0 for each admissible value of ρ. Furthermore, because the
equilibrium condition λ(r,w) = 1 can only hold for r ∈ [r,r], the extreme cases of
r = r and r = r, which correspond, respectively, to w = 0 and w = ∞, the function
f decreases from ∞ to 0 as ρ changes from ρm ≡

(
br−β

)ε to ρM ≡
(
br−β

)ε
>

ρm. Beyond the interval (ρm,ρM ), the expression for f(ρ) in (24), although still
mathematically well defined, has no economic meaning. Q.E.D.
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D. Lemma 2
Lemma 2 (i) If γ ̸= γm and δ = 0, then g(ρ; γ) is strictly positive and finite over
[ρm,ρM ]. (ii) If γ < γm, then g is increasing over [ρm,ρM ]. (iii) If γ > γm, then g is
decreasing over [ρm,ρM ]. (iv) As γ converges to γm, we have:

lim
γ↗γm

g(ρ; γ) =


0, ρ < ρL;(

ρL+2ϕ
1+ϕρL+ϕ2

)− 1+ε
ε

ρ = ρL;

∞, ρ > ρL;

lim
γ↘γm

g(ρ; γ) =


∞, ρ < ρL;(

ρL+2ϕ
1+ϕρL+ϕ2

)− 1+ε
ε

ρ = ρL;

0, ρ > ρL;

where ρL > 0 is the unique solution to the equation

ρ
1
η

ρ+ 2ϕ
1 + ϕρ+ ϕ2 =

(
d c

1
α b−

1
η

)−ε
.

Proof. Part (i) follows from combining (25) with 0 < ρm < ρM < ∞. Parts (ii)
and (iii) are obtained by differentiating g with respect to ρ. Part (iv) holds because
g(ρ; γ) may be rewritten as follows:

g(ρ; γ) = Φ

[(
ρ

1
η

ρ+ 2ϕ
1 + ϕρ+ ϕ2

) γm
γm−γ

·
(

ρ+ 2ϕ
1 + ϕρ+ ϕ2

)−1
] 1+ε

ε

, (D.1)

where Φ ≡ c
ψη

γm−γ d
αψη
γm−γ b−

αψ
γm−γ . Q.E.D.

E. Lemma 3
Lemma 3 There exists a function ϕ(βε) ∈ (0,1) and scalar η > 0 such that ρm < ρL if
ϕ < ϕ or η < η. Conversely, if ϕ > ϕ and η > η, then ρm > ρL.

Proof. It follows from the proof of Lemma 1 that ρm is the unique solution of

D(ρ) ≡ (1 + η)ρ
1+βε
βε + 2ϕρ

1
βε − ηϕ = 0. (E.1)

The expressions (D.1) and (E.1) imply that ρL and ρm are functions of η. We
next show that ρm and ρL vary with η as follows,

lim
η→0

ρL = 1,
dρL
dη

< 0, lim
η→∞

ρL = 1 − ϕ,

lim
η→0

ρm = 0,
dρm
dη

> 0, lim
η→∞

ρm = ϕ
βε

1+βε .
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We can show that ρm (resp., ρL) increases (resp., decreases) in η by applying
the implicit function theorem to D(ρ) = 0 (resp., (D.1)). Observe further that,
when η → ∞ (resp., η → 0), dividing D(ρ) = 0 by η and taking the limit yields
ρm = ϕβε/(1+βε) (resp., ρm = 1). Last, when η → ∞ (resp., η → 0), taking (E.1) at
the power η and the limit yields ρL = 1 − ϕ (resp., ρL = 1).

To determine where ρm and ρL intersect, we compare limη→∞ ρL and
limη→∞ ρm by considering the equation

ϕβε/(1+βε) + ϕ = 1. (E.2)

Differentiating the LHS of (E.2) with respect to ϕ shows that it increases from
0 to 2 when ϕ increases from 0 to 1. The intermediate value theorem then implies
that, for any given βε, (E.2) has a unique solution ϕ(βε) ∈ (0,1), which increases
with βε.

The inequality ρm ≤ ρL holds if ϕβε/(1+βε) ≤ 1 − ϕ, which amounts to ϕ ≤
ϕ(βε). If ϕ < ϕ ≤ 1, then there exists a unique value η > 0 that solves the
condition ρL(η) = ρm(η). Consequently, if η < η, then ρm ≤ ρL. If η ≥ η, then
ρm > ρL. Summing up, ρm ≤ ρL if ϕ ≤ ϕ or η ≤ η, and ρm > ρL when both
conditions fail. Q.E.D.

F. Proof of Proposition 3
Plugging b = c = d = 1 and γ = δ = 0 into (24), we get

f(ρ) ≡ ϕρ− 2ηϕρ1+ 1
βε + (1 + ϕ2)(1 + η)

(1 + η)ρ1+ 1
βε + 2ϕρ

1
βε − ηϕ

, g(ρ) = ρψ.

(i) Because f(ρ) decreases with ρ from ∞ to 0 over (ρm,ρM ), and g(ρ) increases
with ρ from 0 to ∞, the two curves have a unique intersection ρ∗ ∈ (ρm,ρM ), which
implies existence and uniqueness of equilibrium and that it is interior.

(ii) It is readily verified that 0 < f(1) < g(1) = 1. Hence, the intersection must
occur strictly between ρm < 1 and 1. This implies 0 < ρ∗ < 1 and ω∗ = (ρ∗)

1
η < 1.

(iii) The equilibrium employment pattern is bell-shaped if and only if

ℓ∗ = ω∗ ρ∗ + 2ϕ
1 + ϕρ∗ + ϕ2 = (ρ∗)

1
η

ρ∗ + 2ϕ
1 + ϕρ∗ + ϕ2 > 1.

Restate the equilibrium condition f(ρ) = g(ρ) as follows:(
η

1+ηρ
−ψ + 1

1+ηρ
−1
)−1

+ 2ϕ

ϕ
(

η
1+ηρ

ψ + 1
1+ηρ

)
+ 1 + ϕ2

(
η

1 + η
ρ1+ 1

βε +
1

1 + η
ρψ+

1
βε

)
= 1. (F.1)
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Because 1/x is convex, for every ρ < 1 Jensen’s inequality implies(
η

1 + η
ρ−ψ +

1
1 + η

ρ−1
)−1

<
η

1 + η
ρψ +

1
1 + η

ρ < ρ. (F.2)

Plugging (F.2) into (F.1) leads to

1 <
η

1+ηρ
ψ + 1

1+ηρ+ 2ϕ

ϕ
(

η
1+ηρ

ψ + 1
1+ηρ

)
+ 1 + ϕ2

(
η

1 + η
ρ1+ 1

βε +
1

1 + η
ρψ+

1
βε

)
.

Using ψ > 1 yields

η

1 + η
ρψ +

1
1 + η

ρ <
η

1 + η
ρ+

1
1 + η

ρ = ρ.

Because the function x+2ϕ
ϕx+1+ϕ2 is increasing for all x ≥ 0, we obtain

1 <
ρ+ 2ϕ

ϕρ+ 1 + ϕ2

(
η

1 + η
ρ1+ 1

βε +
1

1 + η
ρψ+

1
βε

)
. (F.3)

As ψ > 1 implies
1
η
< 1 +

1
βε

< ψ+
1
βε

,

while ρ∗ < 1, we have

η

1 + η
(ρ∗)1+ 1

βε +
1

1 + η
(ρ∗)ψ+

1
βε < (ρ∗)

1
η .

Replacing the bracketed term in (F.3), we obtain the inequality:

1 < (ρ∗)
1
η

ρ∗ + 2ϕ
ϕρ∗ + 1 + ϕ2 ,

which is equivalent to ρ∗ > ρL, hence ℓ∗ > 1 (see (7)).
(iv) When ε → ∞, we have:

lim
ε→∞

f(ρ) = ρ−1, lim
ε→∞

g(ρ) = ρ
1
η =⇒ lim

ε→∞
ρ∗ = lim

ε→∞
ω∗ = 1.

Also, limε→∞ ϕ = 0. Hence, taking the limit w.r.t. ε → ∞ on both sides of (7),
we get:

lim
ε→∞

 s11 s10 s1−1

s01 s00 s0−1

s−11 s−10 s−1−1

 =
1
9

 1 1 1
1 1 1
1 1 1

 .

Q.E.D.
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G. Proof of Proposition 4
We first prove the following lemma.

Lemma 4 Consider an interior equilibrium (ω∗,ρ∗), such that g′(ρ∗) > f ′(ρ∗). Any
shock in c, γ or δ that shifts the g-curve upwards/downwards in the vicinity of the
equilibrium leads to a labor pattern more/less concentrated at the center.

Proof. Combining the labor centrality ratio (23) with (24), we get:

ℓ
1+ε
ε = f(ρ)

(
ρ+ 2ϕ

1 + ϕρ+ ϕ2

) 1+ε
ε

. (G.1)

It is readily verified that the RHS of (G.1) decreases in ρ. Because f is
independent of c, the RHS of (G.1) as a function of ρ is also independent of c.
Note, however, that the equilibrium value of ρ depends on c, which implies that
the equilibrium value of ℓ varies with c. Indeed, an upward/downward shift
in the g-curve leads to a decrease/increase in ρ∗ because the equilibrium moves
northwestwards/southeastwards along the f -curve which is unaffected by the
change in the value of c.

Hence, we have:

an upward shift in g =⇒ ρ∗ ↓ =⇒ ℓ∗ ↑ .

Q.E.D.
From (24) – (25), one can see that an increase in c keeps the f -curve unchanged

and shifts upwards the g-curve. Hence, by Lemma 4, we have:

dℓ∗

dc
> 0. (G.2)

In other words, ℓ∗ is strictly increasing in c.
We now prove (i) – (v) in the following order: (i), (v), (iii), (ii) and (iv).
(i) We need to show that

lim
c↘0

ℓ∗ = 0.

Because limc↘0 g(ρ) = 0 for ∀ ρ ∈ (ρm,ρM ) , we have:
lim
c↘0

ω∗(c) = 0

lim
c↘0

ρ∗(c) = ρM
=⇒ lim

c↘0
ℓ∗(c) = lim

c↘0

[
ρ∗(c) + 2ϕ

1 + ϕρ∗(c) + ϕ2ω
∗(c)

]
= 0. (G.3)
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(v) Along the same lines as in the proof of (i), one can show that


lim
c↗∞

ω∗(c) = ∞

lim
c↗∞

ρ∗(c) = ρm
=⇒ lim

c↗∞
ℓ∗(c) = lim

c↗∞

[
ρ∗(c) + 2ϕ

1 + ϕρ∗(c) + ϕ2ω
∗(c)

]
= ∞.

(G.4)
(iii) Using the implicit function theorem shows that ℓ∗(c) is differentiable,

hence continuous, w.r.t. c for 0 < c < ∞. Combining this with (G.2) – (G.4)
implies that the equation ℓ∗(c) = 1 has a unique, finite, and positive, solution c0.

(ii) and (iv) follow from (G.1) combined with (i), (iii), and (v). Q.E.D.

H. Proof of Proposition 5
Our proof strategy is to study whether a slight increase in γ and δ above zero

shifts the g-function upward or downward, and then apply Lemma 4. Because
the g-curve is defined implicitly by (25) for δ > 0, all we need are the first-order
impacts of γ and δ on the relative productivity a(ℓ).

(i) Assume that δ = 0. Using (16) implies

E(γ) = C0

(
ℓ

ℓ+ 2

)γ
, F (γ) = C1

(
1

ℓ+ 2

)γ
=⇒ a(γ) =

E(γ)

F (γ)
=
C0

C1
ℓγ .

Therefore,
da(γ)

dγ

∣∣∣∣
γ=0

= c ln ℓ.

Proposition 4 implies that ĉ > 0 exists such that ℓ(ĉ) = 1. Therefore, increasing
returns magnifies the initial advantage of a location given by the value of c when
c > ĉ because raising γ above 0 increases a(γ). The opposite holds when c < ĉ.
Furthermore, the intensity of the effect of IRS increases with the value of c > ĉ.

(ii) Assume that γ = 0. In this case, we have a(ℓ) = A(δ)/B(δ) where

A(δ) = C0 +
2δ
ℓ+ 2

, B(δ) = C1 + δ
ℓ+ δ

ℓ+ 2
.

Differentiating A(δ)/B(δ) with respect to δ and setting δ = 0 yield

da(δ)

dδ

∣∣∣∣
δ=0

> 0 ⇐⇒ 4 − 2ℓc+ 2ℓ− ℓ2c > 0 ⇐⇒ c <
2
ℓ

.

Because Proposition 4 implies that ℓ(c) is increasing, the equation 2/c− ℓ = 0
has a unique positive solution c̃. When c > c̃, stronger spillovers demagnify the
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initial advantage of the central location because raising δ above 0 decreases a(γ).
In contrast, when c < c̃, stronger spillovers increases employment in the central
agglomeration of employment. Q.E.D.

I. Proof of Proposition 6
(i) When δ = 0 and γ ̸= γm,15 from Lemmas 1 and 2, f(ρ) > g(ρ,γ) when ρ

slightly exceeds ρm, while the opposite inequality holds when ρ is close enough to
ρM . Hence, by the intermediate value theorem, the equilibrium condition f(ρ) =

g(ρ,γ) has an interior solution ρ∗ ∈ (ρm,ρM ).
(ii) We now show existence of the two corner equilibria. Consider first the

wage pattern W0 = 0 < W1, hence ω = w = 0. The utility-maximizing commuting
flows (7) imply that, at the central location i = 0, labor supply = 0 =⇒ A0 = 0
=⇒ labor demand = 0. The land-market clearing condition λ(r,w) = 1 takes the
form of (C.1), which means r∗ = r =⇒ ρ∗ = ρM .

(iii) Last, we show that M∗
i > 0 for all i. Assume that R∗

i = 0 at i. Because
there is a location j such that W ∗

j > 0, workers who choose the pair ij enjoys an
infinite utility level, which implies sij > 0. These workers’ land demand is thus
infinite while the land supply is finite, a contradiction. Q.E.D.

J. Proof of Proposition 7
Under weak IRS, given Lemmas 1 and 2, f and g must intersect exactly once.

Furthermore, because f(1) < 1 < g(1; γ), the intersection must occur at ρ∗ < 1.
Because ρ∗ > ρL, we have

f(ρL) > f(ρ∗) = g(ρ∗) > g(ρL) (J.1)

because f is decreasing by Lemma 1 and g is increasing in ρ by Lemma 2. As
shown by (D.1), g(ρL) is independent of γ. Combining this with (J.1), we obtain
f(ρL)− g(ρL; γ) > 0. Because f(ρ∗)− g(ρ∗; γ) = 0 while f − g is decreasing by
Lemmas 1 and 2, we have ρL < ρ∗ for all γ < α/ε, which amounts to ℓ∗ > 1.

We now study the impact of γ on (i) ρ∗, (ii) ω∗and (iii) ℓ∗.
(i) Because ∂g(ρ; γ)/∂γ > 0, applying the implicit function theorem to (26)

leads to
dρ∗

dγ
=

∂g(ρ; γ)/∂γ
∂f ′(ρ)/∂ρ− ∂g(ρ; γ)/∂ρ

∣∣∣∣
ρ=ρ∗

< 0,

15the case where γ = γm is discussed in Section 7.2.
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where the numerator is positive because ρ∗ > ρL while the denominator is
negative because f(ρ) is decreasing and g(ρ; γ) is increasing in ρ.

(ii) Differentiating (24) with respect to γ, we obtain:

1 + ε

ε
ω

1
ε
dω∗

dγ
=
df

dρ

dρ∗

dγ
> 0.

(iii) From Lemma 4, dℓ∗/dγ > 0. Q.E.D.

K. Proof of Proposition 8
Step 1. Consider first the case when the spatial discount factor is small (ϕ < ϕ),

so that ρm < ρL < 1 < ρM holds. Therefore, for ∆ > 0 sufficiently small, we have:

ρm +∆ < ρL −∆ < ρL +∆ < 1 < ρM .

If γ is sufficiently close to α/ε (but still such that γ > α/ε holds), Lemma 2
implies the following inequalities:

g(ρm +∆; γ) < f(ρm +∆),

g(ρL −∆; γ) > f(ρL −∆),

g(ρL +∆; γ) < f(ρL +∆),

g(ρM ; γ) > f(ρM ) = 0,

where the last inequality holds because (25) implies that, for γ > α/ε, g(ρ; γ) > 0
for all ρ > 0 while f(ρM ) = 0 for any γ by definition of ρM . Therefore, by
continuity of f and g, (26) has at least three distinct solutions, which we denote as
follows:

ρM > ρ⋆2 > ρ⋆3.

Furthermore, the properties of function g imply the following:

limγε↘α ρ
⋆
1 = ρM ,

limγε↘α ρ
⋆
2 = ρL,

limγε↘α ρ
⋆
3 = ρm.

The solution ρ⋆2 matches the equilibrium of Proposition 7. As for the other two
solutions, ρ⋆1 and ρ⋆3, when γ is close enough to α/ε, we have ρ⋆2 > 1 > ρ⋆3.
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As γ ↘ α/ε, it follows from Lemma 1 that f(ρ⋆2) and f(ρ⋆3) converge, respec-
tively, to 0 and ∞, which implies:

lim
γε↘α

ω⋆1 = 0 and lim
γε↘α

ω⋆3 = ∞.

Hence, ω⋆1 < 1 < ω⋆3 when γε is close enough to α. It then follows from (25)
that

lim
γε↘α

ℓ⋆1 = 0 and lim
γε↘α

ℓ⋆3 = ∞.

Step 2. Consider now the case where the spatial discount factor is high (ϕ > ϕ).
Then, we know from Lemma 3 that there exists a value η ∈ (0,1) such that

ρL ≤ ρm < 1 < ρM (K.1)

is satisfied for η ≥ η, while ρm < ρL < 1 < ρM holds otherwise. Under (K.1),
there is a small ∆ > 0 such that the following inequalities hold:

g(ρM −∆; γ) < f(ρM −∆),

g(ρM ; γ) > f(ρM ) = 0.

while ρ⋆ > 1 when γ slightly exceeds α/ε.
Furthermore,

lim
γε↘α

(ω∗
1 )

ε
1+ε = f(ρM ) = 0.

Because limγε↘α ω
⋆
1 = 0, ω⋆1 < 1 when γε is sufficiently close to α.

Last, using (7), we have:
lim
γε↘α

ℓ⋆1 = 0.

Q.E.D.

L. Proof of Proposition 9
First, we show the existence and uniqueness of an equilibrium. The equilib-

rium condition (26) can be restated as follows:

1
ϕρ+ 1 + ϕ2

1 + η 1+ϕ2−2ϕρ
1+ 1
βε

ϕρ+1+ϕ2

1 + η ρ−ϕρ
− 1
βε

ρ+2ϕ


λ

= ρµ
ρ

ρ+ 2ϕ
, (L.1)
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where λ and µ are defined by

λ ≡ γε− α

γ + α
> 0 and µ ≡ γε− α− (1 − α)(1 + ε)

βε(γ + α)
.

The first term of the LHS of (L.1) decreases in ρ; the second term also decreases
because the numerator decreases while the denominator increases in ρ. Therefore,
the LHS of (L.1) is a decreasing function of ρ. Furthermore, the RHS of (G.1)
increases from 0 to ∞ in ρ when µ > 0. It is readily verified that µ > 0 if and only
if

γ >
1 + ε

(1 − β)ε
− α.

Hence, (L.1) has a unique solution ρ∗.
We now show that ℓ∗ converges monotonically toward 1 when γ > γs in-

creases. Using (7), we obtain

log ℓ∗ = − 1
γε/α− 1

log
(
(ρ∗)

1
η ρ∗ + 2ϕ
ϕρ∗ + 1 + ϕ2

)
. (L.2)

Because ρ∗ > ρL under strong increasing returns, the expression under the
log is greater than 1 and thus the RHS of (L.2) is negative. Furthermore, as ρ∗

decreases with γ, the RHS of (L.2) increases with γ. In addition, the first of the
RHS goes to 0 when γ goes to infinity. Consequently, ℓ∗ converges to 1. Q.E.D.

M. Lemma 4
Lemma 5 For any two distinct location pairs ij and kl such that s∗ij > 0, there exists an
individual ν ∈ [0,1] with zij(ν) ∈ Sij and zkl(ν) > 0 who is indifferent between ij and
kl.

Proof. The assumption s∗ij > 0 implies L∗
j > 0, hence W ∗

j > 0. Combining this
with (2) and (29) implies that any individual ν ∈ [0,1] whose type z(ν) satisfies

zij(ν) = zkl(ν)
W ∗
l

W ∗
j

τkl
τij

(
R∗
i

R∗
k

)β
≥ zod(ν)

W ∗
d

W ∗
j

τod
τij

(
R∗
o

R∗
i

)β
(M.1)

is indifferent between ij and kl.
Two cases may arise. First, if s∗kl > 0, then L∗

l > 0 and W ∗
l > 0. (M.1) thus

implies that any individual ν satisfying

zkl(ν) > 0, zij(ν) = zkl(ν)
W ∗
l

W ∗
j

τkl
τij

(
R∗
i

R∗
k

)β
, zod(ν) = 0
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is indifferent between ij and kl.
Second, if s∗kl = 0, then L∗

l = 0 and W ∗
l = 0. Therefore, (M.1) implies that

any individual such that zkl(ν) > 0 and zij(ν) = 0 for any ij ̸= kl is indifferent
between ij and kl. Q.E.D.

N. Existence and uniqueness of a conditional equilibrium price system
Step 1. We first show the existence of a unique conditional equilibrium price

for a symmetric commuting pattern s such that either L(s) = (0,1,0) or L(s) =

(1/2,0,1/2), and Mi(s) > 0 for i = 0, ± 1.
We focus on the case of a fully agglomerated labor supply pattern, i.e., such

that L0(s) = 1 and L−1(s) = L1(s) = 0 (the proof for the fully dispersed labor
supply pattern given by L0 = 0 and L−1(s) = L1(s) = 1/2 goes along the
same lines). Plugging L0 = 1 and L−1 = L1 = 0 into the firm’s complementary
slackness conditions at i = 0, we obtain

W0 = αN1−α
0 and R0 = (1 − α)N−α

0 , (N.1)

so that
W0

R0
=

α

1 − α
N0. (N.2)

Observe that L1(s) = L−1(s) = 0 implies si1 = si,−1 = 0 for all i ∈ {−1,0,1}.
Combining this with the land market clearing condition and the market residen-
tial demand at i = 0, we get:

H0 +N0 = 1 and H0 = s00
W0

R0
,

so that
N0 = 1 −H0 = 1 − s00

W0

R0
. (N.3)

Plugging (N.3) into (N.2), we get a linear equation in W0/R0:

W0

R0
=

α

1 − α

(
1 − s00

W0

R0

)
=⇒ W 0(s)

R0(s)
=

α

1 − α+ αs00
. (N.4)

From (N.3)-(N.4), we get:

N0(s) =
1 − α

1 − α+ αs00
.

Plugging N0 = N0(s) into the equilibrium condition (N.1) pins down
uniquely the conditional equilibrium wage W 0(s) and the conditional equilibrium
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land rent R0(s). As for W j(s) and Ri(s) for i,j = ±1, zero labor supply implies
W j(s) = 0 and N j(s) = 0 for j = ±1. Hence, the land market clearing at the
periphery becomes

Hi = 1 = si0
W0

Ri
for i = ±1,

which implies Ri(s) = si0W 0(s) for i = ±1.

O. Instability of the corner equilibria
Assume that L∗

0 = 1 (the proof for L∗
−1 = L∗

1 = 1/2 goes along the same lines).
Consider an individual ν such that, for all i ∈ {−1,0,1}, ν’s match values satisfy
zij(ν) = 0 for j = 0, ± 1. Clearly, ν is indifferent between working at the center
and working at the periphery (in both cases, she enjoys zero utility). Consider a
positive-measure set of individuals whose tastes are close to those of ν and whose
utility-maximizing choice is ij = 00. Relocating them (together with ν) from ij =

00 to kl = 01, we have V01(ν,s) > 0 because W 1(s) > 0. Using the complementary
slackness condition

(
αAjL

α−1
j N1−α

j −Wj

)
Lj = 0, there exists a positive-measure

subset of individuals who are strictly better-off working at location j = 1. As a
result, the corner equilibrium L∗

0 = 1 is an unstable equilibrium. Q.E.D.

P. Proposition 10
Proposition 10 There exists a function F(ρ) independent of γ such that an interior
equilibrium ρ∗ is stable if and only if F(ρ∗) > 1. This function is continuous over
(ρm,ρCR) and over (ρCR,ρM ), satisfies F(ρm) = F(ρM ) = 0, and has a vertical
asymptote at ρ = ρCR.

Proof: The proof involves four steps.
Step 1. We first show the existence of a unique conditional equilibrium price

for a symmetric commuting s such that sij > 0 for all i,j when α > 1/2.
Because Li > 0 for i = 0, ± 1, the first-order conditions for the production

sector yields the equilibrium conditions:

Wj = αAj

(
Nj
Lj

)1−α
, (P.1)

Rj = (1 − α)Aj

(
Lj
Nj

)α
. (P.2)

Furthermore, we also know that housing market clearing at location i yields:
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Hi =
β

Ri

n

∑
j=1

sijWj . (P.3)

Plugging (P.1) and (P.2) into (P.3), and using the land market balance condition
Ni +Hi = 1, we get:

Hi = 1 −Ni =
αβ

(1 − α)Ai

(
Ni
Li

)α n

∑
j=1

sijAj

(
Nj
Lj

)1−α
,

(1 − α)Ai (1 −Ni)

(
Ni
Li

)−α
= αβ

n

∑
j=1

sijAj

(
Nj
Lj

)1−α
,

(1 − α)Ai

(
Ni
Li

)−α
= (1 − α)AiLi

(
Ni
Li

)1−α
+ αβ

n

∑
j=1

sijAj

(
Nj
Lj

)1−α
.

Because s is symmetric, this system of equations becomes:

(1 − α)A0

(
N0

L0

)−α
= [(1 − α)L0 + αβs00]A0

(
N0

L0

)1−α
+ 2αβs01A1

(
N1

L1

)1−α

(1−α)A1

(
N1

L1

)−α
= αβs10A0

(
N0

L0

)1−α
+[(1 − α)L1 + αβ(s11 + s1,−1)]A1

(
N1

L1

)1−α

Dividing one equation by the other and using Ai = Lγi for i = 0, ± 1, we get:

n−αℓγ+α =
[(1 − α)L0 + αβs00] ℓ

γ
(
n
ℓ

)1−α
+ 2αβs01

αβs10ℓγ
(
n
ℓ

)1−α
+ (1 − α)L1 + αβ(s11 + s1,−1)

(P.4)

Because (P.1) and (P.2) imply

n−αℓγ+α = r, ℓγ
(n
ℓ

)1−α
= w, (P.5)

we have

wαr1−α = ℓγ =

(
L0

L1

)γ
. (P.6)
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Likewise, combining (P.4) and (P.5), we get:

r =
[(1 − α)L0 + αβs00]w+ 2αβs01

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
. (P.7)

A sufficient condition for the system (P.6) – (P.7) to have a unique solution
(w(s),r(s)) is that the graph of the relationship (P.7) between w and r intersects
the downward-sloping curve given by (P.6) from below. The RHS of (P.7) is the
ratio of two positive linear increasing functions of w. Because the elasticity of a
linear increasing function with a positive intercept never exceeds 1, the elasticity
of the RHS of (P.7) w.r.t. w is always larger than −1. Restating (P.6) as

r = ℓ
γ

1−αw− α
1−α

shows that the elasticity of the RHS of this expression w.r.t. w equals −α/(1−α),
which is smaller than −1 when α > 1/2.

Step 2. Denote by
(
W(s),R(s)

)
the equilibrium price vector conditional to

an arbitrary commuting pattern s that belongs to a neighborhood of an interior
equilibrium commuting pattern s∗, and let w(s) and r(s) be the corresponding
wage ratio and the land-price ratio:

w(s) ≡ W 0(s)
W 1(s)

and r(s) ≡ R0(s)
R1(s)

.

Consider the following two types of relocations: 0j → 1j (changing place of
residence but not the workplace) and i0 → i1 (changing the workplace but not
the place of residence). Observe that, in equilibrium, for each individual ν, we
have:

V ∗
0j(ν)

V ∗
1j(ν)

=
z0j(ν)

z1j(ν)
(r(s∗))−β , (P.8)

V ∗
i0(ν)

V ∗
i1(ν)

=
zi0(ν)

zi1(ν)
w(s∗). (P.9)

If the individual ν is indifferent between 0j and 1j for some j = {−1,0,1},
switching from 0j to 1j makes this individual strictly worse off if and only if
r(s∗) decreases when a small subset of residents (almost indifferent between 0j
and 1j) of measure ∆ is moved from 0 to 1, i.e.,

∂r(s∗)
∂s1j

− ∂r(s∗)
∂s0j

< 0 (P.10)
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because (P.8) and (P.10) imply that V ∗
0j(ν)/V

∗
1j(ν) increases above 1.

Likewise, using (P.9) if ν is an individual indifferent between i0 and i1 for
some i = {−1,0,1}, switching from i0 to i1 makes ν strictly worse off if and only
if w(s∗) increases when a small subset of workers (almost indifferent between i0
and i1) of measure ∆ is moved from 0 to 1, i.e.,

∂w(s∗)
∂si1

− ∂w(s∗)
∂si0

> 0. (P.11)

Step 3. We now show that the land-price ratio r(s∗) always satisfies the
equilibrium condition (P.10). Under a relocation of residents from 0j to 1j (or,
equivalently, from 1j to 0j) for j = 0,1, the numerator in the RHS of (P.7) decreases
pointwise, while the denominator increases pointwise. Therefore, the curve (P.7)
shifts downwards in the (w,r)-plane, while the curve (P.6) remains unchanged.
Because (P.7) intersects (P.6) from below, this implies a reduction in r(s). Hence,
(P.10) holds.

Step 4. It remains to check when (P.11) holds. To this end, we study when
the relocation of a ∆−measure subset of workers from i0 to i1 for i = 0, ± 1
leads to an increase in the relative wage w(s). As a result, two cases must be
distinguished: (i) a relocation of workers from 00 to 01 and (ii) a relocation of
workers from 10 to 11.

Taking the log-differential of (P.6) yields:

αd logw+ (1 − α)d log r = γ(d logL0 − d logL1). (P.12)

Two cases may arise.
(i) Assume that

ds00 = −∆, ds01 = ds0,−1 = ∆/2,

dsij = 0 otherwise.

In this case, (P.12) becomes:

α d logw+ (1 − α) d log r = γ

(
ds00

L0
− ds01

L1

)
= −γ∆

(
1

2L1
+

1
L0

)
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Taking the log-differential of (P.7) yields:

d log r =
d [((1 − α)L0 + αβs00)w+ 2αβs01]

[(1 − α)L0 + αβs00]w+ 2αβs01
− d [αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)]

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
.

(P.13)
Because

d [((1 − α)L0 + αβs00)w+ 2αβs01] = −∆ (1 − α+ αβ)w+αβ∆+((1 − α)L0 + αβs00)wd logw,

while

d [αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)] = (1 − α)
∆

2
+ αβs10wd logw,

(P.13) becomes

d log r =
[

− (1 − α+ αβ)w+ αβ

((1 − α)L0 + αβs00)w+ 2αβs01
− 1

2
1 − α

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
∆

+

[
((1 − α)L0 + αβs00)w

((1 − α)L0 + αβs00)w+ 2αβs01
− αβs10w

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
d logw

Plugging this expression into (P.12), we get:

d logw =
−γ
(

1
2L1

+ 1
L0

)
+ (1 − α)

[
(1−α+αβ)w−αβ

((1−α)L0+αβs00)w+2αβs01
+ 1

2
1−α

αβs10w+(1−α)L1+αβ(s11+s1,−1)

]
α+ (1 − α)

[
((1−α)L0+αβs00)w

((1−α)L0+αβs00)w+2αβs01
− αβs10w

αβs10w+(1−α)L1+αβ(s11+s1,−1)

] ∆.

When α > 1/2, the denominator in d logw is always positive because each
bracketed term of the denominator is smaller than 1. As a result, the stability
condition d logw > 0 holds if the numerator is positive:

(1 − α+ αβ)w− αβ

((1 − α)L0 + αβs00)w+ 2αβs01
+

1
2

1 − α

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
>

γ

1 − α

(
1
L0

+
1

2L1

)
.

(P.14)
(ii) We now assume that
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ds11 = −ds10 = ∆/2, ds−10 = −ds−1,−1 = −∆/2,

dsij = 0 otherwise.

Hence, (P.12) becomes:

αd logw+ (1 − α) d log r = γ

[
ds10 + ds−10

L0
− ds11

L1

]
= −γ∆

(
1

2L1
+

1
L0

)
Because

d [((1 − α)L0 + αβs00)w+ 2αβs01] = −∆ (1 − α)w+((1 − α)L0 + αβs00)wd logw

and

d [αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)] = αβ
∆

2
w+ (1 − α)

∆

2
+ αβs10wd logw,

(P.13) becomes

d log r =
[

− (1 − α)w

((1 − α)L0 + αβs00)w+ 2αβs01
− 1

2
1 − α+ αβ

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
∆

+

[
((1 − α)L0 + αβs00)w

((1 − α)L0 + αβs00)w+ 2αβs01
− αβs10w

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)

]
d logw.

Plugging this expression for d log r into (P.12), we get:

d logw =
−γ
(

1
2L1

+ 1
L0

)
+ (1 − α)

[
(1−α)w

((1−α)L0+αβs00)w+2αβs01
+ 1

2
1−α+αβ

αβs10w+(1−α)L1+αβ(s11+s1,−1)

]
α+ (1 − α)

[
((1−α)L0+αβs00)w

((1−α)L0+αβs00)w+2αβs01
− αβs10w

αβs10w+(1−α)L1+αβ(s11+s1,−1)

] ∆.

If α > 1/2, the denominator in d logw is always positive. Hence, the stability
condition d logw > 0 becomes:
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(1 − α)w

((1 − α)L0 + αβs00)w+ 2αβs01
+

1
2

1 − α+ αβ

αβs10w+ (1 − α)L1 + αβ(s11 + s1,−1)
>

γ

1 − α

(
1
L0

+
1

2L1

)
.

(P.15)
When α > 1/2, the inequalities (P.14) and (P.15) are necessary and sufficient

for an interior equilibrium to be stable.
We now rewrite these two conditions in terms of the variable ρ only. Using

Proposition 1 and the equilibrium relationship ω
1+ε
ε = f(ρ), as well as ρ = r−βε,

ω = wε, and η = αβ/(1 − α), (P.14) and (P.15) become

f(ρ) + 1
2(1 + η)ρ−

1
βε [f(ρ)]

ε
1+ε

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ
>

γ

1 − α

(
[f(ρ)]

ε
1+ε

2(ϕρ+ 1 + ϕ2)
+

1
ρ+ 2ϕ

)
, (P.16)

(1 + η) f(ρ) +
(

1
2ρ

− 1
βε − η

)
[f(ρ)]

ε
1+ε

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ
>

γ

1 − α

(
[f(ρ)]

ε
1+ε

2(ϕρ+ 1 + ϕ2)
+

1
ρ+ 2ϕ

)
,

(P.17)
Solving the equilibrium condition f(ρ) = g(ρ; γ) w.r.t. γ yields

γ =
α

1 + ε

log
(
ρ−ψf(ρ)

)
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
) .

Plugging this expression into (P.16) – (P.17), we get:

Φ(ρ) ≡ 2(1 − α)(1 + ε)(ϕρ+ 1 + ϕ2)

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ

×
f(ρ) +

(
1
2ρ

− 1
βε + η

2ρ
− 1
βε

)
[f(ρ)]

ε
1+ε

[f(ρ)]
ε

1+ε (ρ+ 2ϕ) + 2(ϕρ+ 1 + ϕ2)

×
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
)

α log (ρ−ψf(ρ))
> 1,
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Ψ (ρ) ≡ 2(1 − α)(1 + ε)(ϕρ+ 1 + ϕ2)

((1 + η)ρ+ 2ϕ) f(ρ) + 2ηϕρ

×
(1 + η) f(ρ) +

(
1
2ρ

− 1
βε − η

)
[f(ρ)]

ε
1+ε

[f(ρ)]
ε

1+ε (ρ+ 2ϕ) + 2(ϕρ+ 1 + ϕ2)

×
log
(

ρ+2ϕ
ϕρ+1+ϕ2 [f(ρ)]

ε
1+ε
)

α log (ρ−ψf(ρ))
> 1.

Last, we set:

F(ρ) ≡ min {Φ(ρ),Ψ (ρ)} ,

which is independent of ρ. Verifying F(ρ) > 1 can be done numerically for any
vector of parameters by plotting F(ρ) as a function of the variable ρ. Q.E.D.
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