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Abstract
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of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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There is a large and extensive literature examining the 
strength of agglomeration economies and, more generally, 
the determinants of spatial variations in productivity for 
developed countries. However, the corresponding literature 
for developing countries is comparatively scant. This paper 
contributes to filling this knowledge gap by providing esti-
mates for city productivity premiums and different sources 
of agglomeration effects for 16 countries in the Latin Amer-
ica and Caribbean region. While two of the countries in 
our sample—Brazil and Colombia—have been considered 
by the literature, the remaining 14 countries have not been 
previously analyzed. The paper presents estimates for the 
region as well as comparable estimates for each country 

using a harmonized data set with characteristics of individ-
ual workers and features of the cities in which the workers 
live. In addition to examining the strength of agglomer-
ation economies, the roles of human capital externalities 
and market access in explaining subnational productivity 
variations are assessed. The paper finds that citywide human 
capital externalities appear much stronger than agglomer-
ation economies in explaining productivity variation in all 
the considered countries. There is considerable heterogene-
ity in the estimated strength of human capital externalities 
across countries, which could be a reflection of country 
differences in educational quality.

This paper is a product of the Social, Urban, Rural and Resilience Global Practice and the Office of the Chief Economist, 
Latin America and Caribbean Region. It is part of a larger effort by the World Bank to provide open access to its research 
and make a contribution to development policy discussions around the world. Policy Research Working Papers are also 
posted on the Web at http://www.worldbank.org/research. The authors may be contacted at mroberts1@worldbank.org.    



Explaining Spatial Variations in Productivity:
Evidence from Latin America and the Caribbean.

Luis E. Quintero∗ and Mark Roberts†

JEL Classification: R12, R3,O47, O54, O18. Keywords: Agglomeration economies, hu-
man capital externalities, market access, city productivity, developing economies, Latin America. 
subsidies, diversification.

∗Carey Business School, Johns Hopkins University. leq@jhu.edu.
†Social, Urban, Rural and Resilience (SURR) Global Practice, The World Bank. mroberts1@worldbank.org.
Funding for this work from the World Bank is gratefully acknowledged. The findings, interpretations, and

conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of
the International Bank for Reconstruction and Development/World Bank and its affiliated organizations, or those of
the Executive Directors of the World Bank or the governments they represent.

We are grateful to Gilles Duranton for valuable discussion at different stages of the paper. We also thank
Diego Puga, Matthew Turner, Edward Glaeser, Joshua Gottlieb, Victor Couture, Maŕıa Marta Ferreyra, Daniel
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1 Introduction

There exist wide productivity differences between cities within countries (Combes et al., 2012).

How different productivity is in different cities may depend on many factors. On the one hand,

a city may attract or repel an unusually talented workforce and group of firms, the individual

members of which would be highly productive independently of their location. The sorting of high

skill workers into some cities would make these places more productive. If larger or denser cities are

more attractive to these workers, sorting would imply higher productivity will be observed in larger

scale cities.1 On the other hand, a city may exhibit a higher level of productivity because of specific

attributes associated with its environment and the externalities generated by these attributes on

productivity. If larger or denser cities are associated with more positive externalities, a larger scale

would imply higher productivity.2

The policy implications of these two explanations for variations in city productivity are rather

different. The second explanation implies that cities can be special places with the potential to

help firms and workers be more productive if they have certain attributes. In the context of this

second explanation, urban economics has identified three main theories of urban success related to

city attributes.3

The first theory focuses on agglomeration economies, a set of positive externalities that increase

productivity and that are generated in places with larger populations and/or densities. These

externalities arise through a variety of potential mechanisms, which Duranton and Puga (2004)

identify as sharing, matching and learning. Thick labor markets that characterize larger or denser

cities can help generate better matches between firms and workers. Moreover, these cities can

also host a large and diversified array of specialized suppliers of goods and services, which provide

cheaper and better intermediate inputs to firms. Finally, the close geographic proximity of both

people and firms implied by higher density can give rise to the, often unintended, productivity-

enhancing spillover of ideas, as workers from different firms learn from each other, both through

observation and interaction.

The second theory refers to positive human capital externalities. As with agglomeration economies,

people learn from observing and interacting with other people in a city as they go about their daily

working lives. The crucial difference here, however, is that learning is more likely to occur from

higher skilled than from lower skilled workers. This leads to the prediction that a worker’s individ-

ual productivity will be increasing in the average level of human capital of the city in which she

lives (Rauch, 1993; Moretti, 2004b; Davis and Dingel, 2017).4

1Davis and Dingel (2017) develop theory to show that higher skills and high skill intensive sectors are expected to
be disproportionately located in large scale cities and provide evidence of their predictions for US cities. Davis et al.
(2018) shows the same for Brazil, China, and India.

2We use the term city to refer to subnational locations that conceptually share the same workforce. This includes
locations that might have a rural component. The specific definition of locations will change across the countries we
analyze. We attempt to make them as comparable as possible. See more details in section 3.

3As is evident from the discussion below, these three theories are inter-related and, to a certain extent, overlapping.
See also (Roberts, 2018) for a more detailed discussion on this point.

4See Duranton (2015) for a review of the issue for developing countries.
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Finally, the third theory is that cities can generate higher levels of productivity because they

also tend to benefit from higher levels of access to both large consumer markets and markets for

intermediate inputs. Superior market access stems from a city’s connectivity to the markets of

surrounding areas.5 Higher levels of market access lower export costs (Krugman, 1980), lower

input costs for local firms (Krugman and Venables, 1995; Bartelme, 2018) and increase effective

demand for local firms’ products, which would stimulate increases in productivity, especially in a

context of economies of scale (Krugman, 1991).6

There exists an extensive empirical literature analyzing the above three theories of urban success

(see Combes and Gobillon (2015) for a detailed review of this literature). However, as has been noted

by, for example, Overman and Venables (2005), Desmet and Rossi-Hansberg (2013), and Duranton

(2015), this literature is largely confined to developed countries, and rarely does it consider all

three theories together. As such, there exists an important empirical blind spot with regards to the

strength of the basic forces which help to govern the productivity of cities in developing countries.

This is at a time when there are good reasons to suspect that the strength of agglomeration

economies may differ significantly for developing countries on account of, inter alia, differences in

their economic structures, levels of institutional development, and infrastructure stocks.

In response to the above knowledge gap, there has been a recent effort in the literature to

generate estimates of the strength of agglomeration economies for several developing countries.

Duranton (2016) presents such estimates for Colombia, while Chauvin et al. (2017) do likewise for

Brazil, China and India. In both cases, in order to allow for the comparability of their results,

the authors make use of empirical specifications that have previously been applied to developed

countries in the literature. Chauvin et al. (2017) empirically examine the roles of both agglomera-

tion economies and human capital externalities in driving urban productivity differences for Brazil,

China and India. Duranton (2016) also examines both of these theories for Colombia in addition to

empirically investigating the role of market access. Authors who have studied the empirical rela-

tionship between sub-national levels of productivity and levels of market access, without necessarily

accounting for agglomeration economies and human capital externalities in a developing country

context, include Au and Henderson (2006), Roberts et al. (2012) and Hering and Poncet (2010) for

China, Amiti and Cameron (2007) for Indonesia, and Fally et al. (2010) for Brazil.

This paper contributes to the above effort to fill the knowledge gap on the determinants of

urban success for developing economies by providing estimates of the roles of population density,

human capital and market access in driving sub-national productivity differences within 16 Latin

American and Caribbean (LAC) countries. By controlling for key individual worker characteristics

5The measure of market access that we use in this paper excludes a city’s own market. This helps to distinguish
market access from the measure of agglomeration that we use, while also helping to mitigate endogeneity concerns
associated with reverse causation.

6The effect of market access on local productivity is not clear theoretically, as higher access to final products
can also decrease investment in local industries and prevent their development. Also, access to cheaper consumption
goods would increase real wages in cities with higher market access, which would imply lower nominal wages in
spatial equilirbium (Handbury and Weinstein, 2014; Duranton, 2016). However, Combes and Gobillon (2015) review
analyses of market access on local productivity and conclude that “the positive effect of the economic size of distant
locations and the spatial decay of this effect are rarely rejected empirically”.
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in our estimation, we aim to mitigate bias due to sorting effects. While, as indicated above, two of

our countries - Brazil and Colombia - have already been considered by Chauvin et al. (2017) and

Fally et al. (2010), and Duranton (2016) respectively - the remaining 14 countries have not, to our

knowledge, been previously analyzed in the literature.

To ensure comparability of our estimates across countries, we use a harmonized dataset of

nominal wages and characteristics of individual workers, and of the characteristics of the locations

in which the workers live.7 This data set is constructed from successive rounds of country spe-

cific household surveys extracted from the Socio-Economic Database for Latin America and the

Caribbean (SEDLAC), and from a Geo-Spatial Database for Latin America and the Caribbean

that was constructed for the World Bank’s Regional Flagship report Raising the Bar for Produc-

tive Cities in Latin America and the Caribbean (Ferreyra and Roberts, 2018). To further ensure

the comparability of results both across the countries we study and with those available elsewhere

in the literature for other countries, we apply a similar empirical specification to previous studies

in the literature.

We find sizeable variations in sub-national levels of nominal wages - and, hence, productivity

- within countries. Higher levels of productivity are typically observed in and around larger and

more densely populated cities. Much of the variation in productivity across sub-national areas can

be explained by observable compositional differences in the workforce, the skill-selective sorting

of workers discussed previously. More productive areas tend to be populated by better educated

workers.

Yet, there remains an important component of sub-national productivity whose variation cannot

be explained by compositional differences in the workforce. This is consistent with the existence of

positive externalities and spillovers between workers and/or firms and, therefore, the three theories

of urban success, which we test empirically. Out of the three theories of urban success, evidence

is found to support that the most important channel in the countries we analyze is human capital

externalities, both in the pooled analysis and in the individual estimations by country.8 Market

access measures are found to be a statistically significant predictor of variations in sub-national

productivity in the pooled analysis. However, this is only robust in 4 countries in the individual

analysis.9 Finally, agglomeration economies appear to be weak or non-existent across LAC coun-

tries in the pooled analysis. Five countries show positive and significant elasticities with respect

to density, but all with very small magnitude. The effect is not significant in the pooled analysis.

One potential explanation for the weakness of the agglomeration economies in our sample is sub-

optimal infrastructure that increases congestion under high densities, which in turn overwhelms

7Ideally, we would like to estimate agglomeration effects on the basis of where the workers are employed. However,
our data only identify where they live.

8Our results on the importance of human capital could also, at least partly, be attributable to human capi-
tal complementarities in production. Empirically, it is difficult to distinguish between human capital externalities
and complementarities. See Moretti (2004b) for a discussion on the interpretation of empirical estimates under ex-
ternalities and complementarities and Ferreyra (2018) for analysis of the roles of human capital externalities and
complementarities in driving high returns to human capital in LAC.

9Our market access measure does not include access to international markets.
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agglomeration economies.

The structure of the remainder of the paper is as follows. In the next section, we present the

empirical strategy used to estimate a city’s productivity premium controlling for the composition of

its workforce, as well as the effect of the determinants of urban success on this premium. Following

this, we discuss the construction of the dataset. We then present results of the analysis for all

countries pooled, before proceeding to examine the heterogeneity of results found across both

different countries and different sub-groups of workers (i.e. between young and old workers, male

and female workers, public and private sector workers, and formal and informal workers). Finally,

we offer some concluding remarks on our findings.

2 Estimation

To test different mechanisms of urban success, we first focus on estimating city productivity pre-

miums controlling for sorting of workers with different education levels and other observable char-

acteristics, and then attempt to estimate the effects on these premiums of variables that are rep-

resentative of the different theories discussed above. To estimate the city productivity premium

we focus on a regression of the natural logarithm of a worker’s nominal wage on a set of location

dummies and a set of observable worker characteristics.10 Following Combes and Gobillon (2015),

our estimating equation is derived from a setting where a representative firm located in city l at

time t, produces goods Yl,t, using labor Ll,t and capital Kl,t, at factor prices ωl,t and rl,t respectively,

and sells them at price pl,t. The firm’s profits are given by

πl,t = pl,tYl,t − ωl,tLl,t − rl,tKl,t

πl,t = pl,t

(
Al,t
D

(sβl,tLl,t)
αK1−α

l,t

)
− ωl,tLl,t − rl,tKl,t (1)

where the term in brackets is output assuming a Cobb-Douglas production function. α is the

share of (augmented) labor and D = αα(1−α)1−α is a constant. Al,t captures the firm productivity

(TFP). sl,t are labor skills, which augment the impact of labor on production by the factor sβl,t,

where β is the wage elasticity of labor skills. Profit maximization determines wages in a competitive

equilibrium:

ωl,t =

(
pl,tAl,t

r1−αl,t

) 1
α

sβl,t (2)

Nominal wages are a combination of worker skills and firm productivity, product and capital

10We assume a competitive labor market. Otherwise, the bargaining power of workers could change with the size
of a city and this could be perceived as an additional source of agglomeration effects. In the case of a monopsonic
market structure, wages would be proportional but not equal to productivity. To avoid confounding agglomeration
economies and market structure, some studies use TFP as a productivity measure (Henderson, 2003; Cingano and
Schivardi, 2004; Combes et al., 2010; Cainelli et al., 2015). We cannot follow such an approach due to the absence of
such data with harmonized methodology for a large number of countries in our study.
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prices. Taking logarithms we get

lnωl,t = Bl,t + β ln sl,t (3)

where Bl,t represents the term accompanying the skills productivity augmenting component.

We do not have data on local prices or TFP. However, we can measure these compounded effects

(Bl,t) with fixed effects for locations and years, since these vary by location and time. This effect

is the city productivity premium.11 In the data, skills and wages vary by worker, so we relax the

implied assumption of a representative worker, and estimate the equation above at the worker level

i.

lnωi,l(i),t = Bl + β ln si,l(i),t + εi,l(i),t (4)

where l(i) is the location (city) of worker i at time t, and εi,l(i),t is a stochastic error. Bl is

now indexed by location because our data prevent us from estimating a separate fixed effect for

each city in each time-period.12 Rather, we estimate a single city fixed effect while controlling for

survey-year fixed effects.

This specification raises an important estimation concern. We do not have a perfect measure of

skills. We can separate skills into an observed component comprised of demographic characteristics

as well as education history of the worker, and an unobserved component. Ideally, we would

identify the unobserved effects, assuming they are time-invariant, by tracking workers in a panel

(Combes et al., 2010; D’Costa and Overman, 2014). However, we do not have access to a panel and

therefore are subject to an endogeneity (omitted variable) bias. In estimation, the observable worker

characteristics that we control for are years of schooling, age and its square, gender, and marital

status. Similar to Duranton (2016) and Chauvin et al. (2017), we see the potential biases in the

estimated coefficients arising from omitted heterogeneity as a price worth paying for the knowledge

obtained about developing countries, given the alternative of not undertaking the empirical work.

We also note that, in recent work for Spain using rich administrative data, De La Roca and Puga

(2017) have found that, once learning effects in cities are controlled for, workers in larger cities

do not exhibit higher initial unobserved ability than workers in smaller cities, which eases to some

extent the concern for bias arising from not controlling for these unobserved skills. Under these

circumstances, a higher productivity premium in larger scale cities can be interpreted as capturing

both the static and dynamic agglomeration benefits associated with such cities.

After estimating 4, we estimate a second stage using the estimated city fixed effects or produc-

tivity premiums B̂l as the dependent variable.

11We are assuming a representative firm in this derivation and do not separate firm specific effects and location
effects, but instead average over all firms by imposing that this variable does not change for each location and time
pair. This is a standard approach. To incorporate firm heterogeneity, we also estimate versions of the model as
robustness tests where we incorporate firm and job characteristics to disentangle the citywide effects and the sorting
of different types of firms into different locations. The results are similar and are available from the authors by
request.

12This is because the exact survey years differ between countries and we do not observe every city is our sample in
every survey.

6



B̂l = θ1 ln densityl + θ2 ln human capitall + θ3 ln market accessl + controlsl + µl (5)

This regression relates the estimated city productivity effect net of skill sorting to variables

associated with the three urban success theories discussed above. Population density captures

the theory of agglomeration economies, a set of positive externalities that increase productivity

in larger or denser places. Human capital captures human capital externalities - i.e. spillovers of

knowledge that increase with a city’s stock of human capital.13 We initially assume the impact

of human capital externalities to affect all workers equally.14 To measure human capital, we use

average years of education completed in the working-age population and the share of the working-

age population that has completed higher education (each in different specifications). The effect of

the density and human capital variables would be reflected in the productivity component, Al,t of

the city effect Bl,t in equation 2.

Market access captures the third theory that a city can generate higher productivities because

they benefit from access to larger markets for both final goods (higher average perceived pl,t because

of lower trade costs) and intermediate inputs (lower rl,t) (Combes, 2011). The effect of market access

then would impact the other variables in the city effect Bl,t.

Additional controls include a location’s average temperature, terrain ruggedness, and total

precipitation, as well as country and survey-year fixed effects.

Further estimation concerns appear in this second stage. First, B̂l,t is itself an estimated variable

and therefore has some estimation error. In the second stage, we are not taking that estimation

error into account. This can be overcome by either using the standard errors from the first stage

as weights in a generalized least squares estimation in the second stage, or by performing all the

estimation in a single stage, nesting equation 4 into 5 as follows:

lnωi,l(i),t = κ ln si,l(i),t + τ1 ln densityl(i) + τ2 ln human capitall(i)

+τ3 ln market accessl(i) + controlsl(i) + ρi,l(i),t (6)

We present our main results using the two stage approach as it allows us to describe and map

the spatial distribution of B̂l,t, which is interesting in its own right.15 We estimate 6 as a robustness

test.16

Second, we are not comparing the wages of workers randomly assigned to cities. Instead, we are

comparing workers that have endogenously chosen, up to affording mobility costs, their location.

This can imply that there are some city characteristics that are correlated with wages and that are

13 This might also be capturing complementarities in production between skilled and unskilled workers.
14Combes et al. (2008) analyze differential effects for high and low skilled workers, which also sheds light on possible

substitutability between these two types of workers. We estimate regressions with subsamples that partially capture
some of these effects in section 4.2.2.

15Our adoption of a 2-stage approach to estimation follows Combes et al. (2008) and De La Roca and Puga (2017).
16In estimating equation 6, we allow the effects of individual worker characteristics to differ across countries so as

to mimic our 2-stage regression approach as closely as possible.
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absent from our equation, introducing an omitted variable problem. In an effort to solve this, we

include control variables, as well as a set of job and firm characteristics in robustness tests.17

3 Data

Our first stage (equation 4) analysis draws on successive rounds of household survey micro-data

for 16 LAC countries that, apart from Brazil, are taken from the Socio-Economic Database for

Latin America and the Caribbean (SEDLAC). This database has been jointly constructed by the

Center for Distributive, Labor and Social Studies (CEDLAS) at the Universidad National de La

Plata and the World Bank’s Poverty Group for the Latin American and the Caribbean region.18

Previously, data availability has been an important obstacle to carrying out large scale work on

agglomeration economies for developing countries. In particular, surveys are not uniform across

LAC countries. Comparability is, therefore, an issue of great concern. One of the great advantages

of SEDLAC is that it provides harmonized survey micro-data. Strong comparability of the data

is ensured across time and countries by using similar definitions of variables in each country/year,

and by applying consistent methods of processing the data (CEDLAS and The World Bank, 2014).

SEDLAC provides as close to perfect comparability as can be hoped for given the continuing

prevalence of differences in coverage and questionnaires of household surveys across LAC countries.

The version of SEDLAC we use covers different survey years for different countries - for example,

from 1974 to 2014 for Argentina, from 1987 to 2013 for Chile, and from 2001 to 2014 for Colombia.

To ensure consistency across the LAC countries on which our analysis focuses, we make use only

of SEDLAC data from 2000 onwards. To allay potential concerns over a lack of representativeness

of the survey data at the level at which we analyze it, we pool successive cross-sections of data

from this period. SEDLAC covers 24 countries. However, eight countries had to be dropped

either because: (i) changes in administrative units and their coding over time prevent SEDLAC

from providing reliable geographic identifiers; or (ii) technical difficulties prevented the loading of

the micro-data from SEDLAC. The 16 countries analyzed are: Argentina, Brazil, Bolivia, Chile,

Colombia, Costa Rica, Dominican Republic, Ecuador, El Salvador, Guatemala, Honduras, Mexico,

Nicaragua, Panama, Peru, and Uruguay.

Our analysis focuses on a broad sample of workers covering both formal and informal sectors

irrespective of job characteristics. However, we choose to restrict our sample only to wage work-

ers, excluding self-employed workers whose reported income levels may not be comparable across

countries (Duranton, 2016). Likewise, we exclude workers who report zero-income (mostly family

helpers in the sectors of agriculture and retail trade). Our final sample comprises 4,083,256 em-

ployed wage workers ages 14 to 65. A worker’s wage is taken to be the nominal hourly wage earned

17A possible third concern is that of reverse causality - i.e. that density or human capital in a city can be determined
by its productivity premium. Using lagged right hand side variables in equation 6 could partially address this issue,
unless there is strong path dependence, as seems likely, in which case both the premiums and the right hand side
variables could be determined by a city’s historical productivity premium. Additionally, market access measures used
exclude a city’s own market to mitigate reverse causation concerns.

18 https://data.worldbank.org/data-catalog/sedlac
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in the primary occupation.19 We also perform estimation considering an alternative narrower sam-

ple of workers which is restricted to prime age males - i.e. males aged 20-55 - working in the private

sector (see table B1 in the appendix).20 In general, we find very similar results for both our broad

and narrow samples.

For Brazil, the coding of administrative units in SEDLAC did not allow us to identify specific

locations and map them to variables from other sources used in the second stage. Thus, we take

micro-data on workers from the population census sample for 2000 that is available in IPUMS

International.21 We perform our own harmonization of the IPUMS International data for Brazil

with the SEDLAC data for the other 15 countries in our sample.

For our second stage (equation 5) analysis of the determinants of the city premium, we further

carefully match the harmonized survey data from SEDLAC and IPUMS with data from a LAC

Geo-spatial Database that was constructed for the World Bank by the University of Southampton’s

GeoData Center (Branson et al., 2017).22 This database was constructed with the specific purpose

of aligning with the identifiers for sub-national areas we have in SEDLAC. This dataset includes

information on a location’s population density (population per km2 of admin unit), aggregate stock

of human capital, market access, terrain ruggedness (elevation variation calculated as in Nunn and

Puga (2012)), mean air temperature, and total precipitation.23

Gridded Population of the World (GPW) v4 global 1 km population count data for 2015 was

used to determine the population of locations, which correspond to administrative units, specified

in table 1. UN adjusted measurements were used, which adjust raster cell values so that when

summed to the national level they are consistent with UN population estimates. Robustness tests

were carried out with other population data sources, such as WorldPop and Landscan-2012.24

Similar results were obtained.

Average years of schooling by administrative unit were estimated using the household surveys

19Wages are measured at 2005 Purchasing Power Parity (PPP) exchange rates. In SEDLAC, rural wages are also
increased by 15 percent to capture differences in rural-urban prices (CEDLAS and The World Bank, 2014, p 23). In
our analysis, we undo this by multiplying the mean hourly wage of a rural worker by the factor 0.8695.

20Bacolod et al. (2009), Glaeser and Resseger (2010),Duranton (2016), and Chauvin et al. (2017) focus only on
prime-age males.

21The second stage results for the pooled sample excluding Brazil are very similar to those including Brazil.
22This database was constructed as input into the World Bank’s LAC Flagship Report “Raising the Bar for

Productive Cities in Latin America and the Caribbean” (Ferreyra and Roberts, 2018).
23 The market access variable attempts to capture the spillovers of agglomeration of other locations in the focal

city. The construction of the measure is similar to a market potential measure, but it leaves the focus economy size
put and focuses on the effect of proximity to other markets. This helps to distinguish market access from our measure
of agglomeration, while also mitigating reverse causality concerns. Following Henderson and Wang (2007), we define
market access for city l as

MAl ≡
N∑

k=1|k 6=l

nk
d2lk

(7)

where nk is the size of city k measured by population, dlk is the estimated travel time by automobile between the
focal city l and each of the other cities, indexed by k, and N is the total number of cities in the country. Travel times
incorporate average road congestion, current speed limits, and road type details between city centroids (Branson
et al., 2017).

24GPW v4 can be found at http://sedac.ciesin.columbia.edu/data/collection/gpw-v4, World Pop at
http://www.worldpop.org.uk/, and Landscan-2012 at http://web.ornl.gov/sci/landscan/.

9

http://sedac.ciesin.columbia.edu/data/collection/gpw-v4
http://www.worldpop.org.uk/
http://web.ornl.gov/sci/landscan/


Table 1: Summary of data

Country Admin. Unit Survey years 1st-stage 2nd-stage % national
(Division level) observations # locations population

Guatemala Departmento (1) 2006, 2011, 2014 58,030 22 100
Chile Comuna (3) 2000, 2003, 2006, 405,221 328 99.4

2009, 2011, 2013
Honduras Municipio (2) 2004 - 2011, 2013 43,261 275 97.8
Peru Distrito (3) 2000 - 2014 459,915 1,428 96.3
Costa Rica Distrito (3) 2002 - 2006, 117,517 401 94

2008 - 2010
El Salvador Municipio (2) 2014 27,117 220 93.2
Nicaragua Municipio (2) 2001, 2005 24,730 116 90.2
Ecuador Parroquia (3) 2005 - 2012, 2014 237,801 637 88.4
Uruguay Municipio (2) 2005 15,915 13 87.6
Bolivia Provincia (2) 2006, 2012 14,874 73 83.9
Dominican Municipio (2) 2000 -2014 131,608 207 80.8
Republic
Brazil Municipio (2) 2000 1,809,596 1,488 80.7
Panama Provincia (1) 2003 - 2008, 186,956 9 80

2010 - 2013
Argentina Aglomerado (1) 2000 - 2011, 2013 225,261 13 75.9
Mexico Municipio (2) 2000, 2002, 94,105 430 64.6

2008, 2010
Colombia Municipio (2) 2008, 2009, 2010 231,349 212 60.9

Total 4,083,256 5,872 77.9

from SEDLAC (and IPUMS for Brazil). Workers under 14 years of age are excluded from the

calculation, to prevent confounding between a large share of young population and low educational

averages. Robustness tests were carried out using instead percentage of workers with tertiary

education, following Behrens et al. (2014) and Chauvin et al. (2017).

For most countries, the locations that our data set captures cover more than 80% of the total

national population, as calculated with GPW 2015 and shown in table 1. Table 2 shows summary

statistics of the data used in the 1st-stage estimation calculated using survey weights. As expected

when working with developing countries, the percentage of workers with complete higher education

is rather small (an overall average of 11.3 percent in our sample vs 35 percent as the average of

OECD (Organisation for Economic Co-operation and Development) countries and 43 percent for

the US, as reported by the OECD for 2017 (OECD, 2017)). Similarly, the working population is

younger (35.8 in our sample vs a median of 41 years in the US for 2014 according to the Bureau of

Labor Statistics, BLS (2017)).

Table 3 provides summary statistics of the specific variables used in the second stage.25

25Population density for Argentina seems significantly lower than for the rest of the sample. This is explained
partially by the fact that we are using an administrative level (aglomerados) for Argentina, which is generally slightly
larger than the administrative units used in other countries. This choice is due to data constraints.
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Table 2: Summary Statistics 1st stage

Country # of observations % Males % Married Mean age Mean % Workers
years of higher

schooling education

Argentina 225,261 59.5 60.6 38.5 10.7 17.4
Bolivia 14,874 60.2 66.6 38.2 9.5 17.1
Brazil 1,809,596 57.5 56.6 33.0 7.8 8.3
Chile 405,221 65.1 61.9 39.7 11.2 13.0
Colombia 231,349 56.2 57.7 37.7 8.8 15.6
Costa Rica 117,517 66.9 59.8 36.2 8.9 10.9
Dominican 131,608 66.0 57.7 36.8 8.8 11.1
Republic
Ecuador 237,801 64.1 54.2 38.8 9.4 12.6
Guatemala 58,030 66.8 63.7 34.9 6.0 2.70
Honduras 43,261 63.1 58.9 35.9 6.6 5.3
Mexico 94,105 62.4 61.9 36.4 9.4 13.6
Nicaragua 24,730 63.0 60.3 35.5 6.6 8.1
Panama 186,956 64.7 61.8 38.0 10.7 11.2
Peru 459,915 60.7 60.7 37.8 9.7 17.6
El Salvador 27,117 59.3 58.3 37 8.3 5.3
Uruguay 15,915 54.2 61.0 39.9 10.6 13.6

All 4,083,256 60.2 58.4 35.8 8.60 11.3
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Table 3: Summary Statistics Adminstrative units for 2nd stagea

Variables Statistic All ARG BOL BRA CHL COL CRI DOM ECU

Population Mean 473 19 32 341 434 401 1,357 469 181
density Median 55.7 12 12 61 28 69 171 115 59
(people/ Max 25,821 68 356 13,393 8,652 9,039 16,355 11,188 4,801
km2) Min 0 4 0.6 0.2 0.1 3 3 6 1

S.D. 1,737 20 63 1,139 1,375 1,092 2,564 1,292 426

Average Mean 6.8 10.6 6.8 5.4 9.5 7.2 7.7 6.9 6.9
years of Median 6.7 10.6 7.0 5.6 9.4 6.9 7.5 6.9 6.8
schooling Max 14.2 11.1 11.6 9.8 13.5 10.9 14.2 11.3 11.8
(years) Min 1.4 9.9 1.5 1.8 5.4 3.6 3.1 3.0 2.8

S.D. 2.0 0.4 2.3 1.5 1.1 1.4 1.8 1.4 1.6

Share of Mean 5.3 11.5 6.8 4.4 7.1 5.8 6.8 4.4 2.9
workers Median 3.5 11.3 4.8 3.6 5.6 4.8 4.0 3.9 1.7
w/ higher Max 55.8 14.3 24.1 24.3 37.5 23.2 55.8 18.7 22.4
education Min 0.0 9.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0
(%) S.D. 5.8 1.7 6.4 3.2 5.0 4.3 7.6 3.3 3.6

Market Mean 14.2 18.4 13.2 14.5 14.1 15.6 15.5 14.3 13.9
access Median 13.6 19.6 12.7 14 13.7 14.7 15.4 14.2 13.6
index Max 36.2 25.5 19.5 36.2 22.9 26.5 22 22.3 25
(ln) Min 8.1 11.3 9.1 9.1 8.1 11.5 11.1 11.8 10.9

S.D. 2.5 5.7 2.7 2.6 2.9 2.9 2.5 1.8 1.7

GTM HND MEX NIC PAN PER SLV URY

Population Mean 282 89 1,024.40 128 53 478 500 193
density Median 167 66 128 65 50 24 213 8
(people/ Max 1,531 835 19,743 1,584 164 25,821 6,903 2,289
km2) Min 20 5 0.3 7 5 0 30 5

S.D. 319 102 2,700 202 46 2,346 996 630

Average Mean 5.2 5.2 7.8 5.1 8.9 7.4 7 9.2
years of Median 5.1 5.2 7.9 5.2 8.9 7.2 6.7 9.0
schooling Max 7.9 9.1 13.4 9.1 10.8 13.2 12.7 10.4
(years) Min 3.8 1.4 2.4 1.5 6.7 1.6 2.8 8.7

S.D. 0.9 1.2 1.9 1.8 1.2 2.0 1.6 0.5

Share of Mean 1.4 1.1 6.9 3.3 6.6 7.3 2.4 6.2
workers Median 1.0 0.6 5.3 1.9 6.8 4.3 1.4 5.8
w/ tertiary Max 6.5 8.2 44.9 19.3 9.8 51.4 25.7 10.9
education Min 0.5 0.0 0.0 0.0 3.3 0.0 0.0 1.6
(%) S.D. 1.3 1.5 6.2 3.8 2.2 8.1 3.3 2.2

Market Mean 13.7 13.4 15.3 13 12.9 13.3 13.3 12.6
access Median 13.1 13.2 14.7 12.6 11.6 12.7 13.1 12.1
index Max 18.8 19.7 24.6 18.1 22.4 28.5 18.7 21.5
(ln) Min 10.4 11.3 9.8 9.8 9.9 8.9 9.8 9.2

S.D. 1.9 1.4 2.9 1.7 4.0 2.3 1.8 3.3
aARG = Argentina, BOL = Bolivia, BRA = Brazil, CHL = Chile, COL = Colombia, CRI = Costa Rica,
DOM = Dominican Republic, ECU = Ecuador, GTM = Guatemala, HND = Honduras, MEX = Mexico,
NIC = Nicaragua, PAN = Panama, PER = Peru, SLV = El Salvador, URY = Uruguay.
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4 Empirical results

4.1 1st stage results - city productivity premiums

We observe large differences in average nominal wages across sub-national areas (figures 1a and

2a), which typically correspond to level 2 administrative units or municipios. Moreover, it is no-

table that the highest levels of nominal wages, and, hence, productivity, tend to be observed in

sub-national areas that correspond to major cities such as Bogota, Buenos Aires, Lima, Mexico

City, Panama City, Santa Cruz, Santiago, and Sao Paulo. After controlling for worker skills si,t

as shown in equation 4, we get the estimated premium B̂l,t by location (figures 1b and 2b). As

discussed previously, the observable worker characteristics that we control for are years of school-

ing, age and its square, gender, and marital status. After these controls are introduced to account

for sorting, we see a significantly lower variation in the premium across cities than for the simple

average nominal wages. Figure 1 and table 4 show the dampening of the variation by reporting

productivity premiums before and after controlling for sorting on observable worker characteristics.

This indicates that compositional differences in the workforce associated with the sorting of work-

ers into different places is a major factor driving productivity differences. The overall standard

deviation is reduced by 80% for all countries pooled. Tables A1 and A2 show 1st-stage results by

country. Additionally, we have performed estimation including job characteristics (available upon

request from the authors) as a robustness check.26 Results are robust.

Sorting does not, however, tell the full story of productivity differences between places. Even

after controlling for observable characteristics, some important variation in productivity premiums

remains across cities within countries.27 This can be seen more clearly in figure 3, which shows

box plots of estimated city premiums for the sample of 16 countries. The variation in premiums

is particularly pronounced in Peru, Ecuador, Costa Rica and Honduras, whereas it is much more

muted in, for example, Guatemala and Uruguay.

We explain this remaining variation in premiums net of skill sorting with variables that represent

the three urban success theories discussed above.

4.2 2nd stage results - the roles of the three theories of urban success

Consistent with the three theories of urban success (i.e. the theories of agglomeration economies,

human capital externalities, and market access), we see that estimated city premiums are positively

and significantly correlated with population density, average years of schooling among the working-

age population, and market access (figure 4) across our sample of 16 LAC countries. With respect

to population density, which provides our measure of agglomeration, the estimated elasticity of the

city premium is 5.3 percent. This is higher than corresponding estimates that have been reported

in the literature for developed countries, but lower than the estimates that have been reported

26Job characteristics are 1 digit ISIC sectoral dummies, informal sector dummies, and controls for size of firm.
27We still see a range of approximately 2 dollars per hour between the 5th and 95th percentiles of the distribution

of the location premiums across cities for all countries pooled (see table 4).
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Figure 1: City premiums in South Americaa

Paraguay 

Venezuela 

Guyana 

Suriname Bogota, Col 

Guayaquil, Ecu 

Lima, Per 

Santiago, Chl 

Santa Cruz, Bol 

Montevideo,  Ury 

Sao Paulo, Bra 

Rio de Janeiro, Bra 

Brasilia, Bra 

Greater Buenos Aires & 
Greater La Plata,  Arg 

Spatial distribution of the estimated location effects 
before controlling for the effect of sorting: 

Broad sample from South America 

(a) City premiums before controlling for sorting.
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Spatial distribution of the estimated location effects 
after controlling for worker characteristics (with Age^2): 

Broad sample from South America 

(b) City premiums after controlling for sorting.

a We employ a separate point layer for Argentina to retain all locations for which SEDLAC allows us
to estimate city premiums. Unlike other countries in our sample, these correspond to major cities/urban
agglomerations, e.g. City of Buenos Aires and Greater La Plata, for which we lack a GIS shapefile of
administrative boundaries. City premiums in the maps are displayed as exp(B̂) and expressed in 2005
PPP exchange rates, where B̂ is the estimated city fixed effect in equation 4. In (a), the city premium
(before sorting) is the premium without controlling for observable worker characteristics, but controlling for
survey-year fixed effects. In (b), the city premium is the premium after controlling for observable worker
characteristics (age, age2, years of schooling, gender, marital status) and survey-year fixed effects. Same
considerations apply for figure 2.
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Figure 2: City premiums in Central Americaa
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(a) City premiums before controlling for sorting.
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(b) City premiums after controlling for sorting.

a Similar considerations apply as in figure 1.

Table 4: Standard deviation of productivity premiums before and after controlling for sortinga

country ARG BOL BRA CHL COL CRI DOM ECU

σω̂ 1.370 0.886 0.937 0.864 0.453 0.987 0.296 0.635
σB̂l

0.152 0.152 0.037 0.071 0.040 0.097 0.035 0.118

GTM HND MEX NIC PAN PER SLV URY Total
σω̂ 0.270 0.446 0.914 0.351 0.712 0.729 0.490 0.338 0.950
σB̂l

0.030 0.072 0.064 0.083 0.056 0.109 0.083 0.023 0.161

aσω̂ is the standard deviation of the average wage net of survey-year fixed effects (estimated through the
location fixed effect in a regression similar to equation 4 but without any worker observable characteristics -
i.e. without the component β ln si,l(i),t. σB̂l

is the standard deviation of the estimate location premium B̂l

from estimating equation 4. Variances are taken after exponentiating the estimated parameters so that they
are expressed in the hourly wages units. ARG = Argentina, BOL = Bolivia, BRA = Brazil, CHL = Chile,
COL = Colombia, CRI = Costa Rica, DOM = Dominican Republic, ECU = Ecuador, GTM = Guatemala,
HND = Honduras, MEX = Mexico, NIC = Nicaragua, PAN = Panama, PER = Peru, SLV = El Salvador,
URY = Uruguay.
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Figure 3: Variation of city premiums after controlling for sorting a.
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a This chart is organized in descending order of the median level of estimated city premium within each sub-
region. Estimated city premium measures sub-national variations in underlying productivity after controlling
for observable worker characteristics within the broad sample (all wage/salary employees aged from 14 to 65
years old). The upper and lower caps respectively indicate the maximum and the minimum estimated city
premiums for each country. The bottom of the blue box, the border of two colors, and the top of the red box
respectively depict the first quartile, the median, and the third quartile of the estimated city premiums in
each country. ARG = Argentina, BOL = Bolivia, BRA = Brazil, CHL = Chile, COL = Colombia, CRI =
Costa Rica, DOM = Dominican Republic, ECU = Ecuador, GTM = Guatemala, HND = Honduras, MEX
= Mexico, NIC = Nicaragua, PAN = Panama, PER = Peru, SLV = El Salvador, URY = Uruguay.
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for China and India. Using comparable regression specifications, Chauvin et al. (2017) report an

elasticity of nominal wages with respect to population density of 4.6 percent for US Metropolitan

Statistical Areas (MSAs), 19.2 percent for a sample of Chinese provincial and prefectural level

cities, and 7.6 percent for the urban parts of Indian districts. Meanwhile, the estimated elasticities

of the city premium with respect to average years of schooling and market access for our sample of

16 LAC countries are 62 percent and 4 percent respectively.

While the above correlations are suggestive of the ability of the three theories of urban success

to explain variations in sub-national underlying productivity, it is also the case that population

density, average years of schooling and market access are all positively correlated with one another.

Hence, more densely populated areas tend to exhibit both higher average years of schooling and

market access.28 To disentangle the relative importance of the three theories of urban success, we

estimate equation 5. Table 5 shows the results. Columns 1-3 report the results of regressions of

the estimated city premium on population density, average years of schooling, and our measure of

market access. In these regressions, we also control for mean air temperature, terrain ruggedness

and total precipitation, physical geographical conditions that could be correlated with both city

premiums and the main explanatory variables.

In column 1, we see that the estimated elasticity of the city premium with respect to population

density declines to 4.9 percent once we control for geographic conditions. Although this estimate

remains statistically significant, it is less than the estimated elasticity of 5.3 percent that we reported

above when not controlling for geography. Once we also introduce average years of schooling, in

column 2, however, both the estimated size and statistical significance of the elasticity of the city

premium with respect to population density fall dramatically. Including market access in column

3 then leads population density to lose its statistical significance completely.29

Although both average years of schooling and market access are significant, the former has

a much larger effect on underlying productivity. While an increase in average years of schooling

from the 25th to the 75th percentile in our sample implies an estimated productivity increase of

23.4 percent, moving from the 25th to the 75th percentile for market access implies a productivity

increase of only 4.1 percent. The point estimate for the elasticity of underlying productivity with

respect to average years of schooling is 0.57. This implies, at the overall average level of education

of 8.6 years, that an increase in one year of education is associated with an increase in wages of

28The Pearson correlation coefficient for population density and average years of schooling is 0.30, while that for
population density and market access is 0.67. For average years of schooling and market access, the correlation
coefficient is 0.32. All estimated correlation coefficients are significant at the 5 percent level.

29 Robustness tests were implemented to test a possible non-linear relationship of the variables. Results are available
from the authors. We find a positive quadratic relationship (a U shape), which contrasts with the inverted U shape
more commonly found in the literature (Desmet and Rossi-Hansberg, 2014). Instead of the optimal density of a city
(Au and Henderson, 2006) after which cities become too congested, this would suggest a minimum density threshold
in cities after which agglomeration economies start emerging (or overcoming congestion costs). This could be affected
by relatively low levels of infrastructure and institutional quality compared to those in developed countries. However,
these results could be a consequence of pooling different years and countries. Future work testing this relationship
independently by country could shed light on the agglomeration vs congestion costs relationships in developing
countries, which the literature has not fully addressed simultaneously (Desmet and Rossi-Hansberg, 2013; Desmet
and Henderson, 2015; Duranton, 2016; Akbar and Duranton, 2017; Hanlon and Tian, 2015).
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Figure 4: Correlation between city premium and: (a) population density; (b) average years of
schooling; and (c) market access a

(a) Population Density. (b) Human Capital.

Y = 0.0435X – 1.6268
R2 =  0.7695

(c) Market Access

a Scatterplots show the correlation between the estimated city premiums and the natural logs of population
density, average years of schooling and market access controlling for country fixed effects. Hence, sub-
national administrative areas are the units of observation and the correlations are estimated based on the
within-country variation in the data.
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Table 5: Results of regressions on the determinants of location premiums across sub-national areasa

Dependent variable: 1 2 3 4 5
Location premium (ln)

Population 0.049*** 0.013* 0.005 0.023* 0.002
density (ln)

Average years of 0.576*** 0.574***
schooling (ln)

% of WAP with 0.021*** 0.020***
higher education

Market access (ln) 0.015*** 0.027***

Mean air temperature (ln) 0.03 0.044 0.051 0.036 0.045
Terrain ruggedness (ln) -0.031** -0.024*** -0.017 -0.026* -0.024
Total precipitation (ln) -0.028 -0.008 -0.01 -0.003 -0.001
Constant -0.99*** -2.37*** -2.70*** -1.28*** -1.82***

n 5,750 5,750 5,050 5,750 5,050
R2 0.757 0.814 0.831 0.785 0.804
Adj. R2 0.756 0.813 0.830 0.785 0.803

a ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. In all columns, country effects have been controlled for and standard
errors have been clustered by country. In all columns, the dependent variable is the estimated location
premium (measured in natural logs) from a series of country-level first-stage regressions after controlling for
observable worker characteristics within the broad sample (all wage/salary employees aged from 14 to 65
years old) and survey-year fixed effects. Worker characteristics included age, age-squared, marital status,
gender, and years of schooling. WAP stands for the working-age population. The source of the population
data is the Gridded Population of the World (GPW), v4.

around 6 percent 30

From the above, it seems that the theories of human capital externalities and, to a lesser extent,

market access provide more important explanations of urban success in LAC than does the theory of

agglomeration economies. Traditional agglomeration economies that are associated with population

density, but with neither human capital nor market access, appear to be virtually non-existent. This

could be linked to the high levels of population density that are characteristic of cities in LAC.

One plausible hypothesis is then that the high levels of population density are leading to excessive

congestion, which is in turn negating the positive externalities that are normally associated with

urban density.31

30These are comparable to other measures of human capital externalities in the literature. For example, Rauch
(1993) find that one year of average education increases wages by between 3 and 5 percent. Acemoglu and Angrist
(2000) find a comparable growth of 7 percent. However, IV estimates are much smaller and not significant. The
latter results exclude lower education levels. The aforementioned estimates come from approaches that generally do
not control for market access and agglomeration effects like ours, but that incorporate methods that control for the
endogeneity of average education.

31We must acknowledge some caveats about drawing this conclusion. It may be that, relative to our measures
of human capital and market access, population density is a relatively poor measure of agglomeration. Indeed,
boundaries of sub-national administrative units often conform only poorly to the true boundaries of cities (i.e. to
true labor or housing market boundaries). To the extent that agglomeration can be poorly measured, this could

19



In addition to average years of schooling, we also report results in table 5 using instead the

share of the working-age population who have completed higher education as a measurement of

human capital (columns 4 - 5). This has been a preferred measure in the literature on human

capital externalities, where it is argued it better captures the evidence that raising the top of the

human capital distribution will generate learning spillovers but raising the bottom will not (see, for

example, Glaeser (1999), Behrens et al. (2014) and Chauvin et al. (2017)). This amounts to arguing

that workers only experience significant learning from the highly-educated. The point estimate for

the corresponding elasticity with respect to percentage of workers with higher education is .02. 32

As can be seen, this alternative measure of human capital is also a highly statistically significant

predictor of variations in the city premium. Comparing the results in columns 4 - 5 with those in

columns 2 - 3, however, we can also see that our regressions fit better when using average years of

schooling as the measure of human capital, and that the estimated effect is orders of magnitude

higher. Given initial lower levels of education among workers than in developed countries, additional

years of education, even if at pre-tertiary levels, seem to have strong externalities in these developing

countries. In other words, raising the bottom seems also very important here.

As discussed before, as an alternative to the two-stage approach adopted so far, many studies

instead adopt a single-stage approach in order to have more precise confidence intervals on the

parameters estimated. The concern is that the second stage regressions use estimated productivity

premiums but do not incorporate their estimation error (see, inter alia, Duranton (2016); Chauvin

et al. (2017)). As table 6 shows, when we adopt this approach, we obtain higher and significant

estimated coefficients on population density than those reported in table 5 using the two-stage

approach. Nevertheless, the overall qualitative picture remains the same, especially when it comes

to comparing the difference in elasticites between measures of population density and average years

of schooling. As before, the estimated elasticity of a worker’s nominal wage with respect to the

population density of the location in which she lives drops rather drastically as we introduce, first,

a location’s overall average years of schooling, and then its level of market access (see columns

2 and 3 in table 6 respectively). At the same time, its level of statistical significance declines.

Whether the variable becomes statistically insignificant at all conventional levels (i.e. at all levels

up to the 10 percent level) depends crucially on how we cluster the standard errors. When the

standard errors are clustered at the area-level (reported in table 6), population density remains

significant at the 5 percent level. It may be argued, however, that this is too restrictive because it

rules-out correlation between errors for workers who live in, for example, neighboring areas. When

we instead cluster standard errors at the national level, population density is insignificant even at

the 10 percent level.33

We also report single-stage results with the alternative measure of human capital in columns 4

provide another explanation of why we find no effect of population density having controlled for average years of
schooling and market access.

32Moretti (2004a) find an elasticity of approximately 0.011 between wages and share of college graduates in the
US. Furthermore Moretti (2004c) finds that this result is consistent with the elasticity estimated using TFP.

33The correct level of clustering for the standard errors likely lies between the area and national levels. Results
based on clustering at the national level are available upon request from the authors.
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and 5 based on the clustering of standard errors at the area level. In this case, population density

continues to remain significantly positive at the 1 percent level even after controlling for both the

share of working-age population who possess higher education and market access.

Table 6: Results of regressions on the determinants of underlying productivity variations based on
the single-stage approacha

Nominal hourly wage (ln) 1 2 3 4 5

Population 0.057*** 0.024*** 0.012** 0.035*** 0.017***
density (ln)

Average years of 0.636*** 0.605***
schooling (ln)

% of WAP with 0.015*** 0.014***
higher education

Market access (ln) 0.013*** 0.016***

Mean air temperature (ln) 0.013 0.018 0.02 0.018 0.022
Terrain ruggedness (ln) 0 0.002 0.006 -0.005 0
Total precipitation (ln) -0.044*** -0.027*** -0.025*** -0.035*** -0.033***
Constant -2.02*** -3.41*** -3.49*** -2.09*** -2.27***

n 4,000,142 4,000,142 3,766,690 4,000,142 3,766,690
R2 0.337 0.346 0.349 0.343 0.346
Adj. R2 0.337 0.346 0.349 0.343 0.346

a ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. In all columns, country effects have been controlled for and standard
errors have been clustered by location. In all columns, the dependent variable is the worker’s nominal wage,
as shown in equation 6. Controls include observable worker characteristics within the broad sample (all
wage/salary employees aged from 14 to 65 years old) and survey-year fixed effects. Worker characteristics
include age, age-squared, marital status, gender, and years of schooling. We also include interactions between
the worker characteristics and country fixed effects. The source of the population data is the Gridded
Population of the World (GPW), v4.

4.2.1 Country heterogeneity

The above results on the relative importance of agglomeration economies, human capital external-

ities, and market access are based on estimates for all 16 LAC countries pooled. However, there

also exists considerable heterogeneity in estimated effects across the individual countries. Figure 5

shows the summarized coefficients for the 2nd stage regression when equation 5 is estimated sepa-

rately for each country.34 The coefficient reported is obtained from estimating equation 5 and the

95% confidence intervals are obtained from the coefficient distribution. There is a large difference

in the magnitude of the estimated elasticities with respect to density, average years of schooling

and market access (notice the figures use different scales for the vertical axes).

34Figure 5 does not show results for all 16 countries in our overall sample because of extremely wide confidence
intervals or, as in the case of Panama, a lack of sufficient observations. None of the omitted coefficients is statistically
significant. The points estimates are shown for all countries in table A3.

21



Figure 5: Heterogeneity in coefficients from 2nd stage.a
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a Figures show the estimated elasticities between subnational underlying productivity and population density,
average years of schooling and market access respectively, derived from individual country-level regressions
that follow equation 5. The squares represent the point estimates, while the upper and lower caps indicate
the upper and lower bounds of the 95 percent confidence intervals. Results are sorted by region and then
by descending order of the estimated elasticities. ARG = Argentina, BOL = Bolivia, BRA = Brazil, CHL
= Chile, COL = Colombia, CRI = Costa Rica, DOM = Dominican Republic, ECU = Ecuador, GTM =
Guatemala, HND = Honduras, MEX = Mexico, NIC = Nicaragua, PER = Peru, SLV = El Salvador, URY
= Uruguay. This figure omits countries whose coefficients have extremely wide confidence intervals due to
small numbers of subnational areas or, as with Panama, a lack of sufficient observations (only 9 locations)
to permit estimation. None of the omitted coefficients are statistically significant. The points estimates are
shown for all countries in table A3.
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Although, using the pooled data we find no evidence of significant agglomeration economies,

the estimated elasticity of the city premium with respect to population density is both positive and

statistically significant for Peru, Brazil, Ecuador, and Dominican Republic, as exemplified by the

estimated 95 percent confidence intervals, which are shown by the blue lines in panel (a) of figure

5. In contrast, we estimate a significant negative elasticity for Chile and Nicaragua.

Meanwhile, for market access, the positive effect estimated in the pooled data is mainly driven

by four countries: Ecuador, Brazil, Nicaragua, and Costa Rica. For the remaining 10 countries for

which we report effects in figure 5, the impact of market access on city premium is not significantly

different from zero.

Finally, regarding human capital, the effect of average years of schooling on underlying produc-

tivity is positive and statistically significant for all countries. Even here, the estimated strength

of human capital externalities varies dramatically across countries. Hence, we estimate extremely

strong human capital externalities in Bolivia, but comparatively weak externalities in El Salvador,

Nicaragua and the Dominican Republic. The effect of the percentage of workers with completed

higher education is also positive in most countries, but it is not significant for some of the coun-

tries in Central America (Dominican Republic, Honduras and Nicaragua) and in Bolivia.35 These

elasticities are significantly larger than those corresponding to the variables representing the other

two success theories.

We hypothesize that the heterogeneity in human capital coefficients may be related to educa-

tional quality. We estimate the linear relationship between the estimated human capital coefficients

and PISA grades and find a significant positive relationship that would be consistent with this hy-

pothesis (figure 6).36 Unfortunately, not all the countries in our sample take the PISA exam, so we

cannot test this relationship for the full sample. Additionally, we report the relationship between

the human capital externalities effect and educational expenditure per capita37, which supports the

idea that this quality, and hence the effect of human capital externalities, can be increased with

public expenditure on education. The extent to which the estimated variations in the strength of

human capital externalities are attributable to educational quality differences is an important area

of future research.

35All results based on the percentage of workers with completed higher education are available upon request from
the authors.

36PISA (Programme for International Student Assessment) is a triennial international survey which aims to evaluate
education systems worldwide by testing the skills and knowledge of 15 and 16-year-old students. In the 2015 version,
28 million students in 72 countries took this exam. Only students at school are tested, not home-schoolers. A higher
grade represents better performance. This exam is administered by the OECD. To fulfill OECD requirements, each
country must draw a sample of at least 5,000 students (although most countries use a much larger sample). The
dotted line is a fitted line.

37This measure is obtained by dividing the current $US expenditure on education by the population of inhabitants
younger than 14 years old. Education expenditure refers to the current operating expenditures in education, including
wages and salaries and excluding capital investments in buildings and equipment and comes from the United Nations
Statistics Division’s Statistical Yearbook, and the UNESCO Institute for Statistics online database. Population is
based on the United Nations Population Division’s World Population Prospects.
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Figure 6: Relationship between estimated coefficients for human capital (average years of schooling)
and educational quality.a
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a The vertical axis show the estimated elasticities between subnational underlying productivity and city
human capital derived from individual country-level regressions that follow equation 5. The horizontal axes
show the 2015 science, math and reading grade in the Programme for International Student Assessment
(PISA) exams. The dotted line is a fitted line. The panel in the low right corner shows educational
expenditure per capita, obtained by dividing the current $US expenditure on education by the population
of inhabitants younger than 14 years old using data from the United Nations Statistics Division’s Statistical
Yearbook, UNESCO’s Institute for Statistics, and United Nations Population Division’s World Population
Prospects.
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4.2.2 Demographic and sector heterogeneity

In addition to heterogeneity across countries, it is also fruitful to ask whether, following the example

of Duranton (2016) for Colombia, the elasticities of the city premium with respect to population

density, average human capital and market access are heterogeneous across different sub-groups of

workers. To explore this question, we perform a series of (1st and 2nd stage) regressions using sub-

groups of workers for the following four dimensions that have been drawn from our broad sample

(which consists of all employed wage workers aged 14 to 65):

1. Young (14-35 years old) versus Old (36-65 years old)

2. Male versus Female

3. Private versus Public Sector

4. Formal versus Informal38

For age groups, we use 35 years as the dividing line between Young and Old because this is

roughly the mean age of workers across all 16 countries. Meanwhile, given that our sample already

excludes all self-employed workers and workers who report zero income, we define informal workers

as those who work for firms that have 5 or fewer employees. Our regressions for Private -v- Public

Sector and Formal -v- Informal workers exclude Brazil. This is because, for Brazil, no public-sector

workers were left in our original broad sample after data-cleaning, while IPUMS does not provide

data that allow us to distinguish between formal and informal workers in a manner akin to that

for other countries, for which the data instead come from SEDLAC.

Table 7 summarizes the results of our regressions (full results are available upon request from

the authors). The most striking differences in estimated effects come when comparing Private -v-

Public Sector workers and Formal -v- Informal workers. In both cases, the estimated elasticities

of the city premium with respect to average years of schooling and market access are higher for

private sector and formal workers than they are for public sector and informal workers respectively.

For human capital externalities, the difference in the impact is the largest when comparing Private

and Public Sector subsamples. We expect wages to be more closely connected with productivity

in less regulated Private labor markets than in the Public Sector (wages are a better measure of

productivity in private than in the public sector)39 which is consistent with the stronger associa-

tion observed between human capital externalities and productivity premiums. Although they are

38SEDLAC provides two different indicators for whether a worker is to be considered informal (CEDLAS and The
World Bank, 2014). The first, which is based on a productive definition of informality, identifies a worker as informal
if (s)he belongs to any of the following categories: (i) unskilled self-employed, (ii) salaried worker in a small private
firm, (iii) zero-income workers. Meanwhile, the second, which is instead based on a legalistic or social protection
notion of informality, identifies a salaried worker as informal if s(he) does not have the right to a pension linked
to employment when retired. We choose to rely on the indicator based on the productive definition of informality
because this suffers from fewer missing observations. Because our sample already excludes both self-employed and
zero-income workers, this amounts to equating informal employment with employment by very small private firms (5
employees or fewer).

39Lucifora and Meurs (2006) Christofides and Michael (2013) study wage gaps between private and public sectors
in Europe, while Panizza (2001) studies them in Latin America. They all find a positive gap in favor of the public
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Table 7: Heterogeneous effects of determinants of location premium productivity across sub-groups of workersa

Young Old Male Female Private Public Formal Informal

Population -0.001 0.004 0.006 -0.001 0.002 0.012 0.004 -0.002
density (ln)
Avg. years 0.466*** 0.580*** 0.541*** 0.495*** 0.548*** 0.172* 0.559*** 0.401***
schooling (ln)
Market 0.014*** 0.01 0.011* 0.008 0.018*** -0.001 0.019*** 0.004
access (ln)
Constant -2.554*** -2.392*** -2.356*** -2.281*** -2.586*** -0.804*** -2.349*** -1.565***

n 3,756 3,757 3,758 3,754 3,758 3,440 3,758 3,732
Adj. R2 0.79 0.744 0.689 0.675 0.717 0.68 0.668 0.687

a ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. In all columns, country effects have been controlled for and standard
errors have been clustered by country. In all columns, the dependent variable is the estimated location
premium (measured in natural logs) from a series of country-level first-stage regressions after controlling
for observable worker characteristics within the broad sample (all wage/salary employees aged from 14 to
65 years old) and survey-year fixed effects. Worker characteristics include age, age-squared, marital status,
gender, and years of schooling. The source of the population data is the Gridded Population of the World
(GPW), v4.

smaller than for Private -v- Public Sector and Formal -v- Informal workers, differences can also be

observed in the estimated elasticity of the city premium with respect to average years of schooling

for Young -v- Old and Male -v- Female workers. Old workers appear to experience stronger human

capital externalities than Young workers, while Male workers benefit from stronger human capital

externalities than Female workers.

In the case of market access, the estimated elasticities are close to zero for public sector and

informal workers, and statistically insignificant. Market access benefits more the productivity of

workers in Formal and Private firms. This would be consistent with these types of firms selling to

other regions in the country more and benefitting more from cheaper inputs brought from elsewhere.

Market access also has an insignificant impact for both Old and Female workers. However, the

estimated elasticities in both cases are much closer to those estimated for Young and Male workers

respectively, which are statistically significant at the 10 percent level or better.

Finally, population density exerts a negligible, and statistically insignificant, impact on city

premiums for all sub-groups of workers.

5 Conclusions

This paper contributes to filling a knowledge gap on agglomeration effects and the determinants of

sub-national spatial variations in productivity for developing countries by providing estimates of city

sector that cannot be fully explained by worker characteristics. Brassiolo et al. (2016) find that the gap remains even
when other unobservable characteristic, like motivation for public service and effort, are taken into account, for the
same countries that we study here (except for Dominican Republic, Guatemala, and Nicaragua). Furthermore, they
show that the public sector in Latin America exhibits more non-wage benefits and stability, more stable wages as
careers progress, fewer performance based contracts, and more non-market regulations that govern their evolution,
which further suggest the structurally different relationship between productivity and wages in the private and public
sectors.

26



wage premiums net of skill sorting for 16 countries in the Latin America and the Caribbean region.

While two of the countries in our sample - Brazil and Colombia - have already been considered

by Chauvin et al. (2017) and Duranton (2016) respectively - the remaining 14 countries have not,

to our knowledge, been previously analyzed in the literature. We generate these estimates using a

harmonized data set which contains information on both the nominal wages and characteristics of

individual workers, and of the characteristics of the locations in which the workers live. The scale of

our analysis with harmonized data is also a novel contribution. Furthermore, we test how the city

premiums are related to variables that represent different theories of urban success: agglomeration

economies, human capital externalities, and market access.

Variation in productivity premiums is largely explained by sorting on observable worker charac-

teristics, including observed variation in skill levels. Once this sorting is taken into account, much

of the variation in nominal wages across locations disappears. Nevertheless, some variation does

remain and this variation is correlated with city characteristics. When the data from all 16 coun-

tries are pooled, a location’s underlying productivity level, as captured by its city premium, shows

a strong positive correlation with average human capital, suggesting the presence of human capital

externalities. It also exhibits a positive correlation with market access. Agglomeration economies

(measured through population density) disappear when human capital externalities and market

access are introduced. There is some heterogeneity across countries and groups of populations that

is also analyzed, but the strength of human capital externalities compared to the other factors is

robust.

In summary, urban success in LAC is crucially dependent on both the existence of a strong

overall stock of human capital and, at least for certain countries, good access to large consumer

and supplier markets through transportation networks. In contrast, agglomeration economies, in

their more traditional sense, seem to be relatively weak across much of the region, which may be

related to a lack of infrastructure investment and poor city management, relative to the high levels

of urban population density that prevail in the region.

Heterogeneity across countries is investigated. It remains true, across most countries, that

agglomeration economies, when measured linearly, lose in a horse race with market access and

human capital externalities. In particular, the association of productivity and human capital at the

municipality level is heterogeneous, which could be a reflection of country differences in educational

quality.

This paper responds to an interest in studying agglomeration effects in developing countries

empirically. More than just extending the state of knowledge on the extensive margin, this paper

studies relationships in developing countries that could be significantly different from the ones found

in the literature for developed areas, where, for example, congestion costs could play a weaker role

due to better infrastructure and institutions.
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A Results by country

Table A1: 1st stage results
a

Argentina Bolivia
broad narrow broad narrow

marriage 0.118*** 0.0793*** 0.112*** 0.0855*** 0.148*** 0.105*** 0.230*** 0.219***
education 0.0855*** 0.0834*** 0.0763*** 0.0755*** 0.0905*** 0.0886*** 0.0814*** 0.0811***
male 0.111*** 0.119*** 0.154*** 0.163***
Age 0.0108*** 0.0442*** 0.0107*** 0.0471*** 0.00541*** 0.0354*** -0.000706 0.0149
Ageˆ2 -0.000414*** -0.000485*** -0.000378*** -0.000209
Observations 245,948 245,948 97,011 97,011 14,874 14,874 6,516 6,516
R-squared 0.760 0.762 0.769 0.770 0.461 0.463 0.467 0.468

Honduras Mexico
marriage 0.128*** 0.0712*** 0.106*** 0.0886*** 0.158*** 0.0925*** 0.202*** 0.176***
education 0.106*** 0.104*** 0.0907*** 0.0905*** 0.0948*** 0.0912*** 0.0848*** 0.0839***
male -0.0140 0.00811 0.151*** 0.172***
Age 0.0105*** 0.0502*** 0.00812*** 0.0354*** 0.0119*** 0.0592*** 0.0109*** 0.0483***
Ageˆ2 -0.000515*** -0.000372*** -0.000613*** -0.000506***
Observations 38,269 38,269 17,685 17,685 94,105 94,105 41,579 41,579
R-squared 0.351 0.355 0.332 0.333 0.666 0.671 0.701 0.702

Chile Colombia
marriage 0.138*** 0.124*** 0.161*** 0.146*** 0.105*** 0.0737*** 0.145*** 0.126***
education 0.103*** 0.102*** 0.101*** 0.101*** 0.103*** 0.101*** 0.0827*** 0.0823***
male 0.178*** 0.182*** 0.219*** 0.228***
Age 0.00973*** 0.0255*** 0.0108*** 0.0386*** 0.0122*** 0.0463*** 0.0102*** 0.0492***
Ageˆ2 -0.000194*** -0.000369*** -0.000437*** -0.000525***
Observations 405,058 405,058 178,321 178,321 231,349 231,349 104,122 104,122
R-squared 0.726 0.726 0.744 0.745 0.552 0.556 0.586 0.588

Nicaragua Panama
marriage 0.180*** 0.146*** 0.176*** 0.168*** 0.122*** 0.101*** 0.143*** 0.131***
education 0.0651*** 0.0635*** 0.0704*** 0.0702*** 0.104*** 0.102*** 0.0851*** 0.0849***
male 0.0376*** 0.0519*** 0.215*** 0.221***
Age 0.00861*** 0.0353*** 0.0123*** 0.0247*** 0.0106*** 0.0322*** 0.00792*** 0.0317***
Ageˆ2 -0.000349*** -0.000169 -0.000273*** -0.000321***
Observations 24,730 24,730 7,486 7,486 205,122 205,122 95,382 95,382
R-squared 0.295 0.298 0.304 0.304 0.728 0.729 0.715 0.715

a ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

32



Table A2: 1st stage results (continued) a

Costa Rica Dominican Republic
broad narrow broad narrow

marriage 0.153*** 0.125*** 0.164*** 0.145*** 0.145*** 0.106*** 0.158*** 0.138***
education 0.0918*** 0.0902*** 0.0766*** 0.0761*** 0.0673*** 0.0657*** 0.0530*** 0.0528***
male 0.141*** 0.150*** 0.247*** 0.260***
Age 0.00734*** 0.0307*** 0.00563*** 0.0327*** 0.0125*** 0.0486*** 0.0126*** 0.0509***
Ageˆ2 -0.000303*** -0.000366*** -0.000462*** -0.000519***
Observations 129,202 129,202 64,076 64,076 131,608 131,608 65,046 65,046
R-squared 0.772 0.773 0.769 0.770 0.527 0.531 0.557 0.559

Peru El Salvador
marriage 0.108*** 0.0658*** 0.144*** 0.125*** 0.0777*** 0.0424*** 0.122*** 0.0961***
education 0.0720*** 0.0692*** 0.0613*** 0.0606*** 0.0735*** 0.0718*** 0.0648*** 0.0645***
male 0.250*** 0.261*** -0.0467*** -0.0292***
Age 0.00736*** 0.0360*** 0.00833*** 0.0347*** 0.00790*** 0.0441*** 0.00392*** 0.0551***
Ageˆ2 -0.000363*** -0.000354*** -0.000459*** -0.000695***
Observations 459,915 459,915 195,175 195,175 27,117 27,117 11,978 11,978
R-squared 0.443 0.446 0.497 0.498 0.490 0.494 0.448 0.452

Ecuador Guatemala
marriage 0.102*** 0.0814*** 0.118*** 0.106*** 0.116*** 0.0400*** 0.0777*** 0.0558***
education 0.0719*** 0.0707*** 0.0556*** 0.0553*** 0.102*** 0.0991*** 0.0934*** 0.0933***
male 0.197*** 0.204*** 0.0388*** 0.0642***
Age 0.00819*** 0.0277*** 0.00787*** 0.0294*** 0.00842*** 0.0530*** 0.00764*** 0.0351***
Ageˆ2 -0.000244*** -0.000290*** -0.000581*** -0.000373***
Observations 237,801 237,801 109,634 109,634 58,030 58,030 28,424 28,424
R-squared 0.634 0.635 0.656 0.657 0.346 0.354 0.337 0.338

Uruguay Brazil
marriage 0.181*** 0.144*** 0.220*** 0.193*** 0.231*** 0.151***
education 0.112*** 0.109*** 0.118*** 0.117*** 0.118*** 0.114***
male 0.189*** 0.198*** -0.403*** -0.419***
Age 0.0178*** 0.0531*** 0.0207*** 0.0587*** 0.0225*** 0.0860***
Ageˆ2 -0.000434*** -0.000501*** -0.000868***
Observations 15,915 15,915 6,025 6,025 1,809,596 1,809,596
R-squared 0.682 0.685 0.674 0.675 0.829 0.835

a ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1.

Table A3: 2nd stage results
a

ARG BOL BRA CHL COL CRI DOM

Population density (ln) 0.123 0.057 0.020*** -0.016** -0.006 -0.001 0.024**
Avg. yrs of schooling (ln) 0.512 1.308*** 0.442*** 0.928*** 0.352*** 0.401*** 0.119**
Market access (ln) 0.002 0.006 0.018*** 0.007 0.008 0.019*** 0.015*

Observations 12 62 1,292 281 192 370 180
R-squared 0.583 0.578 0.664 0.526 0.168 0.467 0.315

ECU GTM HON MEX NIC PER SLV URY

Population density (ln) 0.019** -0.006 0.061 0.003 -0.045** 0.021*** 0.001 0.109**
Avg. yrs of schooling (ln) 0.361*** 0.568*** 0.824*** 0.695*** 0.144*** 0.497*** 0.277*** 0.542
Market access (ln) 0.029*** -0.004 -0.030 0.008 0.041** 0.011* -0.022 -0.017

Observations 543 22 254 400 112 1,096 213 13
R-squared 0.336 0.754 0.335 0.542 0.425 0.383 0.130 0.922

a ∗ ∗ ∗p < 0.01, ∗ ∗ p < 0.05, ∗p < 0.1. In all columns, the dependent variable is the estimated location
premium (measured in natural logs) from a series of country-level first-stage regressions after controlling for
observable worker characteristics within the broad sample (all wage/salary employees aged from 14 to 65
years old) and survey-year fixed effects. Worker characteristics includes age, age-squared, marital status,
gender, and years of schooling. WAP stands for the working-age population. The source of the population
data is the Gridded Population of the World (GPW), v4. All regressions include controls for mean air
temperature, terrain ruggedness and total precipitation. ARG = Argentina, BOL = Bolivia, BRA = Brazil,
CHL = Chile, COL = Colombia, CRI = Costa Rica, DOM = Dominican Republic, ECU = Ecuador, GTM
= Guatemala, HND = Honduras, MEX = Mexico, NIC = Nicaragua, PAN = Panama, PER = Peru, SLV
= El Salvador, URY = Uruguay.
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B Other robustness tests for the 2nd stage results

Table B1: 2nd stage regression - location premiums from narrow samplea

Dependent variable: Location premium 1 2 3 4

Population density (ln) 0.057*** 0.018* 0.005 0.013
[6.108] [2.025] [0.532] [1.362]

Average years of schooling (ln) 0.628*** 0.620*** 0.622***
[9.259] [8.496] [8.846]

Market access (ln) 0.020*** 0.019***
[5.314] [5.769]

Road density (ln) -0.036***
[-3.784]

Mean air temperature (ln) 0.042 0.058 0.068 0.067
[0.781] [1.158] [1.503] [1.660]

Terrain ruggedness (ln) -0.036** -0.028*** -0.022* -0.021*
[-2.624] [-3.562] [-2.029] [-1.912]

Total precipitation (ln) -0.037 -0.015 -0.018 -0.022
[-0.763] [-0.537] [-0.764] [-0.928]

Constant -0.917*** -2.425*** -2.822*** -2.904***
[-5.518] [-11.656] [-13.936] [-14.286]

n 5,748 5,748 5,049 4,858
R-squared 0.564 0.651 0.681 0.687
Adjusted R-squared 0.562 0.65 0.679 0.685

a *** p < 0.01, ** p < 0.05, * p < 0.1. Robust t-statistics clustered at the country level in brackets.
Country effects have been controlled in all columns. In all columns, the dependent variable is the estimated
location premium after controlling for the effect of sorting on worker characteristics of the narrow sample.
Narrow sample refers to all employed wage/salary workers aged 20-55 - working in the private sector. Worker
characteristics include age, age-squared, marital status, gender, and the years of schooling. The source of
the population data is the Gridded Population of the World (GPW), v4.
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