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Abstract

Information is critical for migration decisions. Yet, depending on where individuals reside and who
they interact with, they may face different costs of accessing information about employment opportunities.
How does this imperfect and heterogeneous information structure affect the spatial allocation of economic
activity and welfare? To address this question, I develop a quantitative dynamic model of migration
with costly information acquisition and local information sharing. Rationally inattentive agents optimally
acquire more information about nearby locations and learn about payoffs in other locations from the
migrants around them. I apply this model to internal migration in Brazil and estimate it using migration
flows between regions. To illustrate its quantitative implications, I evaluate the counterfactual effects
of the roll-out of broadband internet in Brazil. By allowing workers to make better mobility choices,
expanding internet access increases average welfare by 1.6%, reduces migration flows by 1.2% and reduces
the cross-sectional dispersion in earnings by 4%.
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1 Introduction

Migration decisions affect many aspects of workers’ lives, from employment opportunities and housing
conditions, to schooling and entertainment options. To evaluate migration opportunities, workers must
therefore gather information about a wide array of location attributes. Collecting and processing this
information entails costs, yet we know little about the nature and magnitude of these costs, and even
less about their role in shaping migration decisions. Are people missing many opportunities because of
their lack of information? Is there inequality in access to information and does it matter for inequality
in economic outcomes? How did the large improvements in access to information over the past couple of
decades affect the way people react to regional shocks? What is the scope for policies to affect the structure
of migrants’ information and to induce them to take better advantage of migration opportunities?

In this paper, I propose answers to these questions. I start by arguing that we need to consider what
migrants know about opportunities elsewhere not simply as a primitive, but as an equilibrium outcome.
Indeed, some locations offer better infrastructure for collecting information than others. Migrants can
also share information about past migrations with their neighbors. Since migration partly shapes local
networks and relocates workers, the structure of information itself may be altered by migration patterns.

I then proceed with four contributions. First, I develop a theory of spatial equilibrium with migration
in the presence of information frictions, in which the equilibrium structure of workers’ information is
determined jointly with migration patterns. Second, I apply my model to internal migration in Brazil,
and structurally estimate it to quantify the magnitude of information costs. Third, I show that the model
reproduces the observed heterogeneity of migration elasticities and delay in response to local shocks.
Fourth, I quantify the local and aggregate welfare gains from the roll-out of internet in Brazil.

In the first part of the paper, I propose a quantitative dynamic model of migration with costly infor-
mation acquisition and local information sharing. Each period, unobserved location-specific productivity
shocks alter the spatial distribution of earnings. Agents are rationally inattentive and can acquire infor-
mation at some cost, which can vary by location. They use their beliefs to make location decisions, facing
fixed bilateral costs of moving between any two locations. Each agent shares their individual information
with all agents in the same location. In a given location, agents are heterogeneous along two dimen-
sions. First, they may have different beliefs about the distribution of payoffs in each location. Second,
they may have different preferences for each location. While preference-based migration reflects utility
maximization, migration decisions under incomplete information are prone to mistakes.

My model allows for a tractable solution of the stochastic steady state and yields three main results.
First, the bilateral migration shares take a closed-form multinomial logit form akin to existing models of
migration. In particular, when the cost of information acquisition converges to zero, the model reduces
to existing logit models of migration driven by preference heterogeneity. Second, agents optimally choose
to be more informed about locations offering high average payoffs, leading to a bias towards nearby
locations in particular. By enhancing flows to closer destinations at the expense of more remote ones,
these biases act as additional endogenous bilateral migration costs that depend on distance, as in the
gravity literature.1 Third, for a specific distribution of idiosyncratic preferences that delivers a closed-

1See Monte et al. (2018), Morten and Oliveira (2018), Tombe and Zhu (2019), Fan (2019), Caliendo et al. (2019) for
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form aggregation of individual decisions, the model disentangles the effects of idiosyncratic preferences
and of the lack of information. Although both reduce the responsiveness of migration flows to variations
in earnings, information frictions particularly affect the response to unobserved payoffs. Recovering both
the elasticity of migration with respect to unobserved productivity shocks and the elasticity with respect
to wages allows me to separately identify information frictions from preference heterogeneity.

Although the model is analytically tractable and delivers closed-form expressions, migration decisions
depend on a large number of states. The state variables consist of the vectors of productivity and popula-
tion in each location, as well as the local belief distributions inherited from previous periods. A complete
representation of the beliefs would require to treat the moments of each local belief distribution as state
variables. To overcome this challenge, I first show that in the stochastic steady state the beliefs can be
described as a function of population only, drastically reducing the effective state space to the productivity
and population vectors. Second, since the state space is still too large to employ standard techniques of
dynamic programming, I resort to approximate dynamic programming methods (Powell, 2011). Specif-
ically, I use a polynomial approximation for the value function, approximate equilibrium beliefs by the
conjugate of a Type 1 extreme value distribution, and use a sample of states in the solution algorithm.2

I confirm that the algorithm is accurate by comparing it to an almost-exact solution when the number of
locations is small or when the productivity process is discrete.

In the second part of the paper, I apply my model to internal migration in Brazil and assess the
quantitative importance of information frictions. The closed-form expression for migration probabilities
allows for a transparent estimation strategy. To estimate the relevant parameters of the model, I rely
on detailed migration flows between the 137 Brazilian regions over 15 years. I split these 15 years into
two periods, the first from 2000 to 2007; the second from 2008 to 2014. I assume that the economy
is in a separate steady-state over each of these periods. I construct migration flows from administrative
matched employer-employee data covering the universe of workers employed in the formal sector. I observe
workers’ location and earnings each year, representing 24 million distinct employees per year on average.
I exploit the gravity structure of migration flows predicted by the model to derive regression equations
that identify the information costs, preference heterogeneity and migration costs separately. According to
the model, migration flows respond differently to changes in payoffs depending on whether agents directly
observe these payoffs or if they must acquire information about them. I assume that agents observe the
population in each region, but do not directly observe local productivity shocks. After recovering the
local productivity shocks, I compare the migration elasticity to wages and to local productivity shocks to
identify the role of preference heterogeneity and information costs.

The estimated costs of information amount on average to workers paying 3% of earnings each year to
acquire information about other regions. These costs are lower in regions with a higher fraction of residents
with an internet connection. Using a region’s proximity to backbone internet cables to instrument for the
share of residents with an internet connection, I find that increasing the share of residents with an internet

analyses of spatial equilibria featuring preference-based migration or commuting with costly bilateral migration costs, leading
to a gravity expression for mobility flows.

2See Brown and Jeon (2019) for a similar assumption on the distribution of beliefs, and Nadarajah (2008) and Marques
et al. (2015) for a description of the conjugate of the Type 1 extreme value distribution.
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connection by 1% reduces the local cost of information acquisition by 0.83%. The annualized average
bilateral migration cost is also close to 3% of earnings.3 Hence, collecting information to decide where
to move appears almost as costly as moving itself. Importantly, the estimated migration costs would be
40% larger if I ignored information frictions by imposing that all information costs were equal to zero.4 In
the presence of information frictions, moderate migration costs can rationalize the low observed migration
flows: when migration costs to a region are large, agents acquire little information about this region,
further reducing their likelihood of moving to the region.

In the third part of the paper, I show that my estimated model successfully predicts two key features of
observed migration patterns that the model with complete information cannot. First, allowing for flexible
bilateral migration costs, I find empirically that the elasticity of migration is larger for origin-destination
pairs that are closer geographically, that have more interactions in the form of larger past migration
flows, and for origins with higher access to internet. The migration flows predicted by the model also
possess these features, in comparable magnitudes. The heterogeneous responsiveness of mobility decisions
in the simulated migration patterns arises because agents’ beliefs are more tightly correlated with the true
payoffs in regions with which they have more interactions. Second, I reproduce empirical findings obtained
in Fujiwara, Morales and Porcher (2019) and show in response to a positive local shock in a region, the
migration response to this region is slower for origins that are farther away or have lower internet access.
In the model, this delay also arises because of the gradual updating of beliefs about the shock, through
local information sharing. In regions that are farther away or that have higher information costs, this local
information sharing is slower.

The final part of the paper illustrates the quantitative implications by undertaking two counterfactual
exercises. First, I evaluate the effect of removing all information frictions by comparing the stochastic
steady state equilibrium with the estimated information costs to the case where these costs are set to zero.
I find that welfare increases by 5.5%, with a 15% decrease in the cross-sectional dispersion in earnings,
reflecting a better arbitrage of local shocks. In the stochastic steady state with complete information, gross
migration flows are more concentrated towards high payoffs regions and are 4.1% lower. Second, I evaluate
the counterfactual effect of the roll-out of broadband internet in Brazil during the early 2010s.5 I compare
the outcomes in a steady-state economy where internet is never introduced to an economy in which the
change in information costs reflects the average internet access observed between 2008 and 2014. I find that
the expansion of internet access increases average welfare by 1.6%. I then decompose these welfare changes
into several components. Some gains are mechanically the result of the lower information costs. Second,
local networks transmit more information so workers can spend less on individual information acquisition.
A third potential source of gains is the improved sorting of agents to regions offering higher payoffs. Finally,

3I estimate the average migration cost to be about 75% of annual earnings. However, the median worker only migrates
once in a lifetime. With an annual discount rate of 0.96, paying 75% of earnings in one year is comparable to paying 3% of
earnings every year.

4The idea that part of the large estimated migration costs could be attributed to information frictions can be traced back
at least to Sjaastad (1962). He mentioned: “One is strongly tempted to appeal to market imperfections such as the lack of
information to explain the apparently high distance cost of migration.”

5I abstract from the direct effects that broadband internet access may have had on local productivity and focus only on
its role in improving migrants’ information. Broadband internet still affects aggregate productivity, but only through the
reallocation of migration flows.

3



some gains may arise from a change in regional outcomes, as wages adjust in response to the different
spatial allocation of workers. The positive average welfare gains mask substantial heterogeneity in welfare
effects, with several remote regions experiencing small welfare losses, despite benefitting from a better
access to internet. These regions suffer for two reasons. First, their internet access increased less than
in most other regions. As a result, workers in other locations are relatively more informed and can move
faster to take advantage of any local opportunity, making it less likely that workers in the remote regions
can enjoy the high wages in booming regions. Second, fewer well-informed workers move to these relatively
unattractive remote regions in a steady state with better information access, making local information
sharing less effective, and ultimately worsening workers’ spatial sorting.

This paper is related to several existing literatures. A recent set of empirical studies emphasizes the
importance of information frictions for migration decisions. First, there is growing evidence that migration
decisions can be affected by the provision of information. This has been shown by exploiting variation
in migrants’ access to information about migration opportunities arising either from differential media
exposure (McCauley, 2019; Farré and Fasani, 2013; Wilson, 2018), or by directly providing information
about average earnings in other locations in a randomized experiment (Baseler, 2019; Bryan et al., 2014).6

Second, a recent body of work documents that migrants tend to have inaccurate information about the
returns to migration. In the context of international migration, a number of papers directly measured
migrants’ expectations in surveys, lab, and randomized field experiments, and find that, for most migrants,
they were largely misaligned with actual outcomes (McKenzie et al., 2013; Bah and Batista, 2018; Shrestha,
2017). In an analysis of internal migration in Brazil, Fujiwara, Morales and Porcher (2019) use a revealed
preference approach to infer the composition of migrants’ information consistent with a model of migration
allowing for a rich set of unobserved migration costs. They find that the structure of information needed
to rationalize the observed migration flows is concentrated on a few neighboring regions and larger cities,
with poor information about regions beyond several hundred kilometers. My paper contributes to this
literature by providing a general equilibrium theory of optimal information acquisition that leads to an
endogenous structure of information. This information structure is also concentrated on nearby regions
and larger cities. This framework allows me to quantify the implications of these information frictions for
aggregate welfare.

This paper also contributes to a rapidly growing empirical literature on information transmission
through social networks (Granovetter, 1973). A recent series of papers shows that workers use information
obtained from their coworkers (Dustmann et al., 2015; Glitz and Vejlin, 2019; Saygin and Weynandt,
2014; Caldwell and Harmon, 2019), family members (Kramarz and Skans, 2014), neighbors (Bayer et al.,
2008; Schmutte, 2015) and classmates (Zimmerman, 2019) to find job opportunities. This paper provides
suggestive evidence that workers also rely on their social networks to gather information relevant for
migration decisions.

6Notably, Bryan et al. (2014) found that in the context of seasonal migration in Bangladesh, providing information about
average wages and availability of jobs in four broad regions did not result in any significant increase in migration. They
concluded that either households already had this information, or the information made available was not useful or credible.
Consistent with the first interpretation, Fujiwara, Morales and Porcher (2019) cannot reject that internal migrants in Brazil
have knowledge of average wages at a broad regional level. However, they seem to lack information about labor market
outcomes at a finer geographical level.
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This paper is related to the emerging theoretical literature on rational inattention in the context of
discrete choice. Following the seminal contribution by Sims (2003), Matějka and McKay (2015) showed
how static rational inattention problems lead to a multinomial logit decision rule.7 Steiner et al. (2017)
extended this property to single-agent dynamic problems, opening a pathway towards incorporating ra-
tional inattention in richer dynamic settings. I combine their results with properties of social learning in
networks derived by Molavi et al. (2018) to show that the dynamic logit structure survives in steady-state
in environments with a continuum of agents, heterogeneous preferences, and endogenous payoffs. There
is so far very limited work incorporating the rational inattention framework into structural models. Some
exceptions in the industrial organization literature include Joo (2017) and Brown and Jeon (2019), while
in international trade Dasgupta and Mondria (2018) provided a microfoundation for the model from Eaton
and Kortum (2002).8 In the first application to migration, Bertoli et al. (2019) show that international
migration flows feature heterogeneous elasticities, consistent with rational inattention.9 I provide the first
structural estimation of a dynamic rational inattention model.

My paper also contributes to the quantitative economic geography literature. A number of studies have
documented low migration responses in reaction to local shocks.10 In their analysis of internal migration
patterns in the United States, Kennan and Walker (2011) point out that large migration costs are a priori
necessary to explain the concurrence of important spatial disparities in incomes, a sizeable elasticity of
migration with respect to income variations, and overall limited migration flows.11 Such large migration
costs have been shown to have important implications for aggregate labor productivity and welfare.12

My analysis illustrates how information frictions affect the migration elasticity as well as migration costs
and suggests that as much as 40% of the migration costs estimated under the assumption of complete
information could in fact be attributed to information frictions. Recent analyses have emphasized the
relevance of spatial linkages due to trade and labor mobility for the adjustment of economies to various
shocks (Monte et al., 2018; Tombe and Zhu, 2019; Caliendo et al., 2019; Adão et al., 2019). By incorporating
the role of information frictions in a dynamic spatial equilibrium model, this paper describes how the

7Other important contributions to the analysis of rational inattention problems in discrete choice include Caplin and Dean
(2015); Caplin et al. (2019). Fosgerau et al. (2019) demonstrate a general equivalence between the class of additive random
utility models and rational inattention problems with generalized entropy.

8Brown and Jeon (2019) are the first to offer a tractable combination of preference heterogeneity with rational inattention
in a static framework by assuming that the beliefs and idiosyncratic preference shocks are described by the conjugate of a
Type 1 extreme value distribution.

9They show, in particular, that migration flows emanating from origin countries with highly concentrated flows to one
destination, such as Mexico to the United States, are less responsive to wages in other destinations. They discuss how this
lower migration elasticity can be rationalized by a lower value of full information for migrants from Mexico than for migrants
from countries with many potential destinations, such as China.

10Following early studies of local labor demand shocks (Bartik, 1991; Blanchard and Katz, 1992), limited migration
responses have been observed in reaction to international trade shocks (Topalova, 2010; Kovak, 2013; Autor et al., 2013;
Adão, 2016; Dix-Carneiro and Kovak, 2017; Pierce and Schott, 2018; Dix-Carneiro and Kovak, 2019; Adão et al., 2019),
changes in technology (Bustos et al., 2016; Acemoglu and Restrepo, 2017), local shocks to housing net worth (Mian and Sufi,
2014), differential incidence of business cycles (Yagan, 2019; Beraja et al., 2019), place-based policies (Busso et al., 2013),
natural resource discovery (Bartik et al., 2019) and natural disasters (Nakamura et al., 2019).

11Kennan and Walker (2011) estimate that moving costs above $300 thousand 2010 dollars on average are needed to account
for observed migration flows across U.S. states. Diamond et al. (2019) find fixed cost of moving between neighborhoods in
San Francisco of around $40 thousand.

12For quantifications of the aggregate implications of workers’ limited geographic mobility, see Redding (2016); Diamond
(2016); Morten and Oliveira (2018); Bryan and Morten (2018); Caliendo et al. (2018, 2019).
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endogenous structure of information interacts with the spatial allocation of economic activity, creating an
additional channel of adjustment with important welfare implications.

In Section 2, I present my model. Section 3 describes the data I will be using for the estimation. In
Section 4, I carry out the estimation and discuss the results. Section 5 confronts some of the model’s
predictions to the data. Section 6 presents the counterfactual exercises.

2 A Model of Migration with Costly Information Acquisition and Local
Information Sharing

In this section, I present the dynamic general equilibrium model of migration with costly information ac-
quisition and local information sharing. After describing the environment and the structure of flow payoffs,
I present the three main blocks of the model, consisting of the individual information acquisition problem
faced by rationally inattentive agents, their mobility decision, and local information sharing. Combining
these elements, I characterize the steady-state equilibrium and discuss the approximated dynamic methods
used for the simulation.

2.1 Set Up

The objective of the model is to capture how agents make location choices in an environment in which at
least some component of local payoffs varies over time, and in which it may be too difficult for agents to
track these fluctuations perfectly. Therefore, agents face a trade-off between the value of holding precise
information about current payoffs and the costs of gathering such information.

With this goal in mind, I consider an infinite-horizon environment with J locations. Each location j
is characterized by a time-invariant productivity level Aj and amenities Bj . The cross-sectional variation
in baseline productivities Aj helps explain persistent spatial dispersion in earnings, and the variation in
amenities Bj justifies why some locations attract more workers than other locations with similar earnings
levels. Each period, locations experience an exogenous stochastic productivity shock θjt, meant to capture
the fluctuations in migration opportunities over time.13 Let Γ(θt|θt−1) denote the distribution of the
vector θt = (θ1t, . . . , θJt), which can depend on past realizations θt−1 = (θt−1, θt−2, . . . ). The geography
is represented by a set of fixed bilateral migration costs κjk that agents must pay if they decide to move
from any location j to another location k. These costs are common to all agents in the same location,
reflecting both the fiscal cost of moving as well as utility costs, such as being away from friends and family
(Sjaastad, 1962).

Agents who start period t in some location j choose where to locate for the rest of the period. Before
moving, they draw a vector of idiosyncratic preferences for each location. Denoting by u(ckt) the flow of
utility from consumption derived by agents in location k in period t, I can then write the gross flow of
utility uijkt for an agent i moving from j to k at t as

13As discussed in Footnote 10, such fluctuations in local labor demand may be due to locations’ differential exposure to
international trade competition, changes in technology, government spending, business cycles, the location of firms, or natural
resource discovery that I do not model. In Section 5, I focus on a number of such local shocks in Brazil between 2000 and
2014, including dam construction, mining and oil booms, and surges in tourism activity.
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uijkt = u(ckt) +Bk − κjk + νεikt, (1)

reflecting the utility gain from consumption and amenities in the destination minus the mobility cost,
where εikt represents agent i’s idiosyncratic taste for location k at t, scaled by the parameter ν. I assume
that εikt are identically and independently distributed across individuals i, locations k and periods t.

In order to make the role of information frictions more salient in the exposition of the model below,
I maintain simple assumptions on the production side of the economy. There is a unique freely traded
homogeneous good chosen as numeraire. I assume that the production function takes a Cobb-Douglas
form using labor as the single input, so that output in location k at t is given by

ykt = exp(Ak + θkt)L
1−α
kt , α > 0, (2)

where θkt is the current productivity shock in location k, and Lkt is the human capital in location k

at time t, equal to the population in k since I assume every agent supplies one unit of human capital.
The parameter α captures the decreasing marginal product of labor. I assume that the vector θt follows
an AR(1) process with persistence ρ and variance of the innovation σ2

ξ , so that in each period t the
productivity shock in location j is related to the previous period shock according to

θjt = ρθjt−1 + ξjt, ξjt ∼ N
(
0, σ2

ξ

)
. (3)

The parameter α, governing decreasing returns in labor in production, introduces congestion to the
model, which will reduce the attractiveness of a location as more workers move in. More generally,
congestion could also arise because of a fixed or imperfectly elastic supply of housing or land. A positive
value for α implies that the level of earnings in each location depends on, and affects, the population level
resulting from migration choices. The first order condition arising from profit maximization yields the
following expression for the wage in location k at t:

logwkt = Ak + θkt − α logLkt + log (1− α) . (4)

In this economy, firms make profits. I assume that profits made in each location are collected and re-
distributed to workers via a negative tax rate on their local wage τt, constant across locations, so that
earnings in location k at time t are wkt (1 + τt). The log-linear structure of utility implies that rebating
profits does not alter migration decisions, since earnings increase by the same rate in every location. It
easy to show that the rate of transfer is constant over time and equals τ = α/(1−α), so the net-of-transfer
earnings in location k are wkt/(1− α).14 Moreover, the assumption that the economy features free trade
in goods between locations implies that local consumption prices are equalized across locations and do not
affect migration decisions. As a result, indirect utility net of information costs can be expressed as

uijkt = Ak + θkt − α logLkt +Bk − κjk + νεikt. (5)
14The profits made in location k are equal to α exp (Ak + θkt)L

1−α
kt . The optimal transfer rate τt then solves

∑
k τtwktLkt =∑

k α exp (Ak + θkt)L
1−α
kt , leading to τ = α/(1− α) after substituting wages by their expression in (4).
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2.2 Timeline of the Model

I now describe the sequence of actions taken by agents in each period. I assume that the stochastic
productivity vector θt is the only imperfectly observed variable.15 Although the population distribution
is a time-varying object, it is arguably easier for agents to have knowledge of the population rather than
the productivity shock in each location. It may also seem plausible that local amenities are also subject
to stochastic variation. Given that local productivity shocks are the only variables not directly observed,
agents hold beliefs about the cross-sectional distribution of productivity. Denote by πit the prior beliefs
about the vector θt held by agent i at the beginning of period t:

πit(θ) = Pr(θt = θ|i, t), ∀θ ∈ RJ . (6)

The assumption that productivity shocks follow an AR(1) process implies that the dependence of the
current shock on past realization can be summarized by the shock in the previous period. Hence, agents
only use their beliefs about the previous period productivity to form beliefs about the current distribution
of shocks.

In this economy, agents’ decisions depend on several variables. First, agents with different prior beliefs
πit may decide to acquire different information and make different mobility decisions. Second, the distri-
bution of payoffs available to agents depends on the population inherited from the previous period Lt−1,
the location lit−1 ∈ {1, . . . , J} in which they start the period—which determines the migration costs they
face—and their current preference shocks εit. I collect these state variables into ωit = (Lt−1, πit, lit−1, εit).
Finally, agents’ decisions also depend on the realization of productivity θt, since it will affect the signals
that they receive.

As represented in Figure 1, each period has four steps. First, the productivity vector θt and idiosyn-
cratic preferences εit are realized. Second, agents can refine their prior beliefs by acquiring and processing
information. This step is governed by the rational inattention problem described in Section 2.3, and leads
agents to form posterior beliefs about θt, denoted by πit|s, where s represents the signal received by agent
i. Third, agents use their posterior beliefs to compute the expected payoffs in every location, and move
to the location offering the highest expected payoff. The new location lit realized for each agent leads to
a new distribution of the population Lt, described in Section 2.4. Once agents reach their destination,
they engage in local information sharing. Under simple assumptions, I show that all agents in a location
reach a consensus about the distribution of θt after they communicate their beliefs to each other. This
location-specific belief can be used to form beliefs πit+1 about θt+1.

2.3 Individual Information Acquisition

I now describe the rational inattention problem. Agents face a trade off between making accurate pre-
dictions about the payoffs in each location and paying the cost of acquiring and processing data to make
such predictions.

15One justification for this is that time-invariant variables such as amenities, and baseline productivities amenities have
been learned gradually over time until they became perfect knowledge.
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Figure 1: Sequence of actions during any period t

Following Matějka and McKay (2015) and Steiner et al. (2017), individual i in location j starts with a
prior πit about θt and rationally chooses how much information to acquire about θt to form posterior beliefs
about the payoffs in each location. Agent i can choose to receive signals s about the current θt, which
will allow her to form more precise posterior beliefs. Agents cannot control the realization of the signals
they receive, but are free to choose the distribution from which they are drawn. Given their prior πit
and other observed variables that form their observed state ωit, agents choose the conditional distribution
f(s|θt, ωit). Their information acquisition strategies f(·) are unconstrained, reflecting the idea that agents
can gather information in many different ways. Although agents are free to design any signal structure,
there is a cost of acquiring information so that more “informative” signal structures are more costly. As a
result, individuals may wish to become partially informed about locations, i.e. receive a vector of signals
with limited information. Once an agent chooses her signal structure for the period, nature draws a signal
realization s from f(·). Given the signal, the agent updates her prior, resulting in the posterior belief πit|s
after applying Bayes’ rule:

πit|s(θt) =
f(s|θt, ωit)πit(θt)

f(s|ωit)
. (7)

To describe the costs of acquiring information, I follow the rational inattention literature and rely on
the entropy of beliefs to measure their uncertainty.16 For any random variable X with continuous support
S distributed according to p ∈ ∆(S), the entropy of X, or equivalently the entropy of the distribution p,
is defined as

16More specifically, I rely on the Shannon entropy, first introduced in this literature by Sims (2003). More recently, Fosgerau
et al. (2019) study information costs based on a more general class of entropy functions.
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H(p) ≡ H̃(X) = −
∫
x∈S

p(x) log p(x)dx. (8)

Entropy is a measure of uncertainty about X.17 Starting from a prior belief distribution πit, a signal
distribution that reduces the expected entropy of θt is more costly. To capture this idea, I assume that
the cost of a signal distribution f is proportional to the difference between the entropy of the prior beliefs
and the expected entropy of the posterior beliefs.18 I define the cost of designing a signal strategy f for
agent with state ωit to be

I (f |ωit) = λlit−1

(
H (πit)− Es

[
H
(
πit|s

)])
, (9)

so that the cost of a given information strategy f is higher the more it is expected to reduce the agent’s
uncertainty about θt once the signal s is received. Before receiving s, the uncertainty can be measured by
H (πit). Afterwards, it becomes H

(
πit|s

)
. The location-specific parameter λlit−1

scales this information
cost, reflecting that some locations may offer more efficient technologies to gather information and reduce
uncertainty.

An information strategy therefore assigns a signal distribution ft(st|ωit) for each productivity θt,
population distribution Lt−1, prior beliefs πit, location lit−1, and preference draws εit. Agents also devise
mobility strategies σt(sit, ωit) indicating the choice of location at time t for each current costly signal sit,
population distribution Lt−1, prior beliefs πit, origin location lit−1, and preference draws εit, such that
agents solve

max
f,σ

E

[ ∞∑
t=1

δt
(
ulit−1lit(θt, Lt, εit)− I(ft|ωit)

)]
, (10)

where lit = σt(sit, ωit) is the location optimally chosen at t, the flow of utility is defined in (5), the
information cost is defined in (9), and the expectation is taken with respect to all possible future realizations
of productivity and individual states, using current beliefs.

In this economy, agents never see the actual realization of the productivity vector θt. In particular, I
assume that agents do not use the wage they receive in their current location k to update their local beliefs
about θkt. If the productivity shocks are iid over time, knowing θkt after moving is not helpful for future
migration decisions. However, when the persistence parameter ρ is positive, learning about θkt allows
agents to form more precise beliefs about θkt+1. In Appendix A.2, I provide an extension of my model in
which the observation of the wage allows workers to update their beliefs about local productivity. If no
additional unobserved shock affects wages, then workers in location k can infer θkt exactly after they move
there. I show, in a simulation with a small number of locations, that for a reasonable set of parameters,
the mobility decisions are only mildly affected by the perfect observation of the local θkt.19

17For instance, the smallest value of entropy of zero is obtained for a Dirac distribution assigning a probability one to some
value and zero to all others – with the convention that 0 log 0 = 0. For a normal distribution, the entropy is log

√
2πeσ2 and

increases with the variance σ2.
18The difference between the entropy of the prior and the expected entropy of the posterior is called the conditional mutual

information between st and θt.
19This insensitivity is due to the endogenous adjustment of agents’ information strategies. Since agents are able to form

more precise prior beliefs about θkt, they choose to invest less attention about θkt. This limits the advantage provided by
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2.4 Mobility

Once agents have acquired information and formed posterior beliefs πit|s, they use these beliefs to compute
the expected payoff in each location. They then move to the location lit offering the highest expected
payoffs. These mobility decisions lead to a new allocation of workers across locations, namely a new
population distribution Lt. Denote by pjkt(s, θt, ωit) the probability that an agent i in location lit−1 = j

would move to location k at time t if the realized productivity is θt and the signal is sit = s. Using the
optimal information ft and mobility strategy σt, this probability is

pjkt(s, θt, ωit) = ft(s|θt, ωit)1{σt(s, ωit) = k}1{lit−1 = j}. (11)

I assume that the total population in the economy stays constant at L̄, so that the population distribution
evolves in the set L = {{Ljkt}j,k|

∑
j,k Ljkt = L̄, Ljkt ≥ 0}. The population in any location k after

migration is then Lkt =
∑

j Ljkt, where

Ljkt = Ljt−1p̄jkt(θt, Lt−1), (12)

and p̄jkt(θt, Lt−1) = E [pjkt(s, θt, ωit)] is the expected probability of moving from j to k at time t, and the
expectation is taken over all possible beliefs πit, signals s, and preference shocks εit.

In order to forecast the wages in every location, agents form rational expectations about the behavior
of other agents. The wage wkt in each location k depends on the equilibrium population Lkt after all agents
have made their mobility decisions. Agents’ understanding of the economy, including the distribution of
preference shocks and productivity shocks, allows them to successfully predict the mobility flows to every
location p̄jkt(θt, Lt−1), conditional on the observed population distribution Lt−1 and a particular guess for
θt.20

Although in typical datasets we do not observe individual beliefs πit, signals s, and preference shocks
εit, bilateral migration flows between locations are the empirical equivalent of the aggregate migration
probability p̄jkt(θt, Lt−1). My goal is to obtain an expression for p̄jkt(θt, Lt−1).

2.5 Local Information Sharing

In practice, workers can potentially benefit from their local interactions to obtain information relevant
for future mobility decisions. For example, individuals who decided to remain in their original location
may learn about the payoffs in other locations by interacting with newly arrived workers who are likely to

the costless observation of wages by making mobility less to the realization of θkt. Even though their choices are moderately
affected, agents are still better off, since they save on information acquisition. The crowding out of costless signals on
information acquisition was first pointed out by Steiner et al. (2017).

20In the same way as observing wages wkt at the end of period t could in principle allow workers to refine their beliefs by
inverting the wage-setting equation (4), the observation of the vector of mobility flows Lt at the end of period t could be
used by agents to back out information about the realized vector θt by inverting the law of motion for the population (12).
In Appendix A.2, I discuss the implications of allowing agents to exactly recover the realization of the whole vector θt upon
observing the population distribution Lt. Agents have the same prior beliefs about θt+1 in every location, but still design
different information strategies depending on their location and preference shocks, leading to migration decisions that still
feature an important role for information frictions.
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have relatively accurate information about their origin. This second-hand information may then influence
their future location decisions. To capture local information diffusion, I assume that, after they reach
their new destination, agents are able to collect additional information about migration opportunities by
communicating with other agents in their location.

In contrast to the rational inattention channel described above, I assume that this second source of
information acquisition does not entail any cost, nor any particular decision by agents besides their location
decision. Instead, agents naturally form a network with other agents in the same location and communicate
their beliefs to all members of the network. I further assume that the local network is complete and that
all agents have equal weight in the network.

The standard model of rational learning would require that individuals use Bayes’ rule to incorporate
any new piece of information into their beliefs. However, in the context of learning in social networks with
a large number of other decision-makers, this assumption places unreasonable demands on individuals’
cognitive abilities.21 Here, I sidestep the complex updating by postulating a simple aggregation rule for
beliefs in a given location. I set the outcome of the local information sharing to be represented by a
log-linear learning rule, resulting in beliefs π̄kt about θt held by agents in k at the end of t. Since beliefs
are the same for all agents i at the end of the period, the prior beliefs for all agents in location j are
identical and can be indexed by j. I set

log π̄kt(θt) = Ckt +
∑
j

∑
s

Ljkt|s log πjt|s(θt), (13)

where Ljkt|s = Ljt−1E [pjkt(s, θt, ωit)] is the mass of agents from j in k who received the signal sit = s,
and Ckt is a constant ensuring that

∫
θ π̄kt(θ)dθ = 1.

In addition to its simplicity, this log-linear learning rule has a very intuitive interpretation. First,
since all agents have the same weight, a particular posterior belief πjt|s will have a larger influence on
the final shared belief if more agents in k hold this belief. Second, the log-linear expression implies that
the variance of an individual’s belief is important. An individual holding beliefs with high variance has
little effect on the final beliefs.22 For instance, in the context of normal beliefs, it is easy to show that
the shared beliefs are normal, with a mean equal to a weighted average of each belief’s mean, and the
weights are inversely proportional to the belief’s variance.23 In Appendix A.1.1, I follow Molavi et al.
(2018) and show that the log-linear rule (13) can be obtained as the unique aggregation rule under the
assumption that agents feature imperfect recall. Under this assumption, agents treat the current beliefs of
their neighbors as sufficient statistics for all the information available to them, ignoring how or why these
opinions were formed. This is a formalization of the idea that real-world individuals do not fully account
for the information buried in the entire past history of actions or the complex dynamics of beliefs over

21Starting with Degroot (1974), a rich literature has proposed relatively simple functional forms for agents’ learning rules,
with the objective of capturing the richness of the network interactions while maintaining analytical and computational
tractability.

22This contrasts with the heuristic derived by Degroot (1974), under which only the expectation of an individual’s belief
can determine his influence. For example, an individual with a uniform belief will have no influence on the final belief
according to the log-linear learning rule. In contrast, in the model by Degroot (1974), such an individual would be influential
as long as his expectation is different from others’ expectations.

23See Appendix A.1.1.
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social networks.
Sharing information at the local level also implies a simple law of motion for beliefs from one period

to the next. Indeed, once information is shared, the beliefs in a given destination no longer depend on
where agents come from. The next-period prior beliefs about future productivity can then be expressed
as a function of the shared beliefs at the end of t,

πjt+1(θt+1) =

∫
θ
π̄jt(θ)γ(θt+1|θ)dθ, (14)

where γ(·|θ) is the pdf of a normal distribution with mean ρθ and variance σ2
ξ .

2.6 Dynamic Rational Inattention Equilibrium

I am ready to define a competitive equilibrium in my economy. A competitive equilibrium consists of a
set of information acquisition and mobility strategies such that agents maximize their expected lifetime
utility, taking into account the laws of motion for population and beliefs. I denote by J the set of
locations, Θ the set of possible productivity vectors, L = {{Ljkt}j,k|

∑
j,k Ljkt = L̄, Ljkt ≥ 0} the set of

possible population distributions by previous origins, by S the set of possible signals s, and ∆X the set
of distributions over X for any set X. I also define the set Ω = L×∆Θ× J ×RJ containing the observed
states ωit = (Lt−1, πlit−1t, lit−1, εit).

Definition 1. Given an initial population distribution L0 and initial beliefs {πj0}j∈J , an equilibrium is a
set of individual information strategies, f , consisting of a system of signal distributions ft : Θ×Ω→ ∆S,
as well as mobility strategies, σ, consisting of a system of mappings σt : S × Ω→ J , such that:

• Utility maximization: Agents solve the problem in (10).

• Mobility: Population evolves as in (12).

• Beliefs: Posterior beliefs are derived from priors according to Bayes’ rule (7), and are shared locally
according (13), leading to next-period prior beliefs about future productivity in (14).

I now present a lemma that considerably simplifies the characterization of agents’ location choices
by allowing me to focus on a special class of information strategies in which signals correspond directly
to actions. The intuition is that it is always optimal to devise an information strategy such that two
different signal realizations always lead to different mobility decisions. Receiving distinct signals that
would lead to the same decision would be inefficient as information would be acquired but not acted upon.
Combining these signals into a single realization would have no effect on the distribution of actions and
weakly reduces the information cost. This behavior follows from the convexity of the entropy-based cost
function. As a result, the optimal information strategy can be represented as a choice of a distribution
of recommendations. Each signal realization essentially reduces to an instruction about which location to
choose.24

24In dynamic models, it is necessary to ensure that there is no incentive to select a richer signal structure at time t, for
instance to use it for future decisions. Since the information cost is linear in mutual information and agents discount the
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For a given location k, only one signal realization s would lead an agent i to locate in k, so the migration
probability pjkt(s, θt, ωit) defined in (11) can be expressed as pjkt(θt, ωit) and is equal to the probability
that agent i receives the signal s associated to location k. I refer to this probability p as a mobility rule,
consisting of a system of distributions over J , for each possible (θt, ωit). The following Lemma indicates
that instead of solving for the optimal information and mobility strategies in (10), I can directly solve for
the associated mobility rule p.

Lemma 1. Any equilibrium strategy (f, σ) that solves the dynamic rational inattention problem in (10)
generates a choice rule p that solves

max
p

E

[ ∞∑
t=1

δt
(
ult−1lt(θt, ωit)− I(ωit)

)]
, (15)

where the information cost defined in (16) is expressed as a function of the prior and posterior beliefs
πjkt ≡ πjt|st=k:

I (ωit) = λlit−1

(
H (πjt)−

∑
k

qjkt(ωit)H (πjkt)

)
∀j (16)

and qjkt(ωit) =
∫
θ pjkt(θ, ωit)πjt(θ)dθ is the ex-ante probability of receiving the recommendation to move

to k. Population and beliefs follow the laws of motion (12) – (14).

Proof. See Appendix A.1.2.

Accordingly, I will dispense with the signals st, replacing them with actions lt, and will refer to any
rule p solving (15), and the laws of motion of population and beliefs, as a solution to the dynamic rational
inattention equilibrium.

Proposition 1. There exists a solution to the dynamic rational inattention equilibrium.

Proof. See Appendix A.1.3.

Proposition 1 extends the existence result derived in Steiner et al. (2017) to the case of a non-finite
state space with a continuum of agents and endogenous payoffs by ensuring that the strategy space is
compact, and that the boundedness of payoffs together with discounting ensure that agents’ objective
functions are continuous in their strategies.

2.7 Stochastic Steady-State Equilibrium

I now introduce a number of assumptions that will help deliver a tractable solution to the dynamic rational
inattention equilibrium in stochastic steady state. A stochastic steady state consists of a mobility rule,
p(·), and beliefs, π(·), that are time-invariant, in the sense that they always map a given set of states to
the same actions and probability distributions, respectively. In the stochastic steady state, there is still
variation in mobility flows and earnings each period as new productivity vectors are realized. However,

future, the additive property of entropy ensures that delaying information acquisition never increases the cost, regardless of
other information the agent acquires.
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population and beliefs in each location evolve within an ergodic distribution, and we can drop the t
subscript for the mobility rule and beliefs.

Definition 2. A stochastic steady state equilibrium is a mobility rule p : Θ × Ω → J , as well as beliefs
π : Ω→ ∆Θ, such that p is a solution to (15), while population and beliefs follow the laws of motion (12)
– (14) and satisfy pjkt(θ, ω) = pjkt+1(θ, ω), πjt(θ|ω) = πjt+1(θ|ω).

Note that the state variables that migration decisions depend on contain the prior beliefs at the
beginning of the period. Indeed, even if we consider one location and two different time periods at which
the productivity, population distribution and the agents’ preferences are identical but prior beliefs are
different, we may still expect agents to acquire different amounts of information, resulting in different
beliefs and mobility decisions. However, as I discuss in Appendix A.1.4, under the condition that the
variance of productivity process is not too large, in stochastic steady state the prior beliefs πj(θt|ωit) can
be expressed as a function of only the population distribution Lt−1, πj(θt|Lt−1). As a result, the effective
states that determine agents’ mobility decisions are then (θt, Lt−1, εit). This property of beliefs is specific
to rational inattention problems and results from the property of locally invariant posteriors shown in the
context of a static model by Caplin and Dean (2015).25

I am now ready to characterize the solution to the stochastic steady-state. As was shown by Matějka
and McKay (2015) in a static framework, and extended by Steiner et al. (2017) to a dynamic setting, the
specific form of the information cost (9) based on the Shannon entropy leads to a modified logit form for
the decision rule. The following Proposition shows that the mobility rule features a similar logit structure
in the stochastic steady state.

Proposition 2. In the stochastic steady state, for each agent located in j at time t−1, the optimal mobility
rule pjk(θt, Lt−1, εit) can be expressed as

pjk(θt, Lt−1, εit) =
qjk(Lt−1, εit) exp

(
ujk(θt, Lt−1, εit) + δV̄k(θt, Lt−1)

)1/λj∑
l qjl(Lt−1, εit) exp

(
ujl(θt, Lt−1, εit) + δV̄l(θt, Lt−1)

)1/λj (17)

where qjk(Lt−1, εit) =
∫
θ pjk(θ, Lt−1, εit)πj(θ|Lt−1)dθ and we define the expected future value as V̄k(θt, Lt−1) =

E [Vk(θt+1, Lt, εit+1)|θt, Lt−1]. The continuation payoffs solve

Vj(θt, Lt−1, εit) = λj log

(∑
l

qjl(Lt−1, εit) exp
(
ujl(θt, Lt−1, εit) + δV̄l(θt, Lt−1)

)1/λj) , (18)

and population and beliefs follow the laws of motion (12) – (14).
25The locally invariant posteriors property states that agents with different priors will locally choose the same posterior

beliefs. If this property holds in our dynamic context, agents who move from j to k always have the same posterior beliefs,
so that the shared beliefs in k in some period t only depend on the composition of agents at t, and not on their prior beliefs.
Imposing that the variance of the productivity process is sufficiently small ensures that the population composition of a
location, and the resulting priors, remain in the set leading to the same posterior beliefs. To check that this property holds
in practice, I solve the model with 10 locations, allowing prior beliefs to vary with (Lt−1, Lt−2) and posteriors to vary with
Lt−1, and show that for reasonable values of fundamentals and productivity process parameters, the priors do not vary with
Lt−2.
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Proof. See Appendix A.1.4.

Conditional on a productivity vector θt, a population distribution Lt−1 and preference shocks εit, agent
i’s decision is stochastic because it depends on which signal realization she obtains. If information was
complete, an agent in j would observe the payoffs ujk + δV̄k for all k under the states (θt, Lt−1, εit), choose
the destination k∗ offering the highest payoffs, so that the mobility rule pjk would be an indicator function
equal to 1 for this particular k∗, zero for all other destinations. This is indeed the limit of the mobility rule
(17) as λj → 0. When information is costly and λj > 0, the expression (17) indicates that a destination k
that offers higher payoffs ujk+δV̄k under the states (θt, Lt−1, εit) has a higher probability of being selected
after the agent has acquired information. However, the expression also contains an endogenous bilateral
shifter in the form of the ex-ante moving probability qjk. The shifter predisposes agents in j to move to k,
by a magnitude that depends on the prior beliefs held by agents in j about payoffs in k. If the expected
probability of moving to k is large according to the current population composition, then moving to k
is more likely, irrespective of the current realization of productivity θt. This endogenous predisposition
is a sufficient statistic expressing the magnitude with which information frictions favor some migration
decisions relative to others. If a location k offers high payoffs for agents in j, either because of high
productivity, amenities or low migration costs, this translates into higher average migration flows between
j and k and therefore into a higher predisposition for this transition.

The expected value of being located in some location k in (18) solves a Bellman equation akin to
dynamic logit models. The value of being in some location j is increasing with the payoffs that can be
expected from moving to other locations. If information was complete, the value of being in location j

when the state is (θt, Lt−1, εit) would simply be the payoff ujk∗ + δV̄k∗ in the optimal location k∗. When
information is incomplete, the agent may move to any location l with some probability depending on the
information they obtain. The payoffs of each potential destination l are weighted by the ex-ante probability
that agents in j move to l. The contribution of information costs defined in (16) is summarized by the
endogenous predispositions qjk and the exponent λj .

At this stage, mobility decisions have a different expression for every preference draw. In order to
express the total bilateral mobility flows for each productivity and population (θt, Lt−1), I need to aggregate
these individual decisions by integrating over preference shocks εit. Moreover, even if the mobility rule is
only a function of (θt, Lt−1), the number of state variables is large even for a limited number of locations.
As a result, I approximate the equilibrium belief distribution when I solve for the mobility rule. I choose to
approximate the belief distribution by the conjugate of a Type 1 extreme value (EV1) distribution, which
leads to a closed-form aggregation over preference shocks. In addition, I assume that preference shocks
are also drawn from this class of distributions.26 The main property of the conjugate EV1 distribution is
that if a random variable X is drawn from a EV1 distribution and another random variable Y is drawn
from a conjugate EV1 distribution, then Y +X is a random variable distributed as EV1.27

26Brown and Jeon (2019) also imposed that beliefs and preferences follow a conjugate EV1 distribution in their static model
of optimal health insurance choice. Dasgupta and Mondria (2018) imposed that productivity shocks follow a particular type
of conjugate EV1, the Cardell distribution, in their model of international trade.

27The relation between the conjugate EV1 distribution and the EV1 distribution is displayed in Appendix E. Qualitatively,
the two distributions are very similar.
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Assumption 1. Equilibrium marginal beliefs πj(θkt|Lt−1) can be approximated by independent conjugate
EV1 distributions with mean µjk(Lt−1) and same variance σ2

j .

Assumption 2. Preference shocks εikt are drawn from independent conjugate EV1 distributions with mean
zero and dispersion ν.

Although Assumption 2 is similar to the usual assumption that preference shocks are drawn from Type
I extreme value distributions, Assumption 1 imposes restrictions on the equilibrium behavior of agents
by constraining beliefs to belong to a particular distribution and to be independent across locations. Be-
fore presenting the expression for the migration probability p̄jk(θt, Lt−1) = E [pjk(θt, Lt−1, εit)] integrated
over preference shocks εit, I denote by ūjk the average utility flow E [uijk] integrated over εit and define
v̄jk(θt, Lt−1) as the expected value of moving from j to k if the productivity and population are (θt, Lt−1):

v̄jk(θt, Lt−1) = ūjk(θt, Lt−1) + δV̄k(θt, Lt−1).

I also define the expectational error, χjk(θt, Lt−1) = µjk(Lt−1)−θkt, as the difference between the expected
value of θkt according to agents in location j at time t, and its actual realization θkt.

Proposition 3. Under Assumptions 1 and 2, the average mobility rule in the presence of information
frictions and preference heterogeneity is given by

p̄jk(θt, Lt−1) =
exp (ηjχjk(θt, Lt−1) + v̄jk(θt, Lt−1))

1
φj∑

l exp (ηjχjl(θt, Lt−1) + v̄jl(θt, Lt−1))
1
φj

, (19)

where χjk(θt, Lt−1) = µjk(Lt−1) − θkt is the expectational error made by agents in j about θkt, while the
continuation payoffs solve

Vj(θt, Lt−1) = φj log

(∑
l

exp (ηjχjl(θt, Lt−1) + v̄jl(θt, Lt−1))
1
φj

)
, (20)

with φj = ν
(

1 + λ2
j (1− ηj)2

)1/2
and ηj =

(
1 +

6σ2
j

π2λ2jν
2

)−1/2

∈ (0, 1), and π is the constant π = 3.1415...

When the information cost tends to zero, µjk(Lt−1) → θkt and φj → ν so that the model reduces to a
preference-based migration model:

p̄jk(θt, Lt−1)→λj→0
exp (v̄jk(θt, Lt−1))1/ν∑
l exp (v̄jl(θt, Lt−1))1/ν

. (21)

When the dispersion of preferences ν tends to zero, the solution becomes

p̄jk(θt, Lt−1) =
exp (ρjχjk(θt, Lt−1) + v̄jk(θt, Lt−1))

1
ψj∑

l exp (ρjχjl(θt, Lt−1) + v̄jl(θt, Lt−1))
1
ψj

, (22)
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where ψj = λj (1− ρj) and ρj =

(
1 +

6σ2
j

π2λ2j

)−1/2

∈ (0, 1).

Proof. See Appendix A.1.5.

The role of information frictions λj in altering the responsiveness of migration to local shocks is
apparent in (19). The elasticity of migration with respect to observed components of ūjk is 1/φj , whereas
the elasticity of migration with respect to θt is smaller and equal to (1 − ηj)/φj , after including the
contribution of θt to the expectational error χjk. Since ηj ∈ (0, 1), migration flows are less responsive to
variations in θt than they are to variations in observed payoffs, precisely because agents must incur a cost
to learn about the value of θt and therefore choose to only imperfectly observe θt. When information costs
λj become very large, ηj → 1 and the elasticity of migration with respect to θt is zero. Conversely, when
information costs are zero, prior beliefs about θt become perfectly accurate and µjk(Lt−1) equals θkt. As
shown by (21), this implies that the elasticity of migration with respect to all components of the payoffs
v̄jk, including θt, equals 1/ν. Therefore, the role of information frictions is identified by the differential
responsiveness of migration flows with respect to unobserved (θt) and observed (Lt−1) determinants of
payoffs. In Section 4.2, I propose a strategy for estimating the elasticities (1/φjt, (1 − ηjt)/φjt) that
exploit the mapping from these elasticities to the information costs and preference heterogeneity (λj , ν).

In addition to affecting the responsiveness of migration flows to fluctuations in payoffs, information
frictions affect the levels of migration flows. This mechanism shows up in (19) as the role of mean prior
beliefs µjk(Lt−1) in shifting the level of bilateral migration flows. From the expression of shared beliefs
(13), we can see for example that the beliefs held by agents in location k about the productivity in k are
likely to be biased upwards. Agents who decided to move to k all received signals that were favorable to k,
leading to a consensus that attaches a high probability to large values of θkt. This high mean prior belief
about θkt translates into a higher probability of staying in location k in the next period. More generally,
destinations that agents are optimistic about will be favored over other locations, creating the same
endogenous predispositions towards some locations as was discussed in reference to (17). As I will discuss
in Section 4.4, failing to account for information frictions will overestimate the actual bilateral migration
costs κjk. The dependence of mobility decisions on mean beliefs also has implications for mobility patterns.
As I will argue in Section 5, the covariance of mean beliefs with the realized productivity varies across
pairs of locations and delivers migration patterns that are in line with observed flows. In particular,
agents’ beliefs are less responsive to productivity shocks in distant locations, both because they are less
likely to interact with well-informed people from these locations, and because they individually gather less
information about them. This leads to a decreasing migration elasticity with distance.

3 Data Sources

In this section, I present my main sources of data and provide descriptive statistics on migration patterns
in Brazil. I provide more information about how I constructed my sample in Appendix B.

The main source of data is the Relação Anual de Informações Sociais (RAIS), which is collected
annually by the Brazilian Ministry of Labor and contains matched employer-employee information for every
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formally employed worker in Brazil.28 It includes demographic, occupational and income characteristics
for employees, with individual identifiers so that workers can be followed from year to year. I use 15
consecutive years of data, corresponding to the period between 2000 and 2014. RAIS also includes the
geographic location of each employment contract at the municipality level. For every formal job and
year, I exploit information on the duration of the job spell, the average monthly wage, the number of
hours stipulated in the contract, and certain characteristics of the plant where the worker is employed.29

Specifically, I use information on the micro and mesoregion in which the plant is located.30

Workers in the sample often appear to be performing multiple different jobs in the same year. If a
worker has more than one job in a year, I assign them to the job they held for longest during that year.
However, to determine the total labor income of a worker in a year, I add labor income from all jobs that
worker held.

The data contains no information on the residence of a worker before their first job in the formal sector.
Consequently, in the analysis, I focus on the migration decisions of workers and do not model the decision
to enter the labor force or acquire college education. For this reason, I limit the data to workers that
are over 25 years of age, since, for the majority of the population, education decisions are taken before
this age. Similarly, I do not model the retirement decision of workers and, consequently, I limit the data
workers below 65 years of age.

Besides the information on workers’ labor market histories contained in the RAIS database, I also use
information on the population of each municipality in each year between 2000 and 2014 from the popula-
tion census collected by Instituto Brasileiro de Geografia e Estatistica (IBGE). I compute population by
mesoregion by aggregating the population of all municipalities included in the corresponding mesoregion.

Finally, I collect information on the degree of internet penetration by microregion. Specifically, from
the Agência Nacional de Telecomunicações, ANATEL, a government agency in charge of regulating and
supervising telecommunications in Brazil, I obtain information on the number of broadband connections
by municipality and year between 2007 and 2014. I use the population data obtained from the population
census to construct a municipality-specific measure of the number of broadband connections per capita,
and again use the municipality-level population data to construct an equivalent variable at the mesoregion
level. As I do not have access to information on the number of broadband internet connections for the
years 2000 to 2006 and the available data indicates that the overall number of broadband connections per
inhabitant is less than 1% in 2007, I assume that the number of broadband connections per capita equals
zero in every mesoregion before 2007.

28In Brazil, informal and self-employed workers constitute a large fraction of the labor force, peaking at 45% in 2000 (Bosch
et al., 2012). Consequently, my analysis leaves out a significant fraction of the labor force. Workers may consider transitions
into and out of the formal sector as an alternative to geographic mobility. To limit the prevalence of these transitions, I
restrict my analysis to workers with a high attachment to the formal sector by focusing on workers spending at least seven
consecutive years in the formal sector over the sample period.

29In the analysis of migration patterns at the individual level described in section 5.1, I also exploit the 2-digit occupation
(according to the Classificação Brasileira de Ocupações, CBO), the 2-digit industry of production of the establishment for
the main job spell (according to the Classificação Nacional de Atividades Econômicas, CNAE), as well as information on the
workers’ gender, age, and level of education.

30Brazilian microregions are groups of municipalities that span the entirety of the Brazilian territory and are the clos-
est equivalent to commuting zones. During our sample period, there were 558 microregions which are grouped into 137
mesoregions.
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The resulting dataset includes 372,454,979 worker-year pairs that correspond to 45,958,805 workers.
According to the RAIS data, the 137 mesoregions had on average 250,000 legal workers in 2014 (the median
microregion had close to 62,000 legal workers). The mesoregions with the highest labor force are located
in the South and along the coast. The average yearly rate of migration across mesoregions is 3.4%.

4 Estimating the Model

In this section, I structurally estimate my model, guided by the mobility rule derived in the previous
section. I estimate the model separately over two time periods: 2000-2007 and 2008-2014. I will treat each
of these periods as steady states, and compare the parameters, in particular information costs, during each
period. I follow a two-step procedure for each period: first, I estimate the production parameters that
can be inferred directly from the data without simulating the model. Second, I use the gravity equation
of migration predicted by the model to estimate the remaining parameters consisting of the amenities,
migration costs, preference heterogeneity, and information costs. The structural estimation uses data
from RAIS described in Section 3. I construct yearly bilateral migration flows between each of the 137
mesoregions in Brazil, and average wages in each region and year, from individual records of earnings and
location each year.

4.1 Step 1: Production parameters

I begin by estimating J+3 parameters that can be obtained directly from the data. This step only imposes
assumptions on the production side of my model. These are the parameters governing the decreasing
returns in labor, 1−α, the persistence and volatility of the productivity process, (ρ, σ2

ξ ), and the regional
baseline productivities Ak.

I first set the Cobb-Douglas share of labor, 1− α, used in production equal to the average labor share
computed from national statistics over each period.31 The labor share, 1− α, in Brazil is stable between
2000 and 2014 at a value of 0.60.

I then estimate the parameters of the productivity process. The Brazilian economy is growing over the
sample period. The total employment recorded in RAIS is also growing each year, both from demographic
change and increased transitions to the formal labor market. To be able to interpret the data as closely
as possible to a steady state with constant total population, I project wages on year fixed effects and
normalize all population stocks so that the total population in the economy is constant at its 2000 level
over the sample. I then estimate the AR(1) process associated with the observed wages after substituting
year fixed effects and adjusting for population, w̃kt = logwkt + α logLkt − log(1 − α). From the first
order condition determining wages (4) and the evolution of productivity (3), the adjusted wages can be
expressed as

w̃kt ≡ logwkt + α logLkt − log(1− α) = Ak + θkt. (23)

The baseline productivities are therefore recovered as the average of w̃kt over the period, since E[θkt] =

31See Restrepo-Echavarria and Reinbold (2018). The data available in RAIS only contains payments made to formally
employed workers and does not report information on value added. The labor share is computed from the Penn World Tables.
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0. The persistence of the productivity process ρ is equal to the covariance of w̃kt and w̃kt−1 divided by the
variance of w̃kt. The volatility of the productivity process is then computed as (1−ρ2)Var(w̃kt). Finally, I
recover the productivity shocks θkt implied from the observed w̃kt and estimated productivities Ak as the
residuals from (23).32 As reported in Table 1, the estimated productivities are on average equal to 4.49

with a standard deviation of 0.87 across regions between 2000 and 2007. For 2008–2014, the mean and
standard deviations are 4.72 and 0.83 respectively. The persistence of the productivity process ρ is 0.76
in the first period and 0.69 in the second period. The volatility of the productivity process σ2

ξ is 0.33 in
the first period and 0.38 in the second period.

4.2 Step 2: Simulated Method of Moments

In the second stage, I use the method of simulated moments to estimate the remaining parameters ϑ =

(ν, λj , Bj , κjk), which consist of the dispersion of idiosyncratic preferences, information costs, amenities,
and migration costs. The total number of parameters to be estimated in this step is large: there are
as many as 2J + (J − 1)2 = 18770 of them.33 A grid search over the parameter space is therefore not
practical. To circumvent this issue, I develop an iterative algorithm that updates the parameter guesses
in a simple intuitive way and delivers fast convergence. First, I use the mobility rule in (19) to obtain
a regression equation predicted by the model. This regression equation offers moments that I target to
identify the parameters of interest. I then simulate the model given parameter estimates from the first
step and guesses for the parameters to be estimated. I run the predicted regression in the model and
update the parameter guesses using the estimated coefficients of the regression.

To obtain the regression equation at the core of my estimation, I exploit the gravity structure of the
model. Denote by p̄jkt the migration share between j and k conditional on the productivity and population
at time t. Taking the log of the migration share p̄jkt divided by the share of stayers in j, p̄jjt, and using
the expression of ūjk in (5) yields the following expression:

log
p̄jkt
p̄jjt

=
ηj
φj

(χjkt − χjjt) +
1

φj

(
log

wkt
wjt

+Djk + δ (Vkt+1 − Vjt+1)

)
+ ejkt, (24)

whereDjk = Bk−Bj−κjk is a composite bilateral “resistance” term combining the contributions of amenity
differences between regions and migration costs. The error term ejkt = (ζjjt − ζjkt) /φj is composed
of expectational errors about future values ζjkt = δ (Vkt+1 − Ej,tVkt+1). Equation (24) has a “gravity”
structure in that the magnitude of bilateral flows is increasing in the wage (and future value) differentials
between any two regions, and is decreasing in the “distance” between regions captured by Djk. The
new contributor to this gravity structure is the “optimism differential” that agents express towards the
destination relative to their origin, and is represented by the difference between the expectational errors
made by agents in j about θkt and θjt, (χjkt − χjjt).

Since the error term ejkt only arises because of the irreducible uncertainty about future productivity
32Since the production specification does not account for the use of capital or other inputs, any variation in observed wages

that is caused by a shock to these variables is interpreted as a productivity shock.
33There are J information costs, J−1 amenities since one can be normalized to 0, (J−1)2 migration costs since I normalize

κjj = 0 for all j, and the preference heterogeneity ν.
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θt+1 due to the innovation of the AR(1) process, it is orthogonal to all other regressors. As a result, the
coefficients β̂ obtained from estimating (24) by ordinary least squares (OLS) are the method of moments
estimator for the moment condition associated to the orthogonality of the regressors and the error term.
There is a unique mapping between the coefficients of the regression β = (ηj/φj , 1/φj , {Djk/φj}), and
the parameters of interest ϑ = (ν, λj , Bj , κjk). Intuitively, ηj and φj together identify ν and λj , while
projecting Djk on origin and destination fixed effects allows me to recover amenities, Bj , and fixed costs,
κjk, after normalizing κjj = 0 for all j.34

The estimation algorithm I employ relies on a standard fixed point iteration on the OLS equation (24).
A satisfactory set of parameters ϑ should deliver beliefs and values such that the estimates β̂ from (24)
map exactly to ϑ̂(β̂) = ϑ. First, I guess initial values ϑ0 = (ν(0), λ

(0)
j , B

(0)
j , κ

(0)
jk ) for the parameters to

be estimated.35 Second, I simulate the model using the production parameters (α, ρ, σ2
ξ ) estimated in the

first block, and the current parameters ϑ(0). This delivers mean belief functions µ(0)(·) and values V (0)(·).
Third, I evaluate beliefs and values at observed populations Lobst−1 and recovered θobst , and estimate (24)
by OLS.36 Fourth, from the estimated ηj and φj and fixed effects, I update the parameters to ϑ(1) and
return to the second step using ϑ(1). I keep iterating until my estimator converges to a fixed point ϑ∗.
By construction, this procedure minimizes the method of moment objective associated to the moment
conditions of the OLS regression (24). I describe the iterative algorithm in more detail in Appendix C.1.
Despite the absence of theoretical results on the convergence of this algorithm, I find that in practice, it
converges quickly and always to the same solution ϑ∗ for different initial values ϑ(0).

I estimate the model over the two different periods, 2000–2007 and 2008–2014, and report the results
in Table 1. I describe the information costs in Section 4.3. The estimated dispersion of preferences is equal
to 2.31 in the first period and 2.62 in the second period. The dispersion in preferences appears to have
increased over time as information costs decreased. This reflects the fact that migration flows have become
less responsive to wages overall, but have become relatively more responsive to unobserved productivity
shocks. Finally, I separate the amenities from the migration costs by projecting the estimated Djk on
origin and destination fixed effects. I normalize the lowest estimates of amenity across regions to zero, and
obtain that the standard deviation is 0.83 in the first period and 0.91 in the second period. The average
migration costs are 0.56 in the first period and 0.47 in the second period. The decline in migration costs
between the two periods is consistent with the increase in migration flows between the two periods.37

Overall, parameter values are fairly similar over the two periods.

4.3 Information Costs and Internet Access

Information costs are on average equal to 3.11 in the first period and 2.23 in the second period. The
standard deviation in the information costs is 1.43 in the first period and 1.32 in the second period.

34The mapping between (ηj , φj) and (ν, λj) is not direct as it depends on the variance of beliefs σj , itself a function of all
parameters. See Appendix C.1 for more details.

35To obtain reasonable initial guesses, I first run (24) omitting the mean beliefs and future values.
36In the data, out of the (J−1)2 = 1362 = 18, 496 migration trips that could be undertaken between any two mesoregions,

only 10, 382 of them have positive flows recorded more than once over the 15 years of data. This implies that no fixed
bilateral resistance term can be estimated for these pairs, and I assign them a prohibitive migration cost.

37See Appendix B.2 for a description of the yearly migration rates.
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Table 1: Estimated Parameters

Parameter Related Moment Statistic Time Period
2000-2007 2008-2014

α Inverse Labor Share Value 0.41 0.40
ρ Persistence of Wages Value 0.76 0.69
σ2
ξ Volatility of Wages Value 0.33 0.38
ν Migration Elast. wrt wages Value 2.31 2.62
λj Migration Elast. wrt Productivity Mean 3.11 2.23
Aj Average Wages Std Dev 0.87 0.83
Bj Average Population Std Dev 0.83 0.91
κjk Average Migration Flows Mean 0.56 0.47

Estimated values of the parameters of the production process, regional baseline productivities,
amenities, and information costs, as well as bilateral migration costs.

Figure 2a and Figure 2b display the estimated information costs λj for each of the 137 mesoregions for the
first and second periods. The information costs appear strongly correlated with the economic development
of regions, with the lowest costs of information in the most densely populated and richest regions of the
South, including the metropolitan areas of São Paulo, Rio de Janeiro, and Brasilia. In contrast, the
less developed North-Eastern regions and remote regions in the Amazon appear to have a much higher
cost of information. It is worth emphasizing that these information costs were recovered as fixed-slope
coefficients with no parametric assumption regarding their correlation with any observable variable. The
lower information costs obtained for Southern regions result from the fact that workers in these regions
appear to be relatively more responsive to the unobserved productivity shocks than workers in other
regions.

Since these information costs are novel parameters that have not yet been estimated in the literature,
I now investigate their variation along observable regional characteristics. From inspecting Figure 2a and
Figure 2b, these information costs appear to be correlated with population density and average income.
One intuitive shifter for the technological cost of information acquisition is the availability of internet in
the region. There may also be persistent determinants of the information costs at the region level, such as
geographic accessibility. Motivated by these remarks, I propose a simple parameterization of information
costs:

λjt = `1intjt + `2 logwjt + `3 log popdensjt + ςj + ujt, (25)

where t ∈ {1, 2} corresponds to each of the two periods 2000–2007 and 2008–2014, intjt is the average
fraction of residents of j with an active internet connection over the years corresponding to the period
t = 2, and zero for the period t = 1, logwjt is the log average wage in region t over the years corresponding
to the period t, log popdensjt is the average log of the population density in region j during each period,
ςj captures unobserved determinants of the information costs that are constant across the two periods,
and ujt captures the unobserved time varying determinants of the information costs.

I estimate (25) in first differences by OLS and report the results in the first column of Table 2. The
coefficient on internet access is large and significant at the 1% level, and indicates that conditional on
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(a) Information Costs 2000-2007 (b) Information Costs 2008-2014

Table 2: Determinants of Information Costs

OLS IV

Internet Connections / Inhabitants -0.971a -0.831b

(0.321) (0.461)

Log Income -0.824a -0.793a

(0.241) (0.262)

Log Pop. Density -0.310c -0.323c

(0.190) (0.202)

Observations 137 137
R2 0.219 0.192

a denotes 1% significance, b denotes 5% significance, c denotes
10% significance. In parenthesis, I report standard errors.
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income and population density, increasing the fraction of residents with an internet connections from zero
to one is associated with a decline in the information cost by 0.97 units. The coefficient on log income,
also significant at the 1% level, implies that a 1% increase in local income is associated with a decrease
in the information cost by 0.00824 units. The coefficient on population density is only significant at the
10% level and reveals that a 1% increase in population density is associated with a 0.0031 decrease in the
information cost.

In the analysis of counterfactual exercises described in Section 6, I am interested in reproducing the
plausible decrease in information costs brought about by the expansion of internet access at the local level.
From inspecting (25), one may suspect that there could be unobserved time varying factors in the error
ujt that are correlated with the fraction of households with an internet connection. For example, changes
in local public spending on transportation or communication infrastructure may have directly reduced the
cost of information, and facilitated internet expansion. These omitted variables may lead to an upward
bias in the estimation of the causal effect of internet penetration on the information cost.

To circumvent this issue, I instrument the fraction of residents with an internet connection with a
dummy variable equal to 1 if the region is located less than 250 km away from a backbone cable.38 Only
agents residing in the vicinity of a backbone cable can expect to have access to high speed internet.
Importantly, the geographic coverage of these backbones, including the ones deployed over the period
2008–2014, follows other infrastructure that existed prior to 2008. This provides a plausible source of
variation for the extent of internet penetration that is unlikely to be affected by later changes in local
economic conditions. To construct the instrument, I follow Tian (2019); see Appendix C.2. I report the
results from the instrumental variable regression in column 2 of Table 2. The magnitude of the coefficient
of internet connections per resident is slightly lower, but remains large and significant at the 5% level.

4.4 Migration Costs With and Without Information Frictions

I now illustrate the implications of my model for the magnitude of migration costs and preference hetero-
geneity. Since information frictions are a source of both endogenous migration costs and limited migration
elasticity, smaller exogenous migration costs κjk and preference heterogeneity ν will be necessary to explain
the observed migration patterns. I confirm this prediction by estimating the model under the assumption
that there are no information frictions, so λj = 0 for every region j. This corresponds to the mobility rule
(21).

Since there are no unobserved expectational errors to control for, it is possible to devise a direct
estimation strategy without simulating the model. This method relies on renewal actions and compares
migration paths that visit the same locations at t and t+2 but differ at t+1 (Artuç et al., 2010; Traiberman,
2019; Caliendo et al., 2018). From t + 2 onwards, these paths offer the same continuation value, so the
difference in the payoffs they offer can be expressed as a function of the wages in the visited regions at
time t+ 1. If I select the origin destination at t to be j, the location at t+ 1 to be either j or k, and the
destination at t+ 2 to be k, I can write the estimation equation

38“Backbones” are national trunk infrastructure that brings traffic from international submarine cables in coastal regions
to inland parts of the country. Backbones consist of high-capacity fiber optic cables. The quality of broadband connection
decreases exponentially with distance to the backbone, and I follow Tian (2019) in setting the threshold of 250 km.
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Figure 3: Estimated Migration Costs with and without Information Cost

Λjkt =
1

ν
(∆ logwjkt +Djk + ejkt) , (26)

where Djk = Bk −Bj − κjk and Λjkt = log

(
pjktp

δ
kkt+1

pjjtpδjkt+1

)
is the relative discounted probability of the paths

j → k → k and j → j → k. The residuals χjkt are a collection of expectational errors that are orthogonal
to the regressors:

χjkt = ζjjt − ζjkt + δ(ζjkt+1 − ζkkt+1), ζjkt = δ (Vkt+1 − Ej,tVkt+1) .

The iterative estimation algorithm described in Section 4.2 can also be applied to this particular
case. I obtain almost exactly the same estimates as in the direct estimation, which validates my iterative
estimation method.

The distribution of bilateral migration costs resulting from the estimation of (26)—after projecting
on origin and destination fixed effects to net out amenities—is displayed in Figure 3 for the period 2000–
2007. Out of the (J − 1)2 = 1362 = 18, 496 migration trips that could be undertaken between any two
mesoregions, only 10, 382 have positive flows recorded more than once during the first period. This implies
that my procedure does not estimate a fixed bilateral resistance term for the pairs with no consistent flows.
In figure 3, the average migration cost among the 10, 382 estimated bilateral costs is 0.94. For comparison,
I report the distribution of the estimated migration costs for the same 10, 382 origin-destination pairs
in the model with information frictions. With information frictions, the average migration cost in the
first period is 0.56, so the average migration cost is 40% smaller once we allow for information frictions.
This difference illustrates the quantitative relevance of the endogenous predispositions emanating from the
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Table 3: Determinants of Migration Costs

With Info Frictions Without Info Frictions
2000-2007 2008-2014 2000-2007 2008-2014

Log Travel Time 0.384a 0.370a 0.619a 0.568a

(0.053) (0.051) (0.089) (0.077)

Log Distance 0.263a 0.219a 0.440a 0.401a

(0.032) (0.029) (0.052) (0.045)

Dummy Contiguous -0.211a -0.182a -0.331a -0.301a

(0.012) (0.013) (0.021) (0.016)

Observations 68,152 68,152 68,152 68,152
R2 0.334 0.291 0.352 0.301

a indicates significant at the 1% level. In parenthesis, I report standard errors.

information frictions.
To think of these costs as a fraction of income, consider what an agent earning some initial income

w would have to receive as additional income ∆w to be perfectly compensated for paying the average
migration cost of 0.56. The additional income would require that log(w + ∆w) = logw − 0.56, which
corresponds to an increase ∆w/w of 75%, or an annualized flow of 3% of earnings, using a discount factor
δ = 0.96.

The estimated inverse elasticity from (26) in the first period is equal to ν = 2.92, compared with 2.31 in
the model with information frictions. The preference heterogeneity is then 21% smaller after accounting for
information frictions. For the second period, I estimate ν = 3.12, compared with 2.62, which corresponds
to a 16% difference. All of these values are well in the range of the few existing estimates of the migration
elasticity in the literature. For example, using a model similar to (21), Caliendo et al. (2018) estimate
ν = 2.43 in the context of migration between European countries during a similar period.

4.5 Migration Costs and Distance

I have estimated migration costs as origin-specific fixed effects. I now investigate how these migration
costs vary with common measures of distance between regions. In particular, I express the migration
costs κjk as a function of the euclidean distance between the population centroids of each region, as well
as measures of bilateral travel times on the road network and a dummy for whether the two regions are
contiguous. I rely on geo-referenced maps of the Brazilian road network from the Brazilian Ministry of
Transportation for the year 2010 and compute travel time measures between each pair of regions using
the Open Source Routing Machine. I estimate the following regression by OLS:

κjk = β1 log distjk + β2 log traveltimejk + β3contiguousjk + ejk. (27)

Table 3 reports the results from estimating (27) in each period. Migration costs are increasing with
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travel time and distance, and are smaller between contiguous regions. My estimates are slightly smaller in
the second period, indicating migration costs have become slightly less dependent on distance and travel
time. For comparison, the last two columns show the coefficients obtained after regressing the migration
costs estimated from the model with no information frictions. The role of distance and travel time appear
significantly more pronounced.

5 Testing Predictions of the Model

In this section, I present two exercises that illustrate the success of my model at describing migration
patterns. In the first exercise, I uncover a set of new facts on migration patterns in Brazil. I show that the
migration elasticity with respect to wages is decreasing with the distance between regions, increasing with
the intensity of past migration flows connecting them, and increasing with the internet penetration at the
origin. I replicate the same empirical exercise in my model and show that the same patterns arise, with
similar magnitudes, in the model with information frictions. In the model with complete information, the
elasticities are constant. Second, the migration response to observed local positive shocks is more delayed
for more distant origins and origins with lower internet penetration. Taken together, these two exercises
support both the qualitative and quantitative relevance of the new mechanisms introduced in my model.

Before describing the two exercises, it is worth pointing out that logit models of migration with complete
information such as (21) are typically considered quite successful at matching observed migration patterns.
This is in large part thanks to their flexibility with respect to the bilateral migration costs κjk, which allow
them to exactly match the average levels of bilateral migration flows between any two regions. Hence, in
order to further test the ability of such models to accurately describe migration decisions, I focus on the
cross-sectional variation in migration elasticities rather than levels, and on dynamic responses rather than
time averages.

5.1 Heterogeneous Migration Elasticities

I start by presenting a simple empirical approach that provides sharply distinct predictions depending on
whether information frictions are present or not. Note that in the model with complete information (21),
there is a straightforward strategy for recovering the migration elasticity 1/ν, described in (26). I can
however allow for some heterogeneity in the migration elasticity along some variable Zjkt:

Λjkt = β1∆ logwjkt + β2Zjkt ×∆ logwjkt + β3Zjkt +Djk + ejkt. (28)

For any variable Zjkt, the model with complete information predicts that β2 = β3 = 0. However in the
presence of information frictions, from equation (24), it is clear that the responsiveness of migration flows
between two regions j and k with respect to productivity shocks θkt depends on the responsiveness of
mean beliefs to θkt. If the beliefs held by agents in j about θkt increase when θkt increases, their migration
elasticity is higher. These posterior beliefs are in turn determined by individual information acquisition
and local information sharing.
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In the presence of information frictions, the migration elasticity should decrease with distance. If,
say, region k is close to region j, so that the migration cost κjk is small, then agents in j will pay quite
a lot of attention to payoffs in k. Hence, upon receiving a recommendation to go to k, agents in j will
update their beliefs significantly upward since they know this recommendation is likely to reflect the true
productivity in k. This makes beliefs to close regions more responsive to nearby regions. In addition,
when the productivity in this nearby region k is high at time t− 1, people in k are more likely to stay in
k and less likely to move to j. At the end of t − 1 in j, there are fewer people from k, who tend to be
pessimistic about k—people who leave their region tend to think their region is less attractive—and the
shared beliefs in j about k become more optimistic. Since the productivity in k is persistent, it is likely to
be high at time t as well, and agents in j are now likely to think productivity is high too. For these two
reasons, beliefs about nearby regions are more responsive to productivity shocks, making the migration
elasticity larger for nearby origin-destination pairs.

Second, the migration elasticity should also be increasing with the size of the past migration flows
connecting an origin to another destination. In practice, if a large number of people in region j were
in region k in the past, they are likely to be informed about this region and could pass along relevant
information about the payoffs in k that will make migration more responsive to opportunities in k. In
my model, the effect of past flows from k to j on the responsiveness of contemporaneous migration from
j to k is happening through local information sharing. If j tends to welcome a large number of people
from k over time—maybe because the two regions are geographically close—beliefs in j about k tend
to be accurate since they are largely influenced by the beliefs held by people coming from k. When a
positive shock happens in region k, the flow from k to j will decrease as more people decide to stay. This
translates into an increase in the shared mean beliefs about k in j due to the adjustment of population on
the extensive margin.

Third, the migration elasticity should be increasing with local internet penetration. In practice, people
with access to internet should have access to cheaper information and decide to gather more accurate
information about migration opportunities. This should induce these people to take advantage of positive
shocks and make them less likely to move when the conditions in the destination are not favorable. The
idea that expanded access to information technology could explain changes in aggregate migration patterns
was advanced by Kaplan and Schulhofer-Wohl (2017). In my model, regions with better access to internet
also appear to have lower information costs λj . They are therefore able to form beliefs that are more
accurate on average, so that in particular their beliefs about a region’s payoffs are more likely to be high
when the payoffs are high.

In Table 4, I report the results from estimating equation (28) over the period 2008–2014 for three
different variables Zjkt: the log distance between the origin and destination, the average fraction of
residents with an active internet connection over the period, and the log number of individuals who moved
from k to j in the past year. In columns 1, 4, and 7, I report the results from estimating equation (28)
with observed migration flows and wages over the period 2008–2014. Columns 2, 5, and 8 contain the
results from estimating equation (28) with migration flows and wages predicted by the model using the
estimated parameters in the period 2008–2014. Once I solve for the beliefs functions, value functions
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Table 4: Heterogeneity of Migration Elasticities in the Data and in the Model

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Data Model Model Data Model Model Data Model Model

Info No Info Info No Info Info No Info

Income gap 0.391a 0.342a 0.362a 0.398a 0.306a 0.319a 0.292a 0.241a 0.311a

(0.012) (0.007) (0.008) (0.016) (0.008) (0.009) (0.018) (0.008) (0.008)

Log dist -0.012a -0.009a 0.002
× Inc. gap (0.004) (0.002) (0.002)

Internet 0.132a 0.101a 0.003
× Inc. gap (0.015) (0.004) (0.004)

Log Past Flows 0.003a 0.006a 0.000
× Inc. gap (0.001) (0.001) (0.001)

Observations 68,152 68,152 68,152 68,152 68,152 68,152 68,152 68,152 68,152
R2 0.179 0.515 0.613 0.157 0.513 0.614 0.168 0.582 0.634

a indicates significant at the 1% level. In parentheses, I report two-way cluster robust standard errors that allow
for correlation in regression residuals at the origin-year level and at the destination-year level. I include origin-
destination and year fixed effects in each regression. The income gap is the difference in the log average wages
between the destination and the origin. The effect of the level of Zjkt is absorbed by the origin-destination fixed
effect for both distance and average internet access, and is not reported for log past flows.

and mobility rule, I evaluate them at the observed Lt−1 and recovered θt from the data. The interaction
coefficients therefore reflect the differential correlation between the wage gap and the omitted expectational
errors along the variable Zjkt of interest. Columns 3, 6, and 9 report the results from estimating (28)
with migration flows and wages predicted by the model with no information frictions. As expected, the
coefficients on the interactions from these regressions are all precisely estimated zeros.

In column 1, the estimated coefficient of 0.391 for the income gap corresponds to the migration elasticity
between adjacent pairs, while the negative coefficient for the interaction of the wage gap with log distance
indicates that a 1 percentage point increase in distance is associated with a−0.012 decrease in the migration
elasticity. For a pair of regions separated by the average distance of 500km, the estimated elasticity is
therefore 0.3164. Note that this estimate is in line with the average inverse elasticity of ν = 3.12 estimated
in Section 4.4. There is, therefore, significant variation of the migration elasticity with distance.39 In
column 2, the regression in the model provides strikingly similar results. Distance has a similar negative
effect on the migration elasticity, slightly smaller but of the same order of magnitude. I cannot reject
that the coefficients are the same at the 10% level. This similarity strongly emphasizes the quantitative
relevance of information frictions, as it indicates that most of the decline in the responsiveness of migration
flows with distance can be accounted for by the less effective acquisition and transmission of information
between remote regions.

In column 4, the coefficient of 0.281 represents the migration elasticity for individuals in regions with
39In their analysis of international migration flows, Bertoli et al. (2019) estimate a static gravity equation and find, similarly

to my results, that the migration elasticity is decreasing with distance.
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no internet penetration at all. The large coefficient of 0.132 indicates that the estimated elasticity is 0.413

for a region with complete internet penetration. In column 5, I report the results from running the same
regression in the model, also interacting the income gap with the measure of internet penetration at the
origin. Here too, the model predicts a significant effect of having better internet access on the elasticity of
migration. The positive coefficient reflects the strong negative correlation between internet access and λj
documented in Section 4.3. The fact that the model can generate this positive interaction coefficient with
internet access is another success, especially since the local information costs λj were estimated as fixed
effects without imposing any relationship with respect to internet access. The model is able to account
for 76% of the variation of the migration elasticity with local internet access observed in the data.

In column 6, the coefficient of 0.362 corresponds to the estimated elasticity of migration if the log of the
past migration flow was zero, namely if virtually all of the individuals in origin j were in k at the previous
period. In practice, the fraction of current residents in a region who were in any other particular region k
in the previous period is of the order of 10−6, leading to an average migration elasticity of 0.319. In column
6, I report the results from the same regression in the model. As expected, the migration elasticity with
respect to wages in a destination is significantly larger when this destination is connected to the origin via
large recent migration flows. The effects are about twice as large in the model as in the data, which is not
surprising since the past migration flow is exactly the metric governing the adjustment of beliefs through
local information sharing in the model. Taken together, these results show that introducing information
frictions in the model delivers predictions that match important characteristics of migration flows.

5.2 Delayed Response to Local Shocks

I now confront the predictions of the model regarding the dynamic response of migration flows to local
shocks. I show that the model is able to replicate a differential delay observed in the data in the migration
response from some regions depending on their distance to the shock and depending on their access to
internet. In this section, I rely on an empirical approach developed by Fujiwara et al. (2019) to study the
migration response to local shocks in Brazil.

In the model with perfect information (21), the delay with which individuals react to a positive local
shock in another location is determined by the past migration flows between their origin and the location
of the shock. If a large number of workers moved from the origin to the location of the shock in the period
before the shock, this indicates that a significant number of agents would move to this location were the
payoffs to increase. In this case, the migration response would be faster, with a large influx of migrants
in the early periods after the shock is realized. In the model with information frictions, the delay in the
migration response from a particular origin can vary even between regions that sent similar amounts of
migrants to the location of the shock in the previous period. This is because people in two regions sending
a similar fraction of migrants to a given destination in a period may have different information about the
destination. For example, the past migration flow to the destination from some distant origin may be the
same as from another nearby origin if, say, the distant origin experienced a negative shock so that many
people decided to leave. In this case, agents from the distant region may not be as well informed about
the destination as migrants from closer regions.
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In order to describe the speed of the migration response of an origin region j to the destination k

following a local shock in k at time t, I define the rate of migration from j to k at t+ s with respect to a
horizon (t, t̄) as the fraction of total migrants who move from j to k at t+ s, relative to the total number
of migrants who will move from j to k between t + t and t + t̄. Denoting by Ljkt+s = pjkt+sLjt+s−1 the
gross migration flow between j and k at t+s, the rate of migration p(t,t̄)

jkt+s from j to k at t+s with respect
to a horizon (t, t̄) is

p
(t,t̄)
jkt+s =

Ljkt+s∑t̄
s′=t Ljkt+s′

.

I also define the expected time of migration between j and k over a horizon (t, t̄) as
∑t̄

s=0 sp
(t,t̄)
jkt+s. I

then say that region j has a faster migration response to k than j′ at the horizon (t, t̄) if the expected time
of migration from j is smaller than from j′. According to this definition, a region j has a faster migration
response to k than another region j′ if the individuals who migrate from j to k do so earlier than migrants
from j′.

For the labor demand shocks listed in Appendix D.3, I consider migration flows to the shocked region
in the two years prior or in the four years subsequent to the labor demand shock, so that t = −2 and
t̄ = 4, and estimate the following regression model:

p
(t,t̄)
jkt+s =

4∑
s′=−2

1{s = s′}
(
γ1s′intjt + γ2s′ log distjk + γ3s′ log ppastjk

)
+ ujkt+s, (29)

where t indicates the year in which the labor demand shock in the region of interest took place, intjt is the
internet penetration in region j at the year of the shock, distjk is the distance between j and k, p

past
jk is the

average migration probability from j to k in the three years preceding t − 2, ujkt+s captures unobserved
determinants of the rate of migration at t+ s, and {γnt+s;n = 1, 2, 3} is the parameter vector of interest.

Figure D.2a and Figure D.2b display the estimates of {γ1t+s, γ2t+s} that indicates how internet ac-
cess, distance and past migration flows affect the timing of migration. I focus here on the largest labor
demand shock in the sample, which took place in Ipojuca in the region of Recife in 2009 following the
construction of a large refinery. The figures illustrate, for each year between t − 2 and t + 4, the pre-
dicted migration probability when the corresponding covariate, distance or internet access, is set to its
25th percentile, labeled as “Low”, or to its 75th percentile, labeled as “High”, while other covariates are set
to their mean values. The whiskers attached to each dot represent the 95% confidence interval for each
predicted migration probability. The vertical lines indicate the expected time of migration between j and
k once the shock is realized, and the shaded regions illustrate the corresponding 95% confidence intervals.
Everything else equal, workers living in geographically close regions or in regions with higher broadband
internet penetration react faster to the positive labor demand shocks happening in Ipojuca.

I then run regression (29) in the model, starting with the model with information frictions. Selecting
the destination of interest k to be the mesoregion of Recife, I evaluate the migration flows predicted by
the model under the observed population and recovered productivity vectors. The recovered productivity
features a persistent increase starting in 2009 (see Appendix D.4), leading to an inflow of migrants similar
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Figure 4: Delay in the Migration Response to the Local Shock in Ipojuca

(a) Distance: Data (b) Internet: Data

(c) Distance: Model with information frictions (d) Internet: Model with information frictions

(e) Distance: Model without information frictions (f) Internet: Model without information frictions

Note: I compute standard errors of the implied expected probability and the expected time of migration with the Delta
method, and I cluster standard errors for estimates of the parameter {γ1t+s, γ2t+s} by year and mesoregion of origin.
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to what is observed in the data. Although the model predicts that most of the migration should happen
in the first period after the shock, Figure 4c illustrates that the estimated coefficients on distance lead to a
significant delay for regions that are farther from to Recife. Figure 4d shows that the model also predicts
a significant delay from regions with lower internet access.

In the model with no information frictions, Figures 4e and 4f reveal that the migration patterns
resulting from the exact same simulated shock do not result in any significant delay along distance or
internet access once we control for the past migration shares. This result confirms that the model with
information frictions can generate migration patterns similar to those observed in the data, here the
differential dynamic response to local shocks. In Appendix D.4, I show that this differential delay holds
for other local shocks occurring in Brazil between 2000 and 2014.

6 Counterfactual Exercises

I have discussed several implications of information frictions on migration patterns. The main results of
interest are that individuals feature endogenous predispositions towards moving to some regions, leading to
lower estimated migration costs, and that their responsiveness to variations in payoffs is limited, leading to
heterogeneous migration elasticities and delayed migration responses along geographic distance or internet
access. I have verified these predictions in the data, and shown that the magnitude of the effects in the
estimated model are close to the observed ones. To further illustrate the quantitative implications of my
model for the spatial allocation of workers and welfare, I conduct a number of counterfactual exercises.
First, I compare the outcomes in the economy estimated in the first period to a hypothetical one without
information frictions. In a second exercise, I reduce information frictions by the amount corresponding
to the estimated effect of increased internet access in the second period. For each of the exercises, I
decompose the welfare gains into several contributions highlighting the role of the adjustment of the
information structure for the overall effects.

6.1 Removing Information Costs

In this first counterfactual exercise, I evaluate the potential gains from completely removing information
frictions. This exercise speaks to the initial question formulated in the introduction: what is the scope
for improving the spatial allocation of workers by expanding their access to information, while taking into
account that information must be acquired at a cost and that it can be shared locally?

To evaluate the effects of removing all information frictions, I first compute the expected value of being
in a given region in the steady state of the first period, 2000–2007. In the stochastic steady state, the
value of residing in a given region varies over time as different productivity shocks and population vectors
are realized. Therefore, I report the expected value over possible realizations of (θt, Lt−1) in the ergodic
distribution. Denoting by Vj the expected value of a region,

Vj = Eθt,Lt−1

[∑
k

p̄jk(θt, Lt−1)
(
ūjk(θt, Lt−1) + δV̄k(θt, Lt−1)

)
− Ij(πj(Lt−1))

]
. (30)
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Figure 5: Welfare Gains by Mesoregion after Setting All Information Costs to Zero

The expected value Vj can be computed by simulating the model over a large number of periods, so that
the visited states {(θt, Lt−1)}t are representative of the ergodic distribution of possible states, and taking
the simple average of Vj(θt, Lt−1) over time. I then simulate a new steady state with all the parameters
set to their value estimated in the first period, except for the information costs, which I set to zero. In
this new stochastic steady state, I compute the expected values V ′j in each region.

Figure 5 displays the percentage change in the expected value of each region ∆Vj/Vj between the two
equilibria, where I now define ∆X = X ′ −X. The average welfare gain across regions is 5.55%. There is
important heterogeneity across regions, with gains ranging from only 2% in the most remote regions to
8.5% in a region close to Recife in the North-East. By looking at the initial distribution of information
costs illustrated in Figure 2a, one might have expected the largest gains to accrue to regions starting with
initially high information costs, such as the remote regions in the Amazon and regions of the North-East,
and the lowest gains for regions with initially quite low information costs, such as Brasilia, São Paulo, and
Rio de Janeiro. Figure 5 illustrates that this is mostly verified, although some regions in the Amazon do
not seem to benefit as much as expected.

In the steady state with complete information, the standard deviation of earnings across space decreases
by 15%. This is a clear illustration of the improved arbitrage of local shocks: a positive local shock attracts
more immigrants in this economy, driving the local wage down. Similarly, when a negative productivity
shock hits a region, more people leave to other regions offering better payoffs, thereby alleviating the
negative wage effects in their origin region.
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Perhaps surprisingly, the overall migration flows, computed as the fraction of the population moving
to another region each period, decrease by 4% in the model with complete information. This net decline
in migration flows masks two countervailing forces, both stemming from the fact that agents make fewer
mistakes. First, and counteracting the decline in migration, agents with complete information no longer
feature any predisposition towards staying in their current location. In the presence of positive costs of
acquiring information about other regions, this predisposition was a reason for agents to stay in their
current region. Second, agents now only move to regions that offer high payoffs, and no longer visit a
region by mistake, so they move less often. The persistence in the productivity shocks allows workers
to benefit from a mobility decision for several periods, reducing their propensity to move. This second
effect appears to be dominating and leads to the 4% decline in overall geographic mobility. Note that
this decline in migration flows corresponds to a comparison of the two steady states, once each region’s
population has reached its ergodic distribution. One may expect that the transition from the first steady
state to the second may lead to a temporary increase in mobility flows as workers relocate to the regions
offering higher average payoffs.

To describe the forces at play even further, I decompose the welfare gains ∆Vj into the contribution of
three intuitive channels. Denote by Ūj = (ūjk+δV̄k)k=1,...,J the vector composed of the sum of flow payoffs
and future values for all possible destinations and states, (θt, Lt−1). Similarly, denote by p̄j = (p̄jk)k=1,...,J

the vector composed of the mobility probabilities to all destinations for all states. I can express the
difference in expected value in a region j from (30) as

∆Vj = Eθ,L
[
∆p̄j · Ū ′j

]︸ ︷︷ ︸
better sorting

+Eθ,L
[
p̄j ·∆Ūj

]︸ ︷︷ ︸
better outcomes

− EL [∆Ij ]︸ ︷︷ ︸
lower info cost

. (31)

The first term in the decomposition represents the welfare gains arising from better sorting of agents in
the second equilibrium, relative to the initial equilibrium. It represents the expected gains in utility coming
from the different mobility choices made by agents in the new equilibrium, maintaining the payoffs at their
new value Ū ′j . This better sorting can come about because agents have better information, leading them to
chose the locations offering the highest payoffs. The second term reflects the gains due to the change in the
payoffs themselves. The reallocation of population across regions can change the average wages offered in
a region. Moreover, since the future value of residing in a region incorporates the expected payoff resulting
from future mobility decisions, it can increase if the quality of the information available in the region
has improved. The third term corresponds to the gains from spending less effort to acquire information.
This decline can arise for two reasons. First, the cost of acquiring a given amount of information (λj) is
cheaper. The second reason is due to the change in the precision of agents’ prior beliefs. If the residents
of the region have better information, local information sharing will allow agents to start with better
information, so that they need to acquire less on their own. I find that 21% of the 5.5% welfare gains can
be attributed to the “better sorting” channel, 58% to “better outcomes”, and 21% to “lower information
costs”. It is remarkable that most of the gains seem to come from the response of mobility and earnings,
so that the mechanical effect of lowering the information cost λj to zero accounts at most for about 20%
of the gains.
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Figure 6: Welfare Gains by Mesoregion after Expansion of Internet Access

6.2 Effect of the Expansion of Internet Access

I now evaluate a counterfactual decrease in information costs in each region by a magnitude equal to
the estimated contribution of increases in local internet access. I use the measure of internet penetration
observed in every region in 2014, the last year of the sample. Starting from the equilibrium in the first
period, I decrease the information cost by an amount equal to the local internet access in 2014 (assuming
that internet penetration was zero in the years 2000–2007), multiplied by the estimated coefficient `1
obtained after projecting the information costs on internet access. The average reduction in the information
cost is about 0.73 units, starting from an initial average of 3.11.

Before describing the results, it is worth emphasizing that this exercise assumes that the only effect of
increased local internet penetration is to allow workers to gather information more easily. It is likely that
the expansion of internet access for households has been accompanied by a parallel expansion in access for
firms, and that local firms’ performance may have been altered by internet services. There is an extensive
literature studying the effects of the development of information and communication technologies (ICT)
on how production is organized. Hence, the results reported below should be interpreted as the effects of a
hypothetical policy that would reduce information costs by a magnitude similar to the result of expanded
internet access, but without affecting the local productivity process.

Figure 6 depicts the geographic distribution of welfare gains from the counterfactual exercise. The
average welfare gains amount to 1.63%. The standard deviation of earnings across space decreases by
4.01%, illustrating the better arbitrage of local shocks in the economy with lower information costs. The
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average decomposition of the welfare gains into the three channels described in Section 6.1 is almost exactly
the same as in the previous exercise: better sorting, better outcomes and lower information costs account
for 22%, 57% and 21% of the average welfare gains respectively.

In contrast to the previous counterfactual exercise, there are some regions that experience a mild
decline in expected value in the equilibrium with lower information costs. This is the case for a few
sparsely populated regions in the North-West of the country. Interestingly, these negative effects arise
even though these regions have benefitted from increased internet access—although to a lesser extent than
most other regions. For instance, the region of Manaus experiences a decline in welfare of 0.15%, despite
experiencing an increase in internet penetration of 23 percentage points.

To understand why some regions do not benefit from the episode of internet expansion, it is useful to
decompose their welfare gains into the three channels described above. Focusing again on the example
of Manaus, the contribution of information costs is actually negative, equal to −0.33. This means that
agents in Manaus have to spend more to gather information than they did before. This happens because
the information they can obtain from their local network has deteriorated. Indeed, in the new equilibrium,
the population of Manaus has decreased by 7%, reflecting the fact that fewer workers from other regions
now decide to locate there. Workers are now better informed and rarely find it optimal to move to the
remote region of Manaus. In the initial equilibrium, Manaus would welcome workers with relatively good
information who may have made a “mistake” by moving there. With fewer well informed visitors, local
information sharing has become less effective in Manaus, and workers located there need to acquire more
information on their own. Agents end up holding less precise information even after individual acquisition,
and their migration decisions lead them to regions offering lower payoffs on average. This is reflected by a
negative contribution of −0.36 of the “sorting” channel. Only the “outcomes” channel is working in favor
of workers in Manaus, with a contribution of 0.54, as the lower population in the region tends to increase
the average wage.

One additional reason why outcomes do not improve enough in Manaus to compensate for the decline
due to worse information is that the information cost has decreased more in most other regions. As a
result, when a positive local shock is realized, the people from better informed regions move faster to the
location of the shock—as discussed in Section 5.2—and reap the benefits in the form of high wages before
more people arrive and put downward pressure on wages.

7 Conclusion

In this paper, I propose a theory of migration under incomplete information. In my model, information
about opportunities in other regions, earnings, and mobility patterns are all determined in equilibrium.
I model, in a tractable way, both the incentives that agents have for acquiring information about some
regions, and the possibility for workers to benefit from the information circulating in their local networks.
When agents face costs of acquiring information, they collect limited information about regions offering
a priori lower expected payoffs, making them less likely to move to these regions. Accounting for these
endogenous default rules that hinder mobility appears to be quantitatively important for the estimation
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of bilateral migration costs.
I show that my model with information frictions can rationalize the observed heterogeneity in migration

elasticities, as well as the differential delay in migration responses to local shocks from origins that are
more distant or benefit from lower internet access. More generally, the model can help explain why the
net inflow of migrants in response to positive local shocks often appears limited. Agents in regions where
information about these shocks is more difficult to obtain, either because internet access is limited or
because local networks can provide little relevant information, will be less likely to respond. I discuss
how policies that could reduce information frictions can generate important welfare gains. Information
acquired individually can be shared with other agents, inducing wide-ranging benefits from this positive
externality. Yet, the distributional consequences from such policy interventions are not trivial. Some
regions risk becoming “information traps” where agents struggle to gather accurate information.

The role of information frictions in migration decisions is likely to be more complex than the model I
put forward in this paper. For example, local information sharing is likely to be more prominent between
individuals of the same demographic characteristics and working in similar occupations. Incorporating a
richer description of local interactions could lead to interesting insights on migration decisions. Finally,
studying an empirical setting featuring a clear distinction between payoffs observed and unobserved by
workers could help further identify the contribution of information frictions.
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A Appendix to Section 2

A.1 Proofs

A.1.1 Proof of Social Learning Rule

Following Molavi et al. (2018), I postulate that agents follow social learning rules that satisfy imperfect recall,
according to which they treat the current beliefs of their neighbors as sufficient statistics for all the information
available to them while ignoring how or why these opinions were formed. This is a formalization of the idea that
real-world individuals do not fully account for the information buried in the entire past history of actions or the
complex dynamics of beliefs over social networks. Agents take the current beliefs of their neighbors as sufficient
statistics for all the information available to them while ignoring how or why those opinions were formed. Denoting
by π̄kt the belief resulting from information sharing, imperfect recall implies that π̄kt is only a function of the
current beliefs of all agents in k at t:

Assumption 3 (Imperfect Recall). π̄kt is independent of πτ−1 for all k and all τ ≤ t− 1.

In order to obtain a simple unique characterization of the social learning rule, I follow Molavi et al. (2018)
and impose three natural additional restrictions on how agents process their neighbors’ information. The first one
is that agents’ social learning rules are label neutral, which means that relabeling the underlying states has no
bearing on how agents process information. Second, I assume that individuals do not discard their neighbors’ most
recent observations by requiring their social learning rules to be increasing in their neighbors’ last period beliefs,
a property referred to as monotonicity. Third, I require agents’ learning rules to satisfy independence of irrelevant
alternatives: each agent treats her neighbors’ beliefs about any subset of states as sufficient statistics for their
collective information regarding those states. The formal representation is reported in Appendix A.1.1.

Molavi et al. (2018) show that, in conjunction with imperfect recall, these three restrictions lead to a unique
representation of agents’ social learning rules up to a set of constants: at any given time period, the log-likelihood
ratios of all agents’ beliefs are combined linearly, weighted by their centrality in the network. Given the assumption
that agents are all connected to each other locally, they have the same centrality and the beliefs of every agents are
given the same weight.40

Proposition 4. Information sharing leads to a log-linear learning rule. The beliefs held by people in k at the end
of t after local information sharing are:

log π̄kt(θt) = Ckt +
∑
j

∑
st

Ljkt|st log πjt|st(θt), (A.1)

where Ljkt|s = Ljt−1p̄jkt(θt, Lt−1, πjt, st) is the mass of agents from j in k who received signal st, and Ckt is a
constant ensuring that

∫
θ
π̄kt(θ)dθ = 1.

The proof is adapted from Theorem 1 in Molavi et al. (2018). I omit the time indices for brevity. Consider
two arbitrary states θ 6= θ̂ and an arbitrary profile of beliefs in each region π = {πj|s}s,j=1,...,J ∈ ∆ΘJ×S . Let
Θ̄ = {θ, θ̂}. Denote by π̄(π) = {π̄k(π)}k=1,...,J the shared beliefs. By definition of conditional probability, for every
region k:

log
π̄k(π)(θ)

π̄k(π)(θ̂)
= log π̄k (condΘ̄(π)) (θ)− log π̄k (condΘ̄(π)) (θ̂).

Note that condΘ̄(π) depends on the belief profile π only through the collection of likelihood ratios {πj(θ)/πj(θ̂)}.
Consequently, indexing all agents in k by i ∈ [0, 1], for any given region k, there exists a continuous function
gk : RI → R such that:

log
π̄k(π)(θ)

π̄k(π)(θ̂)
= gk

(
log

π0(θ)

π0(θ̂)
, . . . , log

π1(θ)

π1(θ̂)

)
. (A.2)

40As shown by Levy and Razin (2018), this log-linear rule can be obtained if agents treat their marginal information
sources as conditionally independent.
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for all pairs of states θ 6= θ̂ and all profiles of beliefs π. Furthermore, label neutrality guarantees that the
function gk is independent of θ and θ̂.

Now, consider three distinct states θ, θ̂ and θ̃. Given that (A.2) has to be satisfied for any arbitrary pair of
states, we have:

gk

(
log

π0(θ)

π0(θ̂)
, . . . , log

π1(θ)

π1(θ̂)

)
+ gk

(
log

π0(θ̂)

π0(θ̃)
, . . . , log

π1(θ̂)

π1(θ̃)

)

= log
π̄k(π)(θ̂)

π̄k(π)(θ̃)
+ log

π̄k(π)(θ̂)

π̄k(π)(θ̃)

= gk

(
log

π0(θ)

π0(θ̃)
, . . . , log

π1(θ)

π1(θ̃)

)
Since π was arbitrary, the above equation implies that for any arbitrary x, y ∈ RI , it must be the case that

gk(x) + gk(y) = gk(x+ y). This equation is nothing but Cauchy’s functional equation, with linear functions as its
single family of continuous solutions. Therefore, there exist constants aik such that gk(x) =

∫
I
aikxidi. Thus, using

(A.2) one more time implies that

log
π̄k(π)(θ)

π̄k(π)(θ̂)
=

∫
I

aik log
πi(θ)

πi(θ̂)
di, ∀θ, θ̂ ∈ Θ.

Monotonicity implies that aik > 0 for all i ∈ I. Since I assume that the weight that every agents place on each
other individual’s belief is aik = 1, we can aggregate all beliefs that are identical and write:

log
π̄k(π)(θ)

π̄k(π)(θ̂)
=
∑
j

∑
s

Ljk|s log
πjk|s(θ)

πjk|s(θ̂)
. (A.3)

A.1.2 Proof of Lemma 1

Adapted from Lemma 1 in Steiner et al. (2017). The proof relies on the concavity of the entropy function. To
prove the Lemma, I show that the discounted expected payoff from any strategy (σ, f) is equal to the value of the
objective function in (15), given the choice rule generated by (σ, f).

Let (σ, f) be a strategy and p the choice rule generated by (σ, f), so that:

plt−1ltt(θt, Lt−1, πt, εit) = Pr
(
σt(lt−1, st, πlt−1t, Lt−1, εit) = lt|θt, lt−1, Lt−1, πt, εit

)
First, let’s show that the discounted expected payoff from p is at least as large as the one from (σ, f). By

construction, (σ, f) and p give the same stream of expected gross payoffs. Remains to show that the stream of
information costs associated with p is no larger than that associated with (σ, f).

Recall from (9) that in a given period t, the information cost associated with (σ, f) writes:

Ij (f |πjt) = λj
(
H (πjt)− Es

[
H
(
πjt|s

)])
,

while the information cost associated with p writes:

Ij (p|πjt) = λj

(
H (πjt)−

∑
k

qjktH
(
πjt|k

))
,

where qjkt = Pr (st = k|πjt, p) is the ex-ante probability that p will send the signal st = k.
Note that lt is measurable with respect to st:

Pr(θt|lt) =
∑
st

Pr(θt|st) Pr(st|lt),
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Thus, Pr(θt|lt) is a convex combination of the distributions Pr(θt|st), as st varies. By concavity of the entropy, this
implies that

Es
[
H
(
πjt|s

)]
≤
∑
k

qjktH
(
πjt|k

)
.

This shows that Ij (p|πjt) ≤ Ij (f |πjt), and hence that the discounted expected payoff from (σ, f) is no larger than
the value of the objective function in (15), given the choice rule p generated by (σ, f).

Conversely, the discounted expected payoff from any strategy induced by a choice rule p is identical to the value
of the objective function in (15) given p. Together, these two relationships imply the result.

A.1.3 Proof of Proposition 1

Consider the space of strategies induced by the mobility rule p mapping (θt, Lt−1, πt, lt−1, εit) to an action lt:
Π = ∆(J)Θ×L×∆Θ×J×RJ .

The flows of payoffs, net of information costs, that are being maximized are:

ult−1lt(θt, Lt, εit) = θltt +Alt − α logLltt +Blt − κlt−1lt + νεltt.

First, note that if α = 0, and εit and θt were bounded above and below, then u would be uniformly bounded and
hence continuous, and the space of strategies Π would be compact as a product of compact spaces by Tychonoff’s
theorem, so that an optimum to (15) would exist.

When α > 0, u is still bounded from below, since the population in a given region is bounded by the total
population, Lltt ≤ L̄. It is also easy to show that for any finite values of migration costs κ, productivities A, and
amenities B, no equilibrium would feature Lltt = 0 since it would imply infinite payoffs in region lt and the region
would attract workers to increase Lltt.

We can therefore consider an auxiliary problem with bounded population, bounded productivities and bounded
preference shocks characterized by (bL, bθ, bε) so that solves (15) with the additional constraint on the states
(Lt−1, θt, εit) ∈ B(bL, bθ, bε), where:

B(bL, bθ, bε) = {(Lt−1, θt, εit) | Lkt > bL, θkt ∈ (−bθ, bθ), εikt ∈ (−bε, bε), ∀i, k, t.} .

From the discussion above, there exists a solution to the auxiliary problem. Since θkt and εkt are centered in zero
with a vanishing probability density for larger values, the solution to the auxiliary problem becomes arbitrarily
close to the solution to (15) as the bounds (bL, bθ, bε) become larger. If we set bL = b̄L/β, bθ = βb̄θ, and bε = βb̄ε
for some fixed (b̄L, b̄θ, b̄ε) and β > 0, the measure of states outside B(bL, bθ, bε) is vanishing as β → ∞, and the
solution to the auxiliary problem for β →∞ provides a solution to the dynamic rational inattention problem.

A.1.4 Proof of Proposition 2

Note that the state variables upon which migration decisions depend contain the prior beliefs at the beginning
of the period. Indeed, even if we consider one location and two different time periods at which the productivity,
population distribution and the agents’ preferences are identical but prior beliefs are different, we may still expect
agents to acquire different amounts of information, resulting in different beliefs and mobility decisions. The prior
belief in turn implicitly depends on the entire history of exogenous states θt, endogenous states Lt−1, and location
decisions lt−1. However, if prior beliefs are “close enough”, rationally attentive agents make information acquisition
decisions that result in the same posterior beliefs. If one agent is more pessimistic than another about the payoffs
in some region, she will be less likely to move there, but conditional on moving, the two agents will have the same
posterior beliefs. This property of locally invariant posteriors was shown in the context of a static model by Caplin
and Dean (2015).41

41Since agents choose the distribution of signals they receive, it is as if they chose their posterior beliefs distributions.
Better posterior beliefs increase the expected utility from migration, but have higher entropy. Note that their contribution
to agents’ utility is separable from the contribution of priors given the information cost function, as long as posterior beliefs
can be sustained by priors by Bayes’ rule. Therefore if an agent chooses some posterior beliefs, other agents with priors that
can also sustain these posteriors will choose the same posteriors.
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The prior beliefs in some location j at t do depend on the composition of the population inherited from t− 1.
For instance, if the productivity in a neighboring region k was low at t − 1, the out-flow from k was large and
a relatively large number of people in j at t came from k, influencing the shared beliefs in j towards thinking
that payoffs in k are low since newcomers from k are pessimistic about k. This dependence of beliefs on the local
composition of population is at the core of the model and will deliver central insights. But for property of locally
invariant posteriors to hold, we also want to ensure that priors at t do not vary too much with Lt−1 so that agents
will always be able to acquire information that leads to the same posterior beliefs. I will maintain the assumption
that it is the case.42

Assumption 4. The distribution of fundamentals (λj , Aj , Bj , κjk) and the productivity process parameters (ρ, σ2
ξ )

are such that the ergodic distribution of prior beliefs always lies in the convex hull of optimal posteriors.

Define ωt = (Lt−1, πt, εit). First, following Steiner et al. (2017), note that the problem (15) can be written as a
control problem with observable states in which the agent must pay a cost for deviating from a default choice rule.

Lemma 2. A stochastic mobility rule p solves the dynamic RI problem if and only if it (together with some default
rule q) solves:

max
q,p

E

[ ∞∑
t=1

δt
(
ult−1ltt (θt, ωt) + λlt−1

(
log qlt−1ltt (ωt)− log plt−1ltt (θt, ωt)

))]
. (A.4)

where the expectation is with respect to the joint distribution generated by π, p, and γ(·|θ).
Proof. Recall that the dynamic RI problem is equivalent to finding an optimal mobility rule:

max
p

Eθt
[ ∞∑
t=1

δt
(
ult−1lt(θt, ωt)− Ilt−1(ωt)

)]
,

where the information cost is expressed as a function of the prior and posterior beliefs πjkt ≡ πjt|st=k:

Ij (ωt) = λj

(
H (πjt)−

∑
k

qjkt(ωt)H (πjkt)

)
, ∀j,

and the ex-ante mobility rule is qjkt(ωt) =
∫
θ
pjkt(θ, ωt)πjt(θ)dθ. As noted by Steiner et al. (2017), by symmetry of

the entropy, instead of expressing the information cost as a function of the uncertainty about θt before and after
receiving the signal, we can rewrite it as a function of the uncertainty about the distribution of mobility choices lt
before and after observing θt. Before observing θt, lt is distributed according to p, while once the signal is received,
lt is degenerate, so the entropy upon receiving st = lt is − log plt−1ltt(θt, ωt).

We also use the properties of property of properness of the entropy. Properness implies that for any random
variable X with finite support S and distribution g(x) ∈ ∆(S),

H(g) = − max
h∈∆(S)

Eg [log h(x)]

To interpret the properness property, we can consider an agent who believes that X is distributed according to g and
is offered to report a distribution h ∈ ∆(S) before observing the realization of X, with the promise of a reward of
log h(x) if the realized value is x. Properness implies that the truthful report h = g maximizes the expected reward.
The use of properness relies on the information cost being proportional to the reduction in entropy. Applying
properness to the distribution p of lt with finite support J , we get:

H(p) = − max
q∈∆(J)

Ep [log q(x)]

This implies that the information cost can be expressed as:

Ilt−1
(ωt) = λlt−1

(
H (p)− Ep

[
− log plt−1ltt(θt, ωt)

])
42If Assumption 4 does not hold, then beliefs would depend on all previous population distributions Lt−1. I solve the

model with 10 regions, allowing for the prior beliefs to vary with (Lt−1, Lt−2) and posteriors to vary with Lt−1 and show that
for reasonable values of fundamentals and productivity process parameters, the chosen posteriors do not vary with Lt−1.
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= max
q∈∆(J)

Ep
[
λlt−1

(
− log qlt−1ltt(ωt) + log plt−1ltt(θt, ωt

)]
Substituting this expression for the information cost into (15) gives the result in (A.4).

I now show that (17) can be obtained as a solution to the control problem. First, I show that given any default
rule q, the dynamic logit rule (17) solves problem (A.4):

Lemma 3. Given any default rule q, the control problem with fixed q:

max
p

E

[ ∞∑
t=1

δt
(
ult−1ltt (θt, ωt) + λlt−1

(
log qlt−1ltt (ωt)− log plt−1ltt (θt, ωt)

))]
, (A.5)

has for solution:

pjkt(θt, ωt) =
qjkt(ωt) exp

(
ujkt(θt, ωt) + δV̄kt+1(θt, ωt)

)1/λj∑
l qjlt(ωt) exp

(
ujlt(θt, ωt) + δV̄lt+1(θt, ωt)

)1/λj (A.6)

and the value function satisfies:

V̄jt(θt−1, ωt−1) = Eθt

[(∑
l

qjlt(ωt) exp
(
ujlt(θt, ωt) + δV̄lt+1(θt, ωt)

)1/λj)]
.

Proof. For a given default rule qjkt(ωt), let the continuation value in the control problem for q:

Vlt−1t(θt, ωt) = max
pτ

∞∑
τ=0

δτEθτ

[∑
k

plτ−1kτ (θτ , ωτ )
(
ulτ−1kτ (θτ , ωτ ) + λlτ−1

(
log qlτ−1kτ (ωτ )− log plτ−1kτ (θτ , ωτ )

))]

The value Vjt satisfies the recursion:

Vjt(θt, ωt) = max
pt

Eθt

[∑
k

pjkt(θt, ωt)
(
ujkt(θt, ωt) + λj (log qjkt(ωt)− log pjkt(θt, ωt)) + δV̄kt+1(θt, ωt)

)]
, (A.7)

where V̄kt+1(θt, ωt) = E [Vkt+1(θt+1, ωt+1)|θt, ωt].
To solve the maximization problem in (A.7), we can write the first-order condition with respect to pjkt(θt, ωt):

ujkt(θt, ωt) + λj (log qjkt(ωt)− (log pjkt(θt, ωt) + 1)) + δV̄kt+1(θt, ωt) = µjkt(θt, ωt),

where µjt(θt, ωt) is the Lagrange multiplier associated with the constraint
∑
k pjkt(θt, ωt) = 1. Rearranging the

first-order condition gives:

pjkt(θt, ωt) = exp
(
log qjkt(ωt)− 1 + 1/λj

(
ujkt(θt, ωt) + δV̄kt+1(θt, ωt)− µjkt(θt, ωt)

))
.

Since
∑
k pjkt(θt, ωt) = 1, it follows that:

pjkt(θt, ωt) =
exp

(
log qjkt(ωt)− 1 + 1/λj

(
ujkt(θt, ωt) + δV̄kt+1(θt, ωt)− µjkt(θt, ωt)

))∑
l exp

(
log qjlt(ωt)− 1 + 1/λj

(
ujlt(θt, ωt) + δV̄lt+1(θt, ωt)− µjkt(θt, ωt)

))
=

qjkt(ωt) exp
(
ujkt(θt, ωt) + δV̄kt+1(θt, ωt)

)1/λj∑
l qjlt(ωt) exp

(
ujlt(θt, ωt) + δV̄lt+1(θt, ωt)

)1/λj .
Substituting into (A.7) gives the recursion:

V̄jt(θt−1, ωt−1) = Eθt

[∑
k

pjkt(θt, ωt)

(∑
l

qjlt(ωt) exp
(
ujlt(θt, ωt) + δV̄lt+1(θt, ωt)

)1/λj)]
,
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= Eθt

[(∑
l

qjlt(ωt) exp
(
ujlt(θt, ωt) + δV̄lt+1(θt, ωt)

)1/λj)]
.

To prove that the logit mobility rule in (A.6) is a solution to the dynamic RI equilibrium, it only remains to
show that the optimal default rule q from the problem is expressed as:

qjkt(ωt) =

∫
θ

pjkt(θ, ωt)πjt(θ)dθ.

This is implied by properness.
Finally, the last step is to show that in the stochastic steady state, the beliefs π can be summarized as a function

of the population distribution. This result relies on the property of locally invariant posteriors, documented by
Caplin et al. (2019). This property indicates that agents who face the same payoffs with different prior beliefs
about the unobserved components of payoffs will choose an information strategy that will lead them to have the
same posterior beliefs upon moving. For a given set of optimal posteriors resulting from the information acquisition
strategy, all agents with priors that can sustain these posteriors will choose them. Different priors πj can sustain
the same set of posterior beliefs πjk as long as Bayes’ rule is satisfied. So for any θ, it must be that:

πj(θ) =
∑
k

qjkπjk(θ).

Since qjk can be adjusted under the constraints that qjk ∈ [0, 1] and
∑
k qjk = 1, there exists a set of priors beliefs

and default rules (πj , qjk) that satisfy Bayes’ rule for the same posterior beliefs. This implies that for priors in this
range, agents have the same beliefs conditional on receiving a signal s = k, but will choose to receive this signal
with different probabilities, leading to different migration shares.

Under the assumption that the parameters When the fluctuations

pjk(θt, Lt−1, εit) =
qjk(Lt−1, εit) exp

(
ujk(θt, Lt−1, εit) + δV̄k(θt, Lt−1)

)1/λj∑
l qjl(Lt−1, εit) exp

(
ujl(θt, Lt−1, εit) + δV̄l(θt, Lt−1)

)1/λj
where qjk(Lt−1, εit) =

∫
θ
pjk(θ, Lt−1, εit)πj(θ|Lt−1)dθ and we define the expected future value as V̄k(θt, Lt−1) =

E [Vk(θt+1, Lt, εt+1)|θt, Lt−1].
The continuation payoffs solve

Vj(θt, Lt−1, εit) = λj log

(∑
l

qjl(Lt−1, εit) exp
(
ujl(θt, Lt−1, εit) + δV̄l(θt, Lt−1)

)1/λj)
,

The posterior beliefs about θt held by agents in j if they go to k are determined by Bayes’ rule as a function of
the prior beliefs about θt πj(θt|Lt−1), the probability of receiving the signal s = k conditional on θt, pjk(θt, Lt−1, εit)
and the unconditional probability of receiving the signal s = k, qjk(Lt−1, εit):

πjk(θt) =
pjk(θt, Lt−1, εit)πj(θt|Lt−1)

qjk(Lt−1, εit)
. (A.8)

The belief about θt held by agents in region k at the end of a period after agents from different origins j have shared
their information is expressed as:

log π̄k(θt|Lt) = Ckt +
∑
j

Ljkt log πjk(θt) (A.9)

The shared belief about θt held by agents in region k at the end of a period is then used to form a prior belief about
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θt+1, using the exogenous AR(1) transition process for local productivity:

πk(θt+1|Lt) =

∫
θ

π̄k(θ|Lt)γ(θt+1|θ)dθ, (A.10)

Population at the end of period t in region k is expressed as a function of the population in every region j at the
end of t− 1 and the mobility probabilities:

Lkt =
∑
j

Ljt−1p̄jk(θt, Lt−1).. (A.11)

A.1.5 Proof of Proposition 3

After rewriting agents’ problem (15) as the control problem in Lemma 2, and plugging in the optimal mobility rule
conditional on q obtained in Lemma 3, default choice probabilities are determined as the solutions to the following
recursive problem:

max
{qjl}

∫
θ

λj log
∑
k

qjk(ωt) exp
((
θk +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

)
/ν + εikt

)1/λj
πj(θ|Lt−1)dθ

s.t.
∑
k

qjk(ωt) = 1, qjk(ωt) ≥ 0.

Note that log
∑
k exp (vk/ν) = Ee [maxk (vk + νek)] + C, where ek ∼ EV 1 and C is a constant (Small and Rosen,

1981). Applying this result to the problem above, we can rewrite the objective function as:

EθEe
[
max
k

{
Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

νλj
+ log qjk(ωt) +

εikt
λj

+
θk
λjν

+ ek

}]
+ C

= EθEe

max
k


µjk(Lt−1) +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

νλj
+ log qjk(ωt) +

εikt
λj

+
θ̃k
λjν

+ ek︸ ︷︷ ︸
≡ζj ẽk


+ C

= Eẽ
[
max
k

{
µjk(Lt−1) +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

νλj
+ log qjk(ωt) +

εikt
λj

+ ζj ẽk

}]
+ C

= log
∑
k

qjk(ωt)
1/ζj exp

(
µjk(Lt−1) +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

νλjζj
+
εikt
λjζj

)
,

where I defined ζj ẽk = θ̃k
λjν

+ ek, and θ̃k = θk − µjk(Lt−1) has mean 0 and variance σ2
j under the belief distribution

πj . Note that since ek ∼ EV 1 and we assumed that θ̃k is distributed according to the conjugate of a type 1 extreme
value, it follows from Nadarajah (2008) and Marques et al. (2015) that ζj ẽk ∼ EV 1, and the variance of this error
is:

Var

(
θ̃k
λjν

+ ek

)
=

σ2
j

λ2
jν

2
+
π2

6
,

where π2 is here the square of the constant π = 3.14159... I define the shifter ζj to be such that Var (ẽk) = π2

6 :

ζj =

(
1 +

6σ2
j

π2λ2
jν

2

) 1
2

.

The last line of the previous sequence of equalities was obtained after using the property log
∑
k exp (vk/ν) =

Ee [maxk (vk + νek)] + C, this time with ẽk. We can therefore rewrite the problem of agents as:
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max
qjl

log
∑
k

qjk(ωt)
1/ζj exp

(
µjk(Lt−1) +Ak − α logLkt +Bk − κjk + δV̄l(θ, Lt−1)

νλjζj
+
εikt
λjζj

)
s.t.

∑
k

qjk(ωt) = 1, qjk(ωt) ≥ 0.

Then, the first order condition with respect to qjl(ωt) is:

∂

∂qjk(ωt)

(
log
∑
k

qjk(ωt)
1/ζj exp

(
µjk(Lt−1) +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

νλjζj
+
εikt
λjζj

)

+ϕ

(
1−

∑
k

qjk(ωt)

))
= 0,

where ϕ is the Lagrange multiplier. Solving for this first order condition, we obtain a closed-form expression for
qjk(ωt):

qjl(ωt) =
exp

((
µjk(Lt−1) +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

)
/ν + εikt

) 1
λj(ζj−1)∑

l exp
((
µjl(Lt−1) +Al − α logLlt +Bl − κjl + δV̄l(θ, Lt−1)

)
/ν + εilt

) 1
λj(ζj−1)

.

With an expression for qjk(ωt) in hand, we can now derive an expression for the mobility probabilities after
information acquisition. Recalling the optimal migration rule:

pjk(θt, ωt) =
qjk(ωt) exp

((
θkt +Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

)
/ν + εikt

) 1
λj∑

l qjkl(ωt) exp
((
θlt +Al − α logLlt +Bl − κjl + δV̄l(θ, Lt−1)

)
/ν + εilt

) 1
λj

=
exp

(
θkt
ν +

(
Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

) ζj
ν(ζj−1) +

µjk(Lt−1)
ν(ζj−1) + εikt

ζj
ζj−1

) 1
λj

∑
l exp

(
θlt
ν +

(
Al − α logLlt +Bl − κjl + δV̄l(θ, Lt−1)

) ζj
ν(ζj−1) +

µjl(Lt−1)
ν(ζj−1) + εilt

ζj
ζj−1

) 1
λj

Recognizing the expression of pjk(θt, ωt) as the mobility rule that arises from a multinomial logit decision problem,
we can rewrite the problem of agents as:

max
k

1

λj

(
θkt
ν

+
(
Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

) ζj
ν (ζj − 1)

+
µjk(Lt−1)

ν (ζj − 1)
+ εikt

ζj
ζj − 1

)
+ e′ikt,

where e′ikt ∼ EV 1 and Var (e′ikt) = π2/6. We can then define %j ẽ′ikt =
ζj

λj(ζj−1)εikt + e′ikt. Since we assume that
εikt is distributed according to the conjugate of a Type 1 extreme value distribution, this implies that ẽ′ikt ∼ EV 1,
if we define %j so that Var (ẽ′ikt) = π2/6:

%j =

(
1 +

ζ2
j

λ2
j (ζj − 1)

2

) 1
2

.

Therefore, we can rewrite the problem solved by agents as:

max
k

1

%jλj

(
θkt
ν

+
(
Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

) ζj
ν (ζj − 1)

+
µjk(Lt−1)

ν (ζj − 1)

)
+ ẽ′ikt,
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to which the solution is:

pjk(θt, Lt−1) =
exp

(
θkt +

µjk(Lt−1)
ζj−1 +

(
Ak − α logLkt +Bk − κjk + δV̄k(θ, Lt−1)

) ζj
ζj−1

) 1
λjν%j

∑
l exp

(
θlt +

µjl(Lt−1)
ζj−1 +

(
Al − α logLlt +Bl − κjl + δV̄l(θ, Lt−1)

) ζj
ζj−1

) 1
λjν%j

To arrive at the expression in (19), define the following constants:

ηj =
1

ζj
=

(
1 +

6σ2
j

π2λ2
jν

2

)− 1
2

φj =
λjν%j (ζj − 1)

ζj
= ν

(
1 + λ2

j (1− ηj)2
)1/2

.

A.2 Alternative Assumptions on the Invertibility of Wages and Population
In this Section, I present an extension of the model to accommodate alternative assumptions on the use of received
wages and population as a direct signal on the productivity. In the model, I impose that agents do not exploit
the wages they receive, or the observed population distribution, to adjust their beliefs about the local productivity.
These restrictions deliver tractability, since beliefs about θkt do not depend about the realization of θkt. This
Section shows that it is possible to allow for wages and the population distribution to perfectly, or partially, reveal
the local value of θkt or its whole value θt, and discusses the implications on the equilibrium mobility patterns.

A.2.1 Complete Revelation of Local Productivity

First, I consider the case in which wages would reveal the most information to agents, while agents do not use the
population to update this beliefs. This corresponds to a case in which agents can learn the value of θkt exactly.
As a result, the shared beliefs in k at end of t about θkt are π̄k,k(θ̂kt|θkt) = 1{θ̂kt = θkt}. The beliefs about the
productivity in other locations are still determined by local information sharing (13). The prior beliefs about θkt+1

in k at the beginning of the period t+ 1 are then πk,k(θ̂kt+1|θkt) = φ(θ̂kt+1 − ρθkt), with a mean ρθkt and variance
σ2
ξ .

This implies that the local prior beliefs will be more precise and unbiased than in the baseline model. The
positive bias displayed by agents about their current location in the baseline model is a deterrent to mobility.
Agents are optimistic about the productivity in their region, leading them to move out with a lower probability.
Therefore, if local beliefs are now unbiased, we should expect agents to be more likely to move out, especially when
the local productivity is low. However, the higher precision of local beliefs plays as a counterforce to this first effect.
Because the precision of their local prior beliefs is now higher, agents have a lower incentive to invest in information
about the local productivity. For this reason, the higher precision of the local prior beliefs relative to other locations
may be reduced for posterior beliefs. This tends to limit the responsiveness of migration flows to the current local
productivity. Overall, it is likely to depend on the parameter values whether we should expect a higher or lower
elasticity of out-migration with respect to local wages.

Depending on which of the two forces described above dominates, for any origin j, these precise local priors
πj,j may lead to more precise posterior beliefs πjk,j , regardless of the destination k. If that is the case, it will then
improve the precision of the shared beliefs π̄k,j about θjt in all locations k. The two counteracting effects discussed
above also arise in this case. Shared beliefs, and hence prior beliefs, will be less biased, reducing the predispositions
favoring some regions over others.

A.2.2 Partial Revelation of Local Productivity

I now write an extension of the model in which workers update their beliefs upon observing the wage they obtain
in the location they chose in period t. I still maintain the assumption that agents do not invert the law of motion
of population (12) to learn about θt. I assume the existence of an additional unobserved local shock τkt realized in
each location k and period t, after mobility has happened, before production occurs. If this shock has a variance
equal to zero, wages reveal local productivity perfectly as in the previous case. If this shock τkt has a positive
variance, even upon observing their wage, agents cannot perfectly infer the realization of the local productivity θkt.

Each period, agents who move from location j to k receive the flow of payoff uijkt, not inclusive of information
costs, given by (1). The structure of production is similar to the baseline model, with a unique freely traded
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Start of t

(θt−1, Lt−1, πit, lit−1)

Shocks

(θt, εit)

Info Acq.

πit → πit|s

Mobility

(lit, Lt)

Info Sharing

πit|s → πit+1

Production

τkt → wkt → πit+1|wkt

End of t

(θt, Lt, πit+1, lit)

Figure A.1: Sequence of actions during any period t

homogeneous good chosen as numeraire. The production function takes a Cobb-Douglas form using labor as the
single input, so that output in region k at t is given by:

ykt = exp(Ak + θkt + τkt)L
1−α
kt , α > 0, (A.12)

where θkt follows the AR(1) process described in (3), and τkt are iid across locations and time, and drawn from a
normal distribution N

(
0, σ2

τ

)
. I assume that τkt is unobserved. However, contrary to θkt, agents have no incentive

to acquire information about τkt. This is first because τkt is realized only after mobility has occurred, so that
no information about it can be collected to adjust mobility decisions at t. Second, τkt is iid over time, so any
information about τkt has no predictive power about its future value.

The first order condition arising from profit maximization yields the following expression for the wage in region
k at t:

logwkt = Ak + θkt + τkt − α logLkt + log (1− α) . (A.13)

As a result, indirect utility, net of information costs introduced below, can be expressed as

uijkt = Ak + θkt + τkt − α logLkt +Bk − κjk + νεikt. (A.14)

Given that local productivity shocks are the only variables that agents are trying to observe, agents still hold
beliefs about the cross-sectional distribution of productivity:

πit(θ) = Pr(θt = θ|i, t), ∀θ ∈ RJ . (A.15)

Figure A.1 represents the timeline of events. In addition to the baseline model, the local shock τkt is realized
once agents have made location decisions. Production occurs according to (A.12). The wage is then observed, and
agents in k update their beliefs about θkt according to Bayes’ rule. Note the observation of wkt can only be used by
agents to update their beliefs about productivity in the current location k, since productivity shocks are independent
across locations. Denoting by πj,k(θkt) the marginal belief about θkt held by agents in k after information sharing,
the updating for any possible θkt = θ̂kt upon observing a realization of wages wkt = ŵkt is given by

Pr(θkt = θ̂kt|wkt = ŵkt) =
Pr(wkt = ŵkt|θkt = θ̂kt) Pr(θkt = θ̂kt)

Pr(wkt = ŵkt)
.

Assuming that πj,k(θkt) is the pdf of a normal distribution with some mean µj,k and variance σ2
j,k, the resulting

belief is expressed as

θkt|wkt = ŵkt ∼ N

(
σ2
j,k (ŵkt −Ak + α logLkt − log(1− α)) + σ2

τµj,k

σ2
j,k + σ2

τ

,
(
σ−2
j,k + σ−2

τ

)−1
)
. (A.16)

In contrast to the baseline model, the end-of-period posterior beliefs about θkt depend on the actual realization
of wkt, which itself depends on the actual realization of (θkt, τkt). We can rewrite the final posterior beliefs, after
observation of local wages, as

πj(θkt|Lt−1, θjt−1, τjt−1)

The information acquisition problem is unchanged, and agents pay the information costs (9). The updating of

11



beliefs after having the signal s = k is given by

πjk(θt) =
p̄jk(θt, Lt−1, θjt−1, τjt−1)πj(θt|Lt−1, θjt−1, τjt−1)

qjk(Lt−1, θjt−1, τjt−1)
. (A.17)

The population in any location k after mobility has occurred is then Lkt =
∑
j Ljkt, where

Ljkt = Ljt−1p̄jk(θt, Lt−1, θjt−1, τjt−1), (A.18)

The belief about θt held by agents in region k at the end of a period after agents from different origins j have
shared their information is expressed exactly as in the baseline,

log π̄k(θt|Lt) = Ckt +
∑
j

Ljkt log πjk(θt). (A.19)

We can then write the analogous to Proposition 2, expressing the mobility rule for each preference shock εit,
now as a function of the previous local productivity shocks θjt−1, and τjt−1.

Proposition 5. In the stochastic steady state, for each agent located in j at t − 1, the optimal mobility rule
pjk(θt, Lt−1, θjt−1, τjt−1, εit) can be expressed as

pjk(θt, Lt−1, θjt−1, τjt−1, εit) =
qjk(Lt−1, θjt−1, τjt−1, εit) exp

(
ujk(θt, Lt−1, εit) + δV̄k(θt, Lt−1)

)1/λj∑
l qjl(Lt−1, θjt−1, τjt−1, εit) exp

(
ujl(θt, Lt−1, εit) + δV̄l(θt, Lt−1)

)1/λj (A.20)

where qjk(Lt−1, θjt−1, τjt−1, εit) =
∫
θ
pjk(θ, θjt−1, τjt−1, Lt−1, εit)πj(θ|Lt−1, θjt−1, τjt−1)dθ and we define the ex-

pected future value as V̄k(θt, Lt−1, θjt−1, τjt−1) = E [Vk(θt+1, Lt, εit+1, θjt, τjt)|θt, Lt−1, θjt−1, τjt−1]. The continua-
tion payoffs solve

Vj(θt, Lt−1, θjt−1, τjt−1, εit) = λj log

(∑
l

qjl(Lt−1, θjt−1, τjt−1, εit) exp
(
ujl(θt, Lt−1, εit) + δV̄l(θt, Lt−1, θjt−1, τjt−1)

)1/λj)
,

(A.21)
and population and beliefs follow the laws of motion (12) - (14).

Proof. See Appendix A.1.4.

After imposing Assumptions 1 and 2 on the equilibrium distribution of beliefs and preference shocks, we can
write the equilibrium aggregate mobility rule in a similar fashion to Proposition 3.

Proposition 6. Under Assumptions 1 and 2, the average mobility rule in the presence of information frictions and
preference heterogeneity is given by

p̄jk(θt, Lt−1, θjt−1, τjt−1) =
exp (ηjχjk(θt, Lt−1, θjt−1, τjt−1) + v̄jk(θt, Lt−1, θjt−1, τjt−1))

1
φj∑

l exp (ηjχjl(θt, Lt−1, θjt−1, τjt−1) + v̄jl(θt, Lt−1, θjt−1, τjt−1))
1
φj

, (A.22)

where χjk(θt, Lt−1, θjt−1, τjt−1) = µjk(Lt−1, θjt−1, τjt−1)− θkt is the expectational error made by agents in j about
θkt, while the continuation payoffs solve

Vj(θt, Lt−1, θjt−1, τjt−1) = φj log

(∑
l

exp (ηjχjl(θt, Lt−1, θjt−1, τjt−1) + v̄jl(θt, Lt−1, θjt−1, τjt−1))
1
φj

)
, (A.23)

with φj = ν
(

1 + λ2
j (1− ηj)2

)1/2

and ηj =
(

1 +
6σ2
j

π2λ2
jν

2

)−1/2

∈ (0, 1), and π is the constant π = 3.1415...
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When the information cost tends to zero, µjk(Lt−1)→ θkt and φj → ν so that the model reduces to a preference-
based migration model:

p̄jk(θt, Lt−1) =
exp (v̄jk(θt, Lt−1))

1/ν∑
l exp (v̄jl(θt, Lt−1))

1/ν
. (A.24)

When the dispersion of preferences ν tends to zero, the solution becomes

p̄jk(θt, Lt−1, θjt−1, τjt−1) =
exp (ρjχjk(θt, Lt−1, θjt−1, τjt−1) + v̄jk(θt, Lt−1, θjt−1, τjt−1))

1
ψj∑

l exp (ρjχjl(θt, Lt−1, θjt−1, τjt−1) + v̄jl(θt, Lt−1, θjt−1, τjt−1))
1
ψj

, (A.25)

where ψj = λj (1− ρj) and ρj =
(

1 +
6σ2
j

π2λ2
j

)−1/2

∈ (0, 1).

The implications of letting workers update their beliefs after observing wages depends on the the parameters
of the AR(1) process and the variance of the idiosyncratic shocks τkt. If the persistence ρ is small, then any
information about θkt obtained after migration at t has little value for future mobility choices. At the limit where
ρ = 0, updating beliefs after observing wages or not does not affect the equilibrium behavior. If ρ > 0 but σ2

τ is
large in comparison to σ2

ξ , then wages wkt contain little information about θkt. As shown by (A.16), as the variance
σ2
jk of agents’ beliefs about θkt becomes small relative to σ2

τ , the beliefs are almost unchanged after observing the
wages. For any intermediate value of ρ and σ2

τ , however, observing wages will make local beliefs more precise and
influence the equilibrium behavior.

Identifying the variance of the shock τkt, σ2
τ , along with the persistence, ρ, and variance, σ2

ξ , of the innovation
of the AR(1) process, is possible by computing the variance and autocovariances of the adjusted wages,

w̃kt = logwkt + α logLkt − log(1− α) = Ak + θkt + τkt.

It is easy to show that the parameters are identified by the following expressions,

Cov (w̃kt, w̃kt−2)

Cov (w̃kt, w̃kt−1)
= ρ,

1− ρ2

ρ
Cov (w̃kt, w̃kt−1) = σ2

ξ ,

Var (w̃kt)−
σ2
ξ

1− ρ2
= σ2

τ .

A.2.3 Complete Revelation of the Productivity Vector

Now turning to the case that allows workers to exploit the complete structure of the model to infer information
about the productivity vector θt. As I discuss in Section 2.4, agents do use the mobility rule p̄jk(θt, Lt−1) to compute
the wages in every location. After mobility has occurred, agents observe the population distribution Lt. Recall that
the law of motion of population is given by

Ljkt = Ljt−1p̄jk(θt, Lt−1),

so that upon observing Ljkt for all locations j, k, and with the knowledge of Lt−1 and the mobility rule p̄, agents
can in principle invert this equation to recover θt. Their ability to exactly infer θt depends on whether the function
θt 7→ p̄(θt, Lt−1) associating to each productivity vector, a vector of moving probabilities, conditional on a population
distribution, is injective. If it is not, this inversion is complex. For the sake of this argument, let’s consider the case
in which it is, so that θt is completely revealed to all agents at the end of period t.

This implies that the prior beliefs πj(θt), in period t in every location j, are identical and reflect the AR(1)
process governing the evolution of θt,

θt ∼ N
(
ρθt−1, σ

2
ξ

)
.

This makes social learning nullified in this context, since all information is revealed to all agents. Despite
having the same prior beliefs, agents however decide to acquire different information depending on their location
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and on their idiosyncratic shocks. There is therefore still a meaningful role for information frictions in this context.
In particular, agents will acquire less information about distant locations, leading to the heterogeneous migration
elasticity results described in Section 5.1.

A.3 Solution Algorithm
We assume that the stochastic productivity component in each region follows an AR(1) process:

θkt = ρθkt−1 + εkt, εkt ∼ N (0, σε),

with all εkt are iid across time periods and regions. With the current specification, the ergodic distribution of θkt
is a normal distribution with mean 0 and variance σε/(1 − ρ2). We make the approximation that pjk, πjk and Vj
take the following forms:

pjk(θ
′i, Li) = gjk,L(Li)

∏
l

gjk,l(θ
′i
l )

πjk(θ
′i) =

∏
l

πjk,l(θ
′i
l )

Vj(θ
′i, Li) = Vj,L(Li)

∏
l

Vj,l(θ
′i
l )

Moreover, we assume that the l-partial beliefs πjk,l(θ
′i
l ) are pdfs of normal distribution:

πjk,l(θ
′i
l ) =

1√
2πσ2

jk,l

exp

(
−
(
θil − µjk,l

)2
2σ2

jk,l

)

and define:
Vk,L(L

′i) =
∑
m,j

βV,Lk,mj logLimj , Vk,l(θ
′i
l ) = βV1k,lθ

′i
l ,

gjk,L(Li) = exp

∑
m,j

βg,Ljk,mj logLimj

 , gjk,l(θ
′i
l ) = exp

(
βg1jk,lθ

′i
l + βg2jk,l

(
θ
′i
l

)2
)
.

The sample of states consists of Nl population vectors (each of length J2), and Ns productivity vectors (each
of length J). The number of possible values for θk is set to ns = 2. There are therefore N = NsNl states in total,
and we denote by i the index of one such state.

1. Guess partial value functions V (0)
j,L , V

(0)
j,l , a partial choice rule g(0)

jk,L, g
(0)
jk,l, and partial beliefs π(0)

jk,l. Use the
result of last loop if there is one. Compute the next period population that would arise from any pair (θ

′i, Li):

L
′i
jk = pjk(θ

′i, Li)Lij .

Define the gross payoff, exponential total payoff, and shifted exponential payoff of action j → k:

ujk(θ
′i, Li) = Ak + θ

′i
k − α logL

′i
k +Bk − κjk

2. Compute the end-of period homogenized beliefs for people in j that the current state is θ
′i if the end-of-period

population is Li:

π̄j(θ
′i|Li) =

J∏
l=1

π̄j,l(θ
′i
l |Li),

and the l-partial homogenized belief takes the form:

π̄j,l(θ
′i
l |Li) =

1

Cj,l(Li)

J∏
m=1

πmj,l(θ
′i
l )

Limj

Li
j
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=
1√

2πσ̄j,l(Li)2
exp

−
(
θ
′i
l − µ̄j,l(Li)

)2

2σ̄j,l(Li)2


with

σ̄j,l(L
i)2 =

(
1

Lij

J∑
m=1

Limj
σ2
mj,l

)−1

, µ̄j,l(L
i) = σ̄j,l(L

i)2 1

Lij

J∑
m=1

Limj
σ2
mj,l

µmj,l.

Then compute the belief for people in j that the next period state is θ
′i if the end-of-period population is Li:

Eπ̄j(θ
′i|Li) =

J∏
l=1

Eπ̄j,l(θ
′i
l |Li),

and the l-partial homogenized belief takes the form:

Eπ̄j,l(θ
′i
l |Li) =

∫ ∞
−∞

φε

(
θ
′i
l − ρθl

)
π̄j,l(θl|Li)dθl

=
1√

2πσ̂j,l(Li)2
exp

−
(
θ
′i
l − µ̂j,l(Li)

)2

2σ̂j,l(Li)2


with

σ̂j,l(L
i)2 = ρ2σ̄j,l(L

i)2 + σ2
ε , µ̂j,l(L

i) = ρµ̄j,l(L
i)

3. Solve for the unconditional moving probability qjk(Li):

qjk(Li) = Eθ′
[
pjk(θ′, Li)Eπ̄j(θ

′|Li)
]

= gjk,L(Li)

J∏
l=1

∫ ∞
−∞

gjk,l(θl)Eπ̄j,l(θl|Li)dθl

= Cqj(L
i)gjk,L(Li) exp

∑
l

βg1jk,l

(
µ̂jl(L

i) + 1
2 σ̂jl(L

i)2βg1jk,l

)
+ βg2jk,lµ̂jl(L

i)2

1− 2σ̂j,l(Li)2βg2jk,l


where Cqj(Li) is a normalizing constant to ensure that

∑
k qjk(Li) = 1.

4. Update the value function by iterating on the Bellman equation. First, compute the expected value in the
next period if the current productivity and previous population is (θ

′i, Li):

EVk(θ
′i, Li) = Eθ′′

[
Vk(θ′′, L

′i)|θ
′i
]

= Vk,L(L
′i) +

∑
l

βV1k,l

∫ ∞
−∞

θlφε(θl − ρθ
′i
l )dθl

= Vk,L(L
′i) + ρ

∑
l

βV1k,lθ
′i
l

Define the convenient transformed payoff zjk(θ
′i, Li):

zjk(θ
′i, Li) = exp

(
ujk(θ

′i, Li) + δEVk(θ
′i, Li)

)1/λj
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Then use the Bellman equation:

Vj(θ
′i, Li) = γ̄ + λj log

(∑
k

qjk(Li)zjk(θ
′i, Li)

)
.

To recover the partial values, run the following regression for each k:

Vk(θ
′i, Li) =

∑
l

(
βV1k,lθ

′i
l

)
+
∑
m,j

βV,Lk,mj logLimj + εik,

and update:
Vk,L(L

′i) =
∑
m,j

βV,Lk,mj logLimj , Vk,l(θ
′i
l ) = βV1k,lθ

′i
l .

Return to the definition of EVk(θ
′i, Li) with these updated Vk,L and Vk,l and keep looping until Vk(θ

′i, Li)
has converged.

5. Update the decision rule pjk(θ
′i, Li):

pjk(θ
′i, Li) =

qjk(Li)zjk(θ
′i, Li)∑

l qjl(L
i)zjl(θ

′i, Li)

To recover the partial choice rule, run the following regression for each jk:

log pjk(θ
′i, Li) =

∑
l

(
βg1jk,lθ

′i
l + βg2jk,l

(
θ
′i
l

)2
)

+
∑
m,j

βg,Ljk,mj logLimj + εijk,

and update:

gjk,L(Li) = exp

∑
m,j

βg,Ljk,mj logLimj

 , gjk,l(θ
′i
l ) = exp

(
βg1jk,lθ

′i
l + βg2jk,l

(
θ
′i
l

)2
)
.

6. Update the partial beliefs

πjk,l(θ
′i
l ) = gjk,l(θ

′i
l )

Nl∏
i=1

Eπ̄j,l(θ
′i
l |Li)

1
Nl

=
1√

2πσ
′2
jk,l

exp

−
(
θ
′i
l − µ′jk,l

)2

2σ
′2
jk,l


with the updated mean and variances

σ
′2
jk,l =

(
1

Nl

Nl∑
i=1

1

σ̂jl(Li)2
− 2βg2jk,l

)−1

µ′jk,l = σ
′2
jk,l

(
β1jk,l +

1

Nl

Nl∑
i=1

µ̂j,l(L
i)

σ̂jl(Li)2

)

7. Compare the updated values of pjk(θ
′i, Li) and πjk(θ

′i) to their previous ones, and if they are not very similar,
go back to step 1 with the new values of Vj,L, Vj,l, partial choice rule gjk,L, gjk,l, and partial beliefs πjk,l.

A.4 Accuracy of the Solution Algorithm

A.4.1 Binary productivity process

For few regions and a simple productivity process, it is possible to compute an “exact” solution of the model.
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Figure A.2 shows that the simulation error decreases fast with the number Nθ of states (θ, L) drawn for the
solution of the model.

Figure A.2: Simulation Error

To compute the exact solution of the model , assume that instead of following an AR(1) process, the productivity
is discrete and binary, so that θjt ∈ {0, 1}, and restrict the number of regions to be at most 15, J < 15. Draw
NL = 1000 population samples. I then simulate the “almost exact” model x∗, where “almost exact” indicates that the
solution is still obtained with a sample of population values. Then compare to the approximation x̂, and compute
the error as the mean of |(x∗− x̂)/x∗|. Figure A.2 indicates that the error is lower than 0.1% as soon as Nθ = 1000.
The comparison of the solid and dashed line illustrates that allowing for higher order terms in the approximation
of the value function have little effect on the overall precision.

A.4.2 Discretized AR(1) Process

In this section, I discuss the consequence of approximating beliefs about the vector of productivity θt by independent
distributions of θkt, k = 1, . . . , J . I consider the case of normally distributed beliefs

To compare the approximated solution to the exact one, I restrict the analysis to a small number of regions,
namely J = 4, and assume that preferences are homogeneous across agents, so that ν = 0. I discretize the AR(1)
process into nθ = 20 possible values according to Tauchen’s method. This implies that the total number of possible
productivity combinations is Nθ = nJθ = 160, 000. I then draw NL = 1000 population samples Li = (Lijk)j,k=1,...J

for i = 1, . . . , NL, such that Ljk ≥ 0 and
∑
j,k L

i
jk = L̄.

The algorithm for finding the exact solution of the model in this configuration is as follows.

1. Guess an expression p(0)
jk for the moving probability between every pair of locations j, k, and for each state

(θi
′
, Li). One simple guess is:

p
(0)
jk (θi

′
, Li) =

exp(ujk(θi
′
, Li))1/λj∑

l exp(ujl(θi
′ , Li))1/λj

,

where the flow of utility is determined in general by

ujk(θi
′
, Li) = θi

′

k − α logL′
i
k +Ak +Bk − κjk,

and the end-of-period population is given by L′ik =
∑
j L

i
jkpjk(θi

′
, Li). For the first guess, I set L′i = Li,

since no expression of pjk is available yet.
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2. Guess an expression π(0)
j for the prior beliefs in each region about the productivity vector, conditional on the

population vector. I set the belief about θi
′
to be the product of the marginal probabilities

π
(0)
j (θi

′
|Li) =

∏
k

P ∗(θi
′

k ),

where P ∗ is the steady state distribution of the discretized AR(1) process, satisfying P ∗Γ = P ∗, with Γ(·)
the transition matrix of the Markov Chain representing the discretized AR(1) process.

3. Using the current guesses of moving probabilities p(n)
jk and beliefs π(n)

j , construct the ex-ante moving proba-
bilities

q
(n)
jk (Li) =

∑
i′

p
(n)
jk (θi

′
, Li)

∑
i′′

π
(n)
j (θi

′′
|Li)Γ(θi

′
|θi
′′
)

4. Solve for the value function V (n)
j (θi, Li

′
) as a fixed point of the Bellman equation

V
(n)
j (θi

′
, Li) = λj log

∑
k

q
(n)
jk (Li) exp

(
ujk(θi

′
, Li) + δV̄k(θi

′
, Li)

)1/λj

where the expected value is
V̄k(θi

′
, Li) =

∑
i′′

Vk(θi
′′
, L̃′i)Γ(θi

′′
|θi
′
),

where L̃′i is the closest to L′i within the sample of population vectors.

5. Update the moving probability

p
(n+1)
jk (θi

′
, Li) =

q
(n)
jk (Li) exp(ujk(θi

′
, Li) + δV̄

(n)
k (θi

′
, Li))1/λj∑

l q
(n)
jl (Li) exp(ujl(θi

′ , Li) + δV̄
(n)
l (θi′ , Li))1/λj

.

6. Update posterior beliefs

π
(n+1)
jk (θi

′
|Li) =

p
(n+1)
jk (θi

′
, Li)

∑
i′′ π

(n)
j (θi

′′ |Li)Γ(θi
′ |θi′′)

q
(n)
jk (Li)

7. Update shared beliefs
log π̄

(n+1)
k (θi

′
|Li) = Ck(Li) +

∑
j

L′
i
jk log π

(n+1)
jk (θi

′
|Li).
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B Appendix to Section 3

B.1 Construction of the Main Sample
For every formal job and year, I exploit information on the day of accession into the job and the day of separation (if
either of them took place during the corresponding year), the average monthly wage, the number of hours stipulated
in the contract, the 2-digit occupation (according to the Classificação Brasileira de Ocupações, CBO), and certain
characteristics of both the plant at which the worker is employed and of the worker herself. Specifically, I use
information on the micro and mesoregion in which the plant is located and its main 2-digit industry of production
(according to the Classificação Nacional de Atividades Econômicas, CNAE), as well as information on the workers’
gender, age, and level of education.43

Because RAIS only contains information on the formal employment of workers in Brazil, I have no information
on the location of workers that do not hold a formal job in a given year. These workers may be employed in the
informal sector, self-employed, unemployed, or out of the labor force. Given that my results will naturally capture
only the incidence of informational frictions for migration decisions of workers employed in the formal sector, I limit
the analysis to workers that have a sufficiently close labor relationship with the formal sector; specifically, I limit
the sample to workers appearing in our sample for at least 5 years between 2000 and 2014.

It is not infrequent that workers in the sample will appear as performing multiple different jobs in the same
year. In order to obtain a dataset in which each unit of observation corresponds to a worker and a year, I assign
to each worker-year specific pair the location, sector and occupation corresponding to the job that the worker hold
for the longest period of time during the corresponding year. However, to determine the total labor income of a
worker in a year, I add the labor income earned by the worker in every job in which, according to the data, this
worker has been employed in the corresponding year.44

B.2 Additional Descriptive Statistics on Migration Patterns
In this section, I describe additional statistics about the sample. As illustrated by Figure B.1, the overall migration
rate increase by about 1.5-2 percentage points between 2000 and 2014. I then describe which demographic groups
are the most mobile. Figure B.2 illustrates a steep decrease of the migration rate with age. Figure B.3 shows that
females in the sample are about half as mobile as males. Figure B.5 illustrates that the migration rate is increasing
for highly educated, decreasing for low-educated.

Table B.1: Mean and Quantiles of Main Variables

Year Variable Mean Std. Dev. Min Max p10 p50 p90

2000 Age 37.22 8.91 25.00 99.00 27.00 36.00 50.00
Schooling 5.78 2.17 -1.00 11.00 3.00 6.00 9.00
Total Income 1,902 12,790 0.00 871,313 342 1,431 4,746

2014 Age 40.43 10.20 25.00 113.00 28.00 39.00 55.00
Schooling 6.28 1.86 -1.00 11.00 4.00 7.00 9.00
Total Income 22,976 64,657 0.00 6,068,441 746 5,443 51,529

Average Age 39.40 9.92 25.00 113.00 28.00 38.00 54.00
Schooling 6.12 1.98 -1.00 11.00 3.00 7.00 9.00
Total Income 18,822 54,226 0.00 6,068,441 425 3,681 45,696

43Brazilian microregions are groups of municipalities that span the entirety of the Brazilian territory. During our sample
period, there were 557 microregions which may themselves grouped into 136 mesoregions.

44To compute the total labor income of a worker associated to each job this worker has held, I transform the average
monthly earnings reported for each job into a measure of average daily wages, and multiply this one by the total number of
days between the day of accession and the day of separation into the job reported in the data. If no information on the day
of accession or separation is reported, I assume that these ones are January 1 and December 31, respectively.
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Figure B.1: Migration rates across mesoregions by Year over 2000-2014
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Figure B.2: Migration rates across mesoregions by Year, by age, over 2000-2014
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Table B.1 provides descriptive information on the set of workers who appear at least once in the RAIS data
between January 2000 and December 2014. The average worker in our sample (weighted by months in sample) is
39.4 years old and has annualized earnings of R$ 18,822 (in 2014 R$), before taxes. Over the sample period, the
average annual rate of migration across mesoregions is 7.3%. For males, the average yearly migration rate is 8.1%,
whereas it is 4.9% for females. Older workers have a smaller propensity to migrate, with a migration rate of 4.2%
for workers between 45 and 64 years old, 7.4% for workers between 25 and 44. Workers with a high school degree
or above have an average migration rate of 8.1%, while it is 5.1% for workers below high school completion.
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Figure B.3: Migration rates across mesoregions by Year, by gender, over 2000-2014
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Figure B.4: Migration rates across mesoregions by Year, by race, over 2000-2014
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Figure B.5: Migration rates across mesoregions by Year, by educational attainment, over 2000-2014

.0
3

.0
3
5

.0
4

.0
4
5

.0
5

.0
5
5

M
ig

ra
tio

n
 R

a
te

2000 2005 2010 2015
Year

>= High School < High School

Figure B.6: Population Density by Mesoregion - Average over 2000-2014

22



C Appendix to Section 4

C.1 Algorithm for Simulated Method of Moments
• Parameters to estimate:

– Information cost (λl, λh) for low/high internet regions respectively

– Role of distance (φ0, φ1), so that κjk = φ01j 6=k + φ1distjk

– Decreasing returns in labor in production α

– Persistence of regional stochastic productivity γ

– Regional constant productivities {Ak}k=1,...J

– Regional constant amenities {Bk}k=1,...J

• The discount rate is set to δ = 0.96.

• From the wage equation, we can estimate {Ak}k=1,...J , α and γ:

logwkt = Ak + θkt − α logLkt.

From the OLS regression, treating θkt as the error term, we get estimates of Ak and α. We can then estimate
the persistence parameter γ by fitting a 2-state Markov chain on the sequence of residuals θ̂kt = 1{θkt > 0}
obtained from the regression. Note that θkt is correlated with Lkt so I will need an instrument to estimate α.

• To estimate the remaining parameters, namely amenities, information cost and the role of distance, we use
a simulated method of moments (SMM), based on the gravity equation for migration flows predicted by the
model:

Λjklt = Qjklt +
1

λj
∆wjkt −

1

λj
Kjkl +

1

λj
(Bk −Bj) +

δ

λj
χjkt,

where

Λjklt = log

(
pjktp

δ
klt+1

pjjtpδjlt+1

)
, Qjklt = log

(
qjktq

δ
klt+1

qjjtqδjlt+1

)
∆wjkt = wkt − wjt,

Kjkl = κjk + δ (κkl − κjl)

χjkt = EVkt,t+1 − Vkt+1 − (EVjt,t+1 − Vjt+1)

EVkt,t+1 = E [Vk(θt+1, Lt)|θt, Lt−1]

• In the data, I observe Λjklt, ∆wjkt and distjk for all regions and years, as well as the population distribution
{Ljkt}j,k=1,...J . From the wage regression, I also know the current estimated productivity state θkt in every
region-year.

• I employ the following iterative procedure:

1. Guess a set of parameters (λ0
l , λ

0
h), (φ0

0, φ
0
1) and {B0

k}k=1,...J .

2. Simulate the model using these parameters and the previously estimated parameters.

3. For any triplet-year jklt, compute the simulated Q0
jklt, K

0
jkl and χ

0
jkt, and run the regression:

Λjklt −Q0
jklt = β1 (∆wjkt + δχjkt) + β2K

0
jkl +Dk −Dj

4. Update λ1 = β−1
1 , φ1 = β2/β1, B1

k = Dk, and return to step 1 until convergence.

• Joint estimation:
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– For any (λ0
l , λ

0
h), (φ0

0, φ
0
1) and {B0

k}k=1,...J , define

εjklt = Λjklt −
(
Qjklt +

1

λj
∆wjkt −

1

λj
Kjkl +

1

λj
(Bk −Bj) +

δ

λj
χjkt

)
.

where Λjklt and ∆wjkt are the observed migration flows and wage gaps, and the remaining terms are
simulated using the parameters and the observed states (θt, Lt−1).

– The model predicts the following moment conditions must hold:

E [εjklt] = 0,

E [εjkltQjklt] = 0,

E [εjklt∆wjkt] = 0,

E [εjkltKjkl] = 0,

E [εjklt (Bk −Bj)] = 0,

E [εjkltχjkt] = 0,

Using these moment conditions, I can then look for the set of parameters (λl, λh), (φ0, φ1) and {Bk}k=1,...J

that minimize an objective function constructed from these moment conditions.

• Data collection:

– For the 100 most populated microregions:
∗ Average Wages across all individuals (for now), each year
∗ Number of workers per municipality and year
∗ Distance between all regions
∗ Bilateral annual migration flows between each microregion

C.2 Construction of the Instrument for Internet Access
To instrument for the share of residents in a mesoregion with an active internet connection, I rely on the expansion
of the internet infrastructure over the time period of the sample. In particular, as documented by Tian (2019),
Brazil witnessed a rapid expansion of its internet network during the period between 2008 and 2014. Figure C.1
illustrates the change in the fraction of residents with an internet connection between 2000-2007 and 2008-2014 in
each mesoregion. To the map is superimposed the grid of internet infrastructure that was implemented during the
2008-2014 period. These additional elements are backbones of the internet network. These backbone cables are
essential parts of the internet infrastructure. From these main cables, smaller ones fan out and provide broadband
connections. As discussed by Tian (2019), the strength of the signal decays with distance to the backbone cable,
so that providing a connection of satisfactory quality is typically difficult beyond 250 km from the cable.

Motivated by the technical role played by these cables in providing access to internet, I construct, for each
mesoregion, a dummy variable equal to 1 if it is on the path of a backbone cable that was added during the period.
Since mesoregions can be quite large, it is typically verified that a mesoregion with no backbone cable passing
through it will have most of its population centers located at more than 250 km from the backbone cable.

Denoting by ∆zjt the indicator variable equal to 1 if mesoregion j is on the path of a backbone cable that was
added during the 2008-2014 period, I run the following first stage regression:

∆intjt = δ∆zjt + νjt.

As discussed by Akerman et al. (2019), the exclusion restriction at the basis of the identification is that timing
of the roll-out of the backbone cables is unrelated to changes in confounding factors that occurred over the same
period.

The identifying assumption is that mesoregions close to and farther away from new broadband backbones were
on parallel trends in the outcome of interest prior to the completion of the new backbones, and did not experience
systematically different idiosyncratic shocks after the new backbones arrived.
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As first argued by Tian (2019), there are two main reasons why this assumption is plausible in the context of
the internet expansion in Brazil over this period. First, alignment of the backbones was announced at the beginning
of the 2008-2014 period and followed other infrastructures that had existed long before 2008, making it harder for
policymakers to align the broadband cables in anticipation of economic changes in certain areas. Second, the order
in which municipalities are connected is approximately geographically determined, according to their distances to
the submarine cable landing points along the coast. It is thus a priori unlikely that the availability of the new
backbones across different municipalities correlates with the temporal variation in the extents of firms’ division of
labor of areas on and off the new backbone cables in Brazil.

Figure C.1: Change in internet access from 2000-2007 to 2008-2014 and new backbone cables
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D Appendix to Section 5

D.1 Fit of Migration Flows
In Figure D.1a and Figure D.1b, I report the scatter plot of the log of observed migration shares between every
pair of mesoregions for all years, against their predicted values according to the model with information frictions,
and without, respectively. When information frictions are allowed, the R2 of the regression of predicted on actual
migration costs is 0.70, whereas it is only 0.61 in the model with no information frictions.

(a) Predicted vs. Actual Migration Flows: with In-
formation Frictions

(b) Predicted vs. Actual Migration Flows: No In-
formation Frictions

D.2 Heterogeneous Migration Elasticities in the Model with No Information Fric-
tions

D.3 List of Local Shocks
In order to empirically identify a mesoregion as having experienced a positive labor market demand shock, I require
this mesoregion to verify three criteria. First, there must exist a year such that the average immigration rate in
the next four years is at least 50% larger than the average immigration rate in the previous four years; this year
is defined as the year of at which the positive labor demand shock too place. Second, the average population in
the 4 years preceding the year of the shock is at least 20,000 workers. Third, indexing the year at which the shock
took place as t, the total number of immigrants to the shocked region over the period t − 2 to t + 4 must be at
least 20,000 workers. The first criterium uses a discontinuity in immigration rates to identify regions experiencing a
positive labor demand shock. The second and third criterium restrict the shocks of interest to those taking place in
mesoregions that are sufficiently large and that drove a sufficiently large number of workers into the shocked region.

Once I have identified a mesoregion that experienced a positive labor demand shock according to the criteria
outlined in the previous paragraph, I focus on the workers that migrated to the shocked region during a period
encompassing the two years prior and the four years subsequent to the shock, and relate the timing of their migration
decision to different characteristics of both the migrants themselves and of the mesoregion from which they migrated.

Given that the last year for which I observe migration decisions in the data is 2014 and that I want to study the
evolution of the migration flows to a region experiencing a positive labor demand shock in the four years subsequent
to the shock, I only search for regions that experienced positive labor demand shocks prior to 2010. This procedure
to identify such regions identified a total of ten mesoregions which experience positive local labor demand shocks.
As summarized in Table D.1, these are diverse in their location, the year in which they took place, the total number
of workers they draw into the shocked regions and the underlying cause of the shock.
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Table D.1: Description of Positive Local Labor Demand Shocks

Municipality State Year Shock Number Migrants Source Labor Shock

Ipojuca Pernambuco 2009 89,067 Refinery Construction
Natal R. G. do Norte 2008 74,294 Oil Boom
Santo Antonio Rondonia 2008 65,746 Dam Construction
Maceio Alagoas 2008 49,943 Tourism Boom
Belo Monte Para 2010 40,644 Dam Construction
Uberaba Minas Gerais 2008 40,301 Sugar Cane Energy
Araucaria Parana 2006 37,684 Tourism Boom
Cidelandia Maranhao 2010 37,216 Palm Oil Boom
Suape Pernambuco 2008 32,752 Refinery Construction
Itabira Minas Gerais 2010 21,115 Mining Boom

D.4 Replicating Local Shocks in the Model

Figure D.2: Average Delay in the Migration Response to the 10 Local Shocks

(a) Distance: Data (b) Internet: Data

Figure D.2a and Figure D.2b illustrate the estimates that arise from pooling the data across the ten shock listed
in Table D.1. They illustrate, for each year between t− 2 and t+ 4, the predicted migration probability when the
corresponding covariate Xk

it+s is set to its 25% percentile (labeled as “Low” and painted in orange) or to its 75%
percentile (labeled as “High” and painted in green) are set to their mean values. The whiskers attached to each dot
represent the 95% confidence interval for each predicted migration probability. The dark thin vertical lines indicate
the estimated expected number of years of delay implied by the expected probabilities, and the light-colored thick
vertical lines illustrate the corresponding 95% confidence intervals. The standard errors of the estimates of the
implied expected probabilities and the expected number of years of delay are computed using the Delta method
and standard errors for the estimates of the parameter {γkit+s; k = 1, . . . ,K} clustered by year and mesoregion of
origin of the migrant (i.e. by the mesoregion in which the migrant was located at period t+ s− 1).

The results in Figures D.2a and D.2b illustrate that everything else equal, workers living in geographically
close mesoregions or in mesoregions in higher broadband internet penetration tend to react faster to positive labor
demand shocks happening in mesoregions other than their location of residence. I interpret these estimates as
suggestive of the hypotheses that, everything else equal: (a) workers tend to have better information about labor
demand shocks taking place in markets that are geographically close to their location of residence; and (b) workers
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located in areas with higher internet penetration have better information about every labor demand shocks, no
matter where this one took place.
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E Additional Figures

E.1 Cardell Distribution

gβ(z) =
1

β

∞∑
n=0

(−1)
n
e−nz

n!Γ(−βn)
.

Figure E.1: Distribution Cardell with dispersion β = 0.5, vs. Gumbel. Source: Dasgupta and Mondria
(2018).
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