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We examine urbanization using new data that allow us to track the evolution
of population in rural and urban areas in the United States from 1880 to 2000.
We find a positive correlation between initial population density and subsequent
populationgrowthforintermediatedensities, whichincreases thedispersionof the
populationdensitydistributionovertime. Weusetheoryandempirical evidenceto
show this pattern of population growth is the result of differences in agriculture’s
initial share of employment across population densities, combined with structural
transformation that shifts employment away from agriculture. JEL Codes: N10,
O18, R11, R12.

I. INTRODUCTION

Urbanization—the concentration of population in cities and
towns—is a key feature of economic development. The share of
the world’s population living in cities grew from less than one
tenth in 1300 to around one sixth in 1900 and to more than one
half today.1 We examine urbanization using a new data set for
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the United States that tracks, for the first time, the evolution
of population across both rural and urban areas from 1880 to
2000. We show that incorporating information on the full range
of population densities considerably changes our understanding
of the urbanization process. We provide theory and evidence
that structural transformation away from agriculture explains
our findings and demonstrate similar results for Brazil from
1970 to 2000. As other developing countries continue to undergo
structural transformation away from agriculture, our findings
suggest that it will exert a powerful influence on future patterns
of urbanization.

Although most previous research on the population distribu-
tion has used data on cities, rural areas historically accounted for
a large share of the population in developed countries, and they
continue to do so in many developing countries today. We there-
fore develop a new data set that maps U.S. subcounty divisions—
Minor Civil Divisions (MCDs)—to comparable spatial units over
time. The small geographical area of MCDs allows us to clearly
distinguish rural from urban areas over a long historical time
period, but these data are only available for some states. We
therefore complement our MCD data with a county-level data set,
whichcovers almost all of thecontinental UnitedStates at 20-year
time intervals.

To guide our empirical work, we develop a simple theoretical
model, in which agents are mobile across locations and choose
between agriculture and non-agriculture as sectors of employ-
ment.2 A key feature of the model is that agriculture’s share of
initial employment varies with population density. At low popu-
lation densities where agriculture dominates initial employment,
mean reversion in agricultural employment growth generates a
downward-sloping relationship between population growth and
initial population density. At high population densities where
nonagriculture dominates initial employment, a roughly constant
rate of nonagricultural employment growth generates population
growththat is largelyuncorrelatedwithinitial populationdensity
orsize, as inexistingempirical findings forcities andmetropolitan
areas. In between, the share of agriculture in initial employment
is decreasinginpopulationdensity, andstructural transformation
from agriculture to nonagriculture raises population growth at
higher densities with lower shares of agriculture in employment.

2. “Nonagriculture” includes manufacturing and services.
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Consistent with these theoretical predictions, our main em-
pirical finding is that population growth from 1880 to 2000 is
strongly increasing in initial population density for the range of
intermediate densities at which the majority of the 1880 popu-
lation lived. In particular, locations that started out with about
7 people per square kilometer did not grow on average, whereas
those with 50 people per square kilometer more than tripled on
average. This upward-sloping relationship between population
growth and initial population density at intermediate densities
increases the dispersion of population density from 1880 to 2000,
with some locations experiencing rural depopulation as others
experience urbanization.

We organize our empirical analysis around six stylized facts,
which link this pattern of population growth to structural trans-
formation away from agriculture. After developing these facts,
we provide further evidence in support of this explanation using
variation across U.S. subperiod and regions. We show that the
increasing relationship between population growth and initial
population density at intermediate densities is stronger from
1880 to 1960, during which substantial reallocation away from
agriculture occurred, than from 1960 to 2000, during which such
reallocation was much less important. We also show that this
increasing relationship at intermediate densities is stronger for
regions and 20-year periods characterized by greater structural
transformation away from agriculture, such as the U.S. South
from 1940 to 1960.

We provide evidence that our findings are not driven by
a number of possible alternative explanations, including struc-
tural transformation within non-agriculture from manufacturing
toservices; suburbanization andchanges in transport technology;
locational fundamentals (including physical geography and insti-
tutions); and initial local differences in fertility, migration, and
human capital. We find a similar pattern of results when we ex-
clude metropolitan areas, using either modern or historical defi-
nitions, which suggests that our findings are not driven by subur-
banization. Even when we focus solely on variation across MCDs
within the same county with similar initial population densities
and include controls for all of the foregoing potential alternative
explanations, we continue tofindstatistically significant effects of
structural transformation away from agriculture.

Theremainderof thearticle is organizedas follows. Section II
discusses the related literature. Section III develops the model.
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Section IV discusses our data. Section V presents our six key
stylized facts about the evolution of population and employment
and provides some baseline evidence on the role of structural
transformationawayfromagricultureinexplainingthesestylized
facts. Section VI presents further evidence in support of this
explanation andagainst a variety of possible alternatives. Section
VII concludes.

II. RELATED LITERATURE

Our article is related to a large body of work in urban
economics and economic geography. Recent research on the
relationship between population growth and size for cities in-
cludes Gabaix (1999), Eeckhout (2004), Duranton (2007), and
Rossi-Hansberg and Wright (2007). While the existing empir-
ical literature on cities typically finds that population growth
is largely uncorrelated with initial population size (Gibrat’s
Law), some evidence of departures from Gibrat’s Law is found
even for cities, as in Black and Henderson (2003), Soo (2007),
González-Val, Lanaspa, and Sanz (2008), and Holmes and Lee
(2010).3 Recent theoretical research on cities emphasizes popula-
tion mobility across locations and examines a number of different
economic mechanisms underlying random city growth, including
endogenous innovation and industry shocks. Both of these mech-
anisms can generate mean reversion in city population growth,
so that the very largest cities grow somewhat more slowly, as
in Duranton (2007) and Rossi-Hansberg and Wright (2007). As
this existing literature on cities abstracts from rural areas, two
recurringissues arethetreatment ofentryintothecity-sizedistri-
bution andthe population thresholdfor being classifiedas a city.4

Our focus on the reallocation of economic activity from
agriculture to non-agriculture also connects with theories of
new economic geography, including Krugman (1991) and Fujita,
Krugman, and Venables (1999). Although reductions in trade
costs in these models can result in an increased dispersion of
population across space, the new economic geography literature
does not provide natural explanations for why Gibrat’s Law is

3. Research on the empirical determinants of city growth includes among
others Glaeser et al. (1992), Ioannides and Overman (2004), Glaeser and Gyourko
(2005), and da Mata et al. (2007), and is surveyed in Gabaix and Ioannides (2004).
The role of industrial specialization is emphasized in Henderson (1974).

4. For an analysis of the emergence of new cities as a source of growth in the
urban population, see Henderson and Venables (2009).
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a reasonable approximation for observed city population growth
(see for example the discussion in Davis and Weinstein 2002) or
for why Gibrat’s Lawis violated when both rural and urban areas
are considered.

Though an empirical literature has examined the determi-
nants of the distribution of economic activity across states and
counties in the United States, including Kim (1995), Ellison and
Glaeser (1999), Beeson, DeJong, and Troesken (2001), Rappaport
and Sachs (2003), and Glaeser (2008), this literature has typi-
cally not emphasized structural transformation. Closest in spirit
to our work is Caselli and Coleman (2001), which examines
structural transformation and the convergence of incomes be-
tween Southern and Northern U.S. states. Alsorelated is Desmet
and Rossi-Hansberg (2009), which examines differences in pat-
terns of employment growth between the manufacturing and ser-
vice sectors using U.S. county data and relates these differences
to technological diffusion and the age of sectors. Neither paper
examines therelationshipbetweenstructural transformationand
urbanization—an analysis for which our subcounty data are espe-
cially well suited.

Our research is also related to the macroeconomics litera-
ture on structural transformation. The model developed herein
captures the two key explanations for structural transformation
proposed in the existing macroeconomics literature. The first
is more rapid productivity growth in agriculture than in non-
agriculture combined with inelastic demand across sectors, as in
Baumol (1967), Ngai and Pissarides (2007), and Rogerson (2008).
The second is nonhomothetic preferences in which the relative
weight of agriculture in consumer preferences declines with real
income, as in Echevarria (1997), Gollin, Parente, and Rogerson
(2002), and Matsuyama (2002). Though both strands of this

literature are concerned with the impact of structural transfor-
mation on macroeconomic aggregates, our focus is instead on its
implications for the population distribution and the process of
urbanization.

Finally, our article connects with a long line of research in
the development and economic history literatures. Early work
on structural change and economic development includes Lewis
(1954) and is surveyed by Syrquin (1988), while more recent
research on the interlinkages between industrial andagricultural
development is reviewed in Foster and Rosenzweig (2008). Influ-
ential work on the history of urban development in the United
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States includes Kim (2000) and Kim and Margo (2004), although
for reasons of data availability this research has again largely
concentrated on cities.

III. MODEL

To guide our empirical analysis, we develop a theoretical
model that illustrates the mechanisms linking urbanization and
structural transformation.5 We consider an economy with many
locations that are linked through goods trade and population
mobility. The mechanism that drives an aggregate reallocation
of employment from agriculture to nonagriculture is either more
rapid productivity growth in agriculture combined with inelastic
demand across the two goods or a change in relative demand for
these two goods (e.g., as a result of nonhomothetic preferences).
This aggregatereallocationaffects therelationshipbetweenpopu-
lation growth and initial population density because agriculture’s
share of employment varies with population density. Agricultural
specialization and population density are related because agri-
culture is land intensive, has weaker agglomeration forces, and
exhibits greater mean reversion in productivity than nonagri-
culture, which implies that agriculture’s share of employment
declines at the highest population densities.

III.A. Preferences and Endowments

Time is discrete and indexed by t. The economy consists
of a continuum of locations i ∈ [0, 1], which are grouped into
larger statistical units called MCDs or counties. Each location is
endowed with a measure Hi of land. The economy as a whole is
endowed with a measure Lt of workers who are perfectly mobile
across locations. Workers are infinitely lived and each is endowed
with one unit of labor, which is supplied inelastically with zero
disutility, sothat employment equals populationforeachlocation.

Workers derive utility from consumption of goods, Cit, and
residential land use, HUit, and for simplicity we assume that the
utility function takes the Cobb-Douglas form:6

(1) U (Cit, HUit) = CαitH
1−α
Uit , 0 < α < 1.

5. The Online Appendix contains further details on the model and the tech-
nical derivations of the relationships reported in this section.

6. For empirical evidence using U.S. data in support of the constant housing
expenditure share implied by the Cobb-Douglas functional form, see Davis and
Ortalo-Magne (2011).
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The goods consumption index, Cit, includes consumption of agri-
culture, cAit, and nonagriculture, cNit, and is assumed to take the
constant elasticity of substitution (CES) form:

(2) Cit=
[
atc
ρ
Ait + (1− at) c

ρ
Nit

]1/ρ
, 0 < κ=

1
1− ρ

< 1, 0 < at < 1,

where at captures the relative strength of demand for agriculture
and, following a large literature in macroeconomics, we assume
that the two goods are complements: 0 < κ < 1.7

Expenditure on land in each location is redistributed lump
sum to the workers residing in that location, as in Helpman
(1998). Thereforetotal incomeineachlocationequals payments to
labor and land used in production plus expenditure on residential
land use.

III.B. Production Technology

Output in each sector is produced using labor and land
according to a Cobb-Douglas production technology:

(3) Yjit = L
ηj

jitΓjtθjitL
μj

jitH
1−μj

jit , 0 < μj < 1, ηj ≥ 0,

where Yjit, Ljit, and Hjit denote output, employment, and commer-
cial land use, respectively, for sector j ∈ {A, N} in location i at
time t; L

ηj

jit captures external economies of scale in employment in
the sector and location; Γjt is a component of sectoral productivity
that is common across all locations (e.g., the aggregate state of
technology); θjit is a component of sectoral productivity that is
specific to each location (e.g., natural resources and weather).8

Within each sector, output is homogeneous and markets are
perfectly competitive, with each good costlessly tradeable across
locations.9 Each firm is of measure zero and chooses its inputs of
laborandlandtomaximizeits profits takingas givenproductivity,
goods and factor prices, and the location decisions of other firms
and workers. Because economies of scale are external to the firm,
they depend on aggregate (rather than firm) employment in a

7. See, for example, Ngai and Pissarides (2007).
8. While agglomeration forces are captured here through external economies

of scale, see Duranton and Puga (2004) and Rosenthal and Strange (2004) for a
discussion of other sources of agglomeration.

9. In a separate technical note (Michaels, Redding, and Rauch 2011), we
develop a quantitative version of the model that features bilateral transport costs
and yet remains tractable by introducing Eaton and Kortum (2002) heterogeneity
and product differentiation within each sector.
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sector andlocation. As such, each firm’s production technology ex-
hibits constant returns toscale inits owninputs of laborandland,
which yields the standard result that payments to labor and land
exactly exhaust the value of output. We assume that agriculture
is more landintensive than nonagriculture (0 < μA < μN < 1) and
that nonagriculture has stronger external economies of scale than
agriculture (0 ≤ ηA < ηN).

The location-specific component of sectoral productivity (θjit)
evolves stochastically over time as a result of idiosyncraticshocks
to productivity (φjit):

(4) θjit = φjitθ
νj

jit−1, t = {1, . . . ,∞} , θji0 = φji0,

where lnφjit is drawn from an independently and identically dis-
tributed continuous probability density function gj (lnφjit), with
mean zero, constant variance σ2

φj > 0, and bounded support
[
lnφ

j
, lnφj

]
.

The parameter νj captures the degree of mean reversion in
location-specific productivity. Since the relative productivity of
locations in agriculture is heavily influenced by long-term fun-
damentals, such as soil and climate, we assume greater mean
reversion in location-specific productivity in agriculture than in
nonagriculture: 0 < νA < νN ≤ 1. From this law of motion
for productivity (4) and the distribution of idiosyncratic produc-
tivity shocks gj (lnφjit), we determine the limiting distribution of
productivity in each sector j (zj (θjit)).

III.C. Land Allocation

Land in each location can be allocated to residential or com-
mercial use. When land is used commercially, we assume that it
can be employed either in agriculture or nonagriculture but not
in both sectors simultaneously, so that locations exhibit complete
specialization in production. Since locations are grouped into
largerstatistical units (MCDs orcounties), these largerstatistical
units exhibit incomplete specialization to the extent that they
contain a mix of agricultural and nonagricultural locations.10

Commercial land in each location is employed in the sector
with the higher value marginal product for land. Given our

10. The assumption of complete specialization in production simplifies the
allocation of land between residential and commercial use. While this assumption
can be relaxed, this substantially complicates the characterization of general
equilibrium without yielding much additional insight.
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assumptions that production (3) and the upper tier of utility
(1) are Cobb-Douglas and that specialization in production is
complete, the equilibrium allocation of land takes a particularly
tractable form with a constant fraction of land allocated to resi-
dential and commercial use:

(5) χUj =
1− α

(1− α) + (1− μj)α
, χYj =

(1− μj)α

(1− α) + (1− μj)α
,

where χUj and χYj denote the fractions of land used residentially
and commercially, respectively, for locations in which commercial
land is used in sector j.

III.D. Population Mobility

Workers are perfectly mobile across locations and can relo-
cate instantaneously and at zero cost. After observing the vector
of agricultural and non-agricultural productivity shocks across
locations i in period t, φAit and φNit, each worker chooses their
location to maximize their discounted stream of utility, taking
as given goods and factor prices and the location decisions of
other workers and firms. Because relocation is instantaneous
and costless, this problem reduces to the static problem of max-
imizing their instantaneous flow of utility. Therefore popula-
tion mobility implies the same real income across all populated
locations:

πit

Pαt r1−α
it

=
πkt

Pαt r1−α
kt

= Vt, ∀i, k,

whereπit denotes income per worker from labor andland; Pt is the
dual price index for consumption goods derived from (2), which
with costless trade is the same for all locations; rit is the rental
rate on land, which in general varies across locations.

Usinglandmarket clearing, theequalitybetweenincomeand
payments to land and labor, and the equilibrium land alloca-
tion (5), the population mobility condition can be reexpressed as
follows:

(6) Ṽit =
pjtΓjtθjitχ

1−μj

Yj H
1−μj+

1−α
α

i L
ηj−(1−μj)− 1−α

α

it

α [(1− α) + (1− μj)α]
1−α
α

= V1/α
t Pt = Ṽt,

where Ṽt is a normalized common level of real income across all
populated locations.
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Both the good produced by a location and its population
are determined by its productivities in the two sectors, since
these determine the value marginal product of land in each of
the alternative patterns of complete specialization and the value
marginal product of labor, which together determine income per
worker in each location.

III.E. General Equilibrium

The general equilibrium of the model can be referenced by
the limiting distribution of productivities in each sector (zj (θjit)),
thesets of locations specializinginagricultureandnonagriculture
(ΩAt, ΩNt), the measure of workers in each location (Lit), and
the price of the agricultural good (pAt), where we choose the
nonagricultural good as the numeraire, so that pNt = 1. From this
information, all other endogenous variables of the model can be
determined, as shown in the proof of Proposition 1.

PROPOSITION 1. Assuming ηj < (1− μj)+ 1−α
α

for j ∈ {A, N}, there
exists a unique stable equilibrium.

Proof. See the Online Appendix. �

For parameter values satisfying the above inequality, the ag-
glomerationforces fromexternal economies of scale(ηj) arenot too
strong relative to the dispersion forces from an inelastic supply
of land for residential and commercial use (α and μj). When this
inequality holds, each location’s real income (6) is monotonically
decreasing in its population andthere exists a unique stable equi-
librium.11

PROPOSITION 2. With mean reversion in agricultural productivity
(0 < νA < νN ≤ 1) and approximately constant propor-
tional growth in nonagricultural productivity (νN→1): (a)
the dispersion of population density across non-agricultural
locations is greater than the dispersion of population density
across agricultural locations, (b) the most densely populated
locations only produce the nonagricultural good, (c) some less
denselypopulatedlocations producetheagricultural goodand

11. For parameter values for which the inequality is not satisfied, the model
exhibits multiple equilibria, but each of the stable equilibria features a degenerate
populationdistributionwithall economicactivityconcentratedina singlelocation.
Since we donot observe a degenerate population distribution in the data, we focus
onparametervaluesforwhichtheinequalityissatisfiedandthereisauniquestable
equilibrium.
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there is a range of population densities at which the share of
agriculture in employment strictly decreases with population
density.

Proof. See the Online Appendix. �

From the above proposition, one of the key predictions of the
model is that thecross-sectiondistributionof populationdensities
differs between agricultural and nonagricultural locations. This
difference in population density distributions reflects two sets of
forces. First, agriculture is land intensive (μA < μN) and exhibits
weaker agglomeration forces than nonagriculture (ηA < ηN),
which reduces population density in agricultural locations rela-
tive to nonagricultural locations for given productivities. Second,
in each sector, the variance and maximum value of productivity
increase as the coefficient on laggedproductivity νj rises toward1.
Therefore lower mean reversion in productivity in nonagriculture
than in agriculture (0 < νA < νN ≤ 1) implies a greater
variance andmaximum value for nonagricultural productivity for
the same distribution of idiosyncraticshocks to productivity.12 In
the limit, as νN → 1 and t → ∞, the variance and maximum
value of nonagricultural productivity are unbounded. Noting that
a location’s population density is increasing in its productivity,
it follows from these results that there is greater dispersion in
population density across nonagricultural locations and that the
most densely populated locations only produce the nonagricul-
tural good. Because both goods are consumed and produced in
equilibrium, some less densely populated locations produce the
agricultural good, which in turn implies that there is a range of
population densities where the share of agriculture in employ-
ment is strictly decreasing in population density.

PROPOSITION 3. A rise in aggregate productivity in agriculture
(ΓAt) or a reduction in relative demand for agriculture (at)
reallocate employment from agriculture to nonagriculture.

Proof. See the Online Appendix. �

12. Using farm output per kilometer squared as a crude measure of agricul-
tural productivity, we find evidence of substantial mean reversion in agricul-
tural productivity in our county subperiods data set, as discussed in the Online
Appendix. These findings are consistent with the historical literature on the
development ofU.S. agriculture, whichdiscusses that someoftheimprovements in
agricultural technology during our sample period favored areas that were initially
less productive as a result of poorer climate and soil (see Cochrane 1979 and
Olmstead and Rhode 2002).
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Another key prediction of the model is that an increase in
relative aggregate productivity in agriculture or a fall in the
relative demand for agriculture reallocates employment away
from agriculture, as formalized in the above proposition. With
inelastic demand across goods, more rapid productivity growth
in agriculture (a rise ΓAt in relative to ΓNt) leads to a more
than proportionate decline in the relative price of the agricul-
tural good.13 This more than proportionate price reduction in
turn reduces real income in agricultural locations relative to
nonagricultural locations. Two mechanisms restore equilibrium
in the model. First, population mobility from agricultural to
nonagricultural locations arbitrages away real income differ-
ences, because real income per worker in each location is decreas-
ing in its population. Second, land use in a given location can
change endogenously from agriculture to nonagriculture. Both
mechanisms increase employment in nonagriculture relative to
agriculture until real income per worker is equalized across all
agricultural andnonagricultural locations inthenewequilibrium.
Following similar reasoning, a fall in the relative demand for
agriculture (a reduction in at) also reduces the relative price of
the agricultural good and hence reallocates employment toward
nonagriculture.14

PROPOSITION 4. (a) For locations that continue to produce the
agricultural good, there is a decreasing relationship between
population growth and initial population density. (b) For
locations that continue to produce the nonagricultural good,
population growth becomes uncorrelated with initial popula-
tion density as νN → 1.

Proof. See the Online Appendix. �

Even in the absence of changes in relative aggregate pro-
ductivity or demand across sectors, idiosyncratic shocks to

13. Evidence of faster productivity growth in agriculture than nonagriculture
comes from empirical growth accounting studies for the United States during our
sample period, including Kuznets (1966) from 1870–1940 and Maddison (1980)
from 1950–1976. These findings are also consistent with the economic history
literature on the development of U.S. agriculture, which emphasizes the role of
productivity-enhancing improvements in technology, such as mechanization and
biological innovation (e.g., Rasmussen 1962).

14. One natural explanation for a fall in the relative demand for agriculture
arises in the nonhomothetic CES preferences of Sato (1977), in which at falls as
real income rises.
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location-specific productivity induce changes in population across
locations, as formalized in the above proposition. In locations
that continue to produce the agricultural good, mean reversion
in agricultural productivity induces a decreasing relationship
between population growth and initial population density. In
contrast, in locations that continuetoproducethenonagricultural
good, population growth is largely unrelated to initial popula-
tion density for sufficiently small degrees of mean reversion in
nonagricultural productivity (νN → 1).

From Propositions 2–4, the model yields a number of predic-
tions that guide our empirical research.

Population Growth. The main prediction of the model is an
initially decreasing, later increasing, andfinally roughly constant
relationship between population growth and initial population
density. This prediction is driven by the following three forces.
At high population densities where nonagriculture dominates ini-
tial employment (Proposition 2), constant proportional growth in
nonagricultural productivity implies a roughly constant relation-
ship between population growth and initial population density
(Proposition 4). At low population densities where agriculture
dominates initial employment (Proposition 2), mean version in
agricultural productivity generates a decreasing relationship be-
tween population growth and initial population density (Proposi-
tion 4). In between, the share of agriculture in initial employment
is decreasing in population density (Proposition 2), andstructural
transformation from agriculture to nonagriculture raises popula-
tion growth at higher densities with lower shares of agriculture
in employment (Proposition 3).

Employment Shares. A closely related prediction is that
agriculture’s share of employment varies with population density.
From Proposition 2, mean reversion in agricultural productivity
and constant proportional growth in nonagricultural productivity
imply that the most densely populated locations only produce the
nonagricultural good. Since some less densely populatedlocations
produce the agricultural good, this in turn implies that there is
a range of population densities at which agriculture’s share of
employment strictly decreases with population density.

Employment Density Dispersion. The model also predicts
greater dispersion in employment density in nonagriculture than
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inagriculture. FromProposition 2, meanreversioninagricultural
productivity and constant proportional growth in nonagricultural
productivity imply greater variance in productivity and hence
employment density in nonagriculture than in agriculture.

Population Density Dispersion. A related prediction stems
from reallocation of employment from agriculture to non
agriculture in Proposition 3. More rapid agricultural productivity
growth or a shift in relative demand toward nonagriculture leads
to a change in the composition of employment from agriculture
to nonagriculture. Since nonagriculture has a greater dispersion
of employment densities than agriculture (Proposition 2), this
changeinthecompositionof employment increases thedispersion
of population densities.

Agricultural Mean Reversion. Another prediction is a direct
implicationof meanreversioninagricultural productivitygrowth.
From Proposition 4, this implies mean reversion in employment
growthinlocations that continuetoproducetheagricultural good.

Nonagricultural Constant Growth. A final prediction is a
direct implication of approximately constant proportional growth
in nonagricultural productivity. From Proposition 4, this im-
plies approximately constant proportional growth in employ-
ment in locations that continue to produce the nonagricultural
good.

Guided by these theoretical predictions, we distinguish six
stylized facts about population and employment in our empirical
analysis. In later sections, we provide evidence in support of
the model’s mechanism of structural transformation away from
agriculture as the explanation for these six facts.

IV. DATA DESCRIPTION

Tostudytheevolutionof populationandemployment forboth
rural and urban areas, we require a data set that covers all the
populationandall theland—fromthelargest cities tothesmallest
farms. Todistinguishrural areas fromurbanones, werequirethat
this data set uses geographic units that are stable over time and
yet sufficiently spatially disaggregated.

Though much of the existing literature on population growth
in the United States uses data on cities, incorporated places, or
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metropolitan statistical areas (MSAs), each of these data sets se-
lectively covers locations that became population concentrations.
Asaresult, theylargelyexcluderuralareas, wheremostoftheU.S.
population livedhistorically, andhence they are not well suitedto
analyze the process of urbanization and its implications for both
rural and urban areas. Although counties cover all of the popula-
tion and land area, they often pool together urban centers with
their surrounding countryside, clouding the distinction between
urban and rural areas.15

To address these limitations, we construct a new data set
for the United States based on subcounty divisions. We follow
common usage in referring tothese sub-county divisions as Minor
Civil Divisions (MCDs), but in certain parts of the United States
they are now known as Census County Divisions (CCDs).16 For
1880, data on employment by industry and population for each
MCD can be obtained by aggregating the individual-level records
of the1880 U.S. populationcensus. For2000, data onemployment
by industry and population are available for each MCD from
the American Factfinder of the U.S. Census Bureau. For the
intermediate year of 1940, data on population alone are available
for each MCD from the published volumes of the U.S. population
census.17

To construct consistent geographic units over time, we use
Geographical Information Systems (GIS) software together with
historical maps. We match the approximate centroid of each 1880
and 1940 MCD to the 2000 MCD in which it falls, aggregating
any 2000 MCD that does not contain at least one 1880 MCD
and one 1940 MCD to the nearest MCD within the same state
that does.18 The extent of aggregation required toconstruct time-
consistent units varies across U.S. states and therefore we group
the U.S. states into samples: little aggregation is required in A

15. As shown in Figure A.1 in the Online Appendix, using data on MCDs
rather than counties enhances the density of observations for which we observe
substantial variation in the share of agriculture in employment.

16. For expositional convenience, we refer toall subcounty divisions as MCDs.
Therefore, our use of the term MCD includes CCDs, unorganized territories and
all other historical terms used to refer to county sub-divisions, such as but not
limited to boroughs and precincts.

17. For further discussion of the U.S. data sources and definitions, see the
Online Appendix.

18. As in most cases the resulting geographic units consist of a single MCD,
we refer to them for simplicity as MCDs, even though they sometimes consist of
aggregations of MCDs.
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states, more is needed in B states, and more still in C states. For
some states, particularly those in the West and South, historical
data on subcounty divisions are unavailable, which precludes the
construction of consistent geographic units over time below the
countylevel. Thegeographicdistributionofstates across thethree
samples is shown in Map I. We choose as our baseline sample
the A and B states, where 1–1 matches between the 1880 and
2000 census that involve no aggregation exceed 70%. But we also
examine the robustness of our results tothe use of the alternative
samples of A states, where very little aggregation is required, and
A, B, and C states, which cover a wider geographical area.19

The key advantages of our MCD data set are that it covers
bothhighandlowpopulationdensities andis sufficientlyspatially
disaggregated to permit a sharp distinction between urban and
rural areas. The average MCD in our baseline sample for the
A and B states has an area of around 115 km2 and a popula-
tion of approximately 8,800 in 2000. As a point of comparison,
the average county in the same sample has an area of around
1,500 km2 and a population of approximately 115,000 in 2000.

←−

MAP I

MCD Data by State

This map shows the states used for our various samples. Our baseline MCD
sample consists of A and B states. The classification A, B, and C is based on the
frequency with which MCDs in 1880 and 2000 can be matched 1-1 with no aggre-
gation. In states classified as A (Connecticut, DC, Indiana, Iowa, Massachusetts,
New Hampshire, New York, Rhode Island, Vermont), the 1-1 match rate between
1880 and 2000 MCDs is larger than 0.9. In states classified as B (Illinois, Maine,
Maryland, Michigan, Missouri, North Carolina, Ohio), the 1-1 match rate is larger
than 0.7. In states classified as C (Arkansas, California, Delaware, Georgia,
Kansas, Minnesota, Nebraska, New Jersey, Pennsylvania, South Carolina, Utah,
Virginia, West Virginia, Wisconsin), 1880 MCD data are available but the 1-1
match rate is lower than 0.7. For states in the counties sample (Alabama, Arizona,
Colorado, Florida, Idaho, Kentucky, Louisiana, Mississippi, Montana, Nevada,
New Mexico, Oregon, Tennessee, Texas, Washington, Wyoming), 1880 MCD data
are not available. Our county subperiods data for 20-year intervals from 1880–
2000 are available for the A, B, C, and counties only states except for Wyoming.
We exclude Alaska, Hawaii, Oklahoma, North Dakota, and South Dakota, which
had not attained statehood in 1880 and therefore are either not included in the
1880 census or did not have stable county boundaries at that time.

19. For further discussion of these samples and the construction of the U.S.
MCD data, see the Online Appendix.
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Two limitations of our MCD data set are its incomplete
geographical coverage, with the sample of A and B states
concentrated in the Midwest and Northeast of the United States,
and the lack of data on industry employment for intervening
years between 1880 and 2000. To address these limitations, we
use complementary data on U.S. counties. Although counties
are more spatially aggregated than MCDs, they again cover the
full range of population densities. Furthermore, county data
on population and industry employment can be constructed for
almost all of the continental United States for 20-year periods
from 1880 to 2000.20 Using these county data, we can therefore
examine variation in the timing of structural transformation
across subperiods and regions.21

Finally, while we concentrate on results using our U.S. data,
we also briefly discuss the results of a robustness test using
Brazilian data from 1970 to 2000. A more detailed discussion
of the Brazilian data and results is contained in the Online
Appendix.

V. BASELINE EMPIRICAL RESULTS

In this section, we introduce our empirical specification,
outline six stylized facts about population and employment that
are closely related to the predictions of the model, and present
our baseline evidence that structural transformation away from
agriculture plays a central role in explaining these stylized facts
and the relationship between them.

V.A. Empirical Specification

To analyze the evolution of population and employment over
time, we adopt a nonparametric approach that imposes minimal
structure on the data. To characterize the population density
distribution, we divide the range of values for log population

20. We exclude Alaska, Hawaii, Oklahoma, North and South Dakota from our
1880 and 2000 data, because they had not attained statehood in 1880 and did not
have stable county boundaries at that time. From our county subperiods data for
20-year time periods, we also exclude Wyoming because of missing information in
the GIS shapefiles used to create these data. For further discussion of the U.S.
counties data, see the Online Appendix.

21. One remaining concern is that MCDs and counties may not coincide with
the economic boundaries between local markets. To address this concern, we
undertake a number of robustness tests using modern and historical measures
of metropolitan areas, as discussed further below.
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density, x, into discrete bins of equal size δ. We index MCDs by
m and bins by b ∈ {1, ..., B}. Denoting the set of MCDs with log
population density in bin b by Φb and denoting the number of
MCDs within this set by nb, we estimate the population density
distribution, g (xm), as follows:

(7) ĝ (xm) =
nb

n
, n =

B∑

b=1

nb, for xm ∈ Φb,

where a hat above a variable denotes an estimate. Thus the es-
timated probability of observing a population density within the
range of values includedin bin b equals the fraction of MCDs with
population densities in this range. This corresponds to a simple
histogram, which yields a consistent estimate of the true underly-
ing probability density function (Scott 1979). We choose bin sizes
ofδ = 0.1 logpoints, whichprovideafinediscretizationoftherange
of logpopulationdensities, whilegenerallypreservinga relatively
large number of MCDs within each bin. Although this approach
provides a simple and flexible characterization of the population
density distribution, which connects closely with the other com-
ponents of our analysis, we also find similar results using related
nonparametricapproaches such as kernel density estimation.

To characterize the relationship between population growth
andthe initial population density distribution, we followa similar
approach. We approximate the continuous function relating pop-
ulation growth to initial population density using a discrete-step
function consisting of mean population growth within each initial
population density bin:

(8) ŷmt =f (xmt−T)=
B∑

b=1

Ibt−Tφbt−T, φbt−T =
1

nbt−T

∑

xmt−T∈Φbt−T

ymt,

where t indexes time. In this specification, bins are defined over
initial population density, xmt−T; ymt is MCD population growth
from t− T to t; Ibt−T is an indicator variable equal to 1 if xmt−T ∈
Φbt−T and 0 otherwise.

This specification corresponds to a regression of population
growth on a full set of fixed effects for initial population density
bins. We report both mean population growth and the 95% confi-
dence intervals around mean population growth for each initial
population density bin. The confidence intervals are based on
heteroscedasticity-robust standard errors adjusted for clustering
by county, which allows the errors to be correlated across MCDs
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withincounties without imposingpriorstructureonthepatternof
this correlation.22 While this nonparametric specification allows
for a flexible relationship between population growth and initial
population density, we again find similar results using other
relatednonparametricapproaches, suchas locallyweightedlinear
least squares regression and kernel regression.

V.B. Stylized Facts

We organize our baseline empirical analysis around six styl-
ized facts about the evolution of population and employment.
These six stylized facts are reported for our baseline sample of A
andB states in column (1) of Table I andPanels A–F of Figure I.23

(1) Increased Dispersion of Population Density. Our first
stylized fact is that the distribution of log population density
across MCDs has become more dispersed from 1880 to 2000. As
shown in Panel A of column (1) in Table I, there is an increase in
the standard deviation of log population density over this period
from 0.97 to 1.56, which is statistically significant and larger
than the increase in mean log population density from 2.61 to
3.08. Panel A of Figure I confirms this increased dispersion in
population densities by displaying the results from specification
(7). Although the U.S. population increased substantially from
1880 to 2000, as reflected in Panel A of Figure I in an increased
mass of densely populated areas, the figure also shows an
increased mass of sparsely populated areas. The population
density distribution therefore exhibits polarization, with some
low-density areas depopulating while other higher-density areas
experience rapid population growth.

(2) Correlation Between Population Growth and Initial Pop-
ulation Density at Low-Medium Densities. The second stylized
fact is that Gibrat’s Law of constant proportional growth is
strongly rejected for population growth when both rural and
urban areas are considered. In Panel B of Figure I, we display

22. Bertrand, Duflo, and Mullainathan (2004) examine several approaches to
controlling for serial correlation and show that clustering the standard errors
performs very well in settings with more than 50 clusters as in our application.
In the Online Appendix, we report the results of a robustness check, in which we
estimate standard errors using the alternative approach to allowing for spatial
correlation of Bester, Conley, and Hansen (2011).

23. See Section V.B of the Online Appendix for further details on the construc-
tion of Panels A–F of Figure I.
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FIGURE I

Stylized Facts

This figure shows the six stylized facts for our baseline sample of MCDs
from the A and B states. The x-axes are population density bins (or in Panel
D, employment density bins), defined by rounding down log initial population
density for each MCD to the nearest single digit after the decimal point. For
example, all MCDs with log population density greater than or equal to 0.1
and less than 0.2 are grouped together in bin 0.1. The y-axes show means
for each population density bin. In Panels B, C, E, and F, dashed lines show
95% confidence intervals, computed using robust standard errors clustered by
county. Since population density bins at the extreme ends of the distribu-
tion typically contain few observations, the figures in these panels (but not
the estimations) omit the 1% most and least dense MCDs in 1880. See the
text and the Online Appendix for further discussion of the construction of the
figures.
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FIGURE I

(continued)

the results from specification (8), where the dark solid line shows
mean population growth within each initial population density
bin and the lighter dashed lines correspond tothe 95% confidence
intervals.24

For log population densities below2 (7 people per km2), there
is a negative correlation between population density in 1880 and
subsequent populationgrowth. Incontrast, forlogpopulationden-
sities of between 2 and 4 (7–55 people per km2), population den-
sity in 1880 is positively correlated with subsequent population
growth.25 Above log population densities of around 4 (e.g., from
4–6 log points or 55–403 people per km2), population density in
1880 is largely uncorrelated with subsequent population growth.

We view the increasing relationship between population
growth andinitial population density at intermediate densities as
our main empirical finding. More than half of the 1880 population
in our sample lived at population densities between 2 and 4 log
points, and the increase in population growth over this range

24. We do not display mean population growth for the top and bottom 1% of
observations in terms of population density, although they are included in the
estimation. Thebins at theseextremes of thedistributioncontainfewobservations
and have correspondingly large standard errors. Hence they tend to cloud rather
than illuminate the true picture.

25. While classical measurement error in 1880 population could induce a
negative correlation between population growth and 1880 population density, it
cannot account for the positive correlation between these variables observedabove
a log population density of around 2, and our use of individual-level records from
census data mitigates measurement error concerns.
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drives theincreaseinthedispersionof thepopulationdistribution
in Stylized Fact 1. Furthermore, the magnitude of this departure
from Gibrat’s Law is substantial: MCDs with log density of about
4 in 1880 experienced population growth at an annualized rate of
about 1% from 1880 to 2000, whereas those with a log population
density around 2 barely grew on average. As shown in Panel B of
column (1) in Table I, this difference in population growth rates is
statistically significant.26

To place these ranges of population densities in context for
our baseline sample from the A and B states, 41 MSAs as defined
in 2000 and 129 counties had a 1880 population density of less
than 2 log points. Examples include St. Cloud MSA, Minnesota
(1.70), and Oxford County, Maine (1.80). In comparison, 170
MSAs and 647 counties had a 1880 population density from
2–4 log points, including Ann Arbor MSA, Michigan (3.13), and
Fulton County, New York (3.18). By contrast, 15 MSAs and 33
counties had a 1880 population density of above 4 log points, in-
cluding Philadelphia-Camden-Wilmington MSA, Pennsylvania–
New Jersey–Delaware-Maryland (4.79), and Hartford County,
Connecticut (4.19).

The range of population densities above 4 log points where
population growth is roughly uncorrelated with initial population
density includes the high densities observed in urban areas.
Therefore, while our results are based on data on MCDs rather
than metropolitan areas, cities, or incorporated places, our find-
ings for densely populated locations are broadly consistent with
theexistingempirical literature’s findingthat Gibrat’s Lawofcon-
stant proportional growthis areasonableapproximationforcities.

Though we concentrate on the relationship between popula-
tion growth and initial log population density to control for varia-
tioninlandareaacross MCDs, wenotethat wefindsimilarresults
using initial log population size instead of density. As shown in
Figure A.2 in the Online Appendix, we observe the same pattern
of an initially decreasing, later increasing, and finally roughly
constant relationship between population growth and initial log
population size. This pattern of results is consistent with the

26. We find a similar pattern of departures from constant growth if we use the
10th, 50th, or 90th percentile of population growth rather than mean population
growth for each initial population density bin. In contrast, the variance of popu-
lation growth is relatively constant across the range of initial population density
bins from 0 to 5 log points, with a small increase at the lowest initial population
densities, and a small decrease at the highest initial population densities.
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approximately log linear relationship between population density
and population size in our data.

(3) Agricultural Employment Share. Our third stylized fact
is that the share of agriculture in 1880 employment declines
sharply in the range where population density in 1880 and
subsequent population growth are positively correlated. Panel C
of Figure I presents the results from specification (8) using the
share of agriculture in employment in 1880 as the left-hand
variable rather than population growth. As shown in the figure,
the agricultural employment share in 1880 declines from about
0.8 for MCDs with log density of 2 to about 0.2 for MCDs with
log density of 4. Panel C of column (1) in Table I shows that this
difference in specialization patterns is statistically significant.
Although the agricultural employment share continues to decline
for MCDs with a log density of greater than 4, it declines at a
much slower rate.27

(4) Dispersion of Agricultural and Nonagricultural Employ-
ment. Our fourth stylized fact is that the employment density
distribution is more dispersed in nonagriculture than in agricul-
ture in both 1880 and 2000. As reported in Panel D of column
(1) in Table I, the standard deviation of employment density is
statistically significantly higher in nonagriculture in both years.
We find a similar pattern of results using specification (7), as
shown in Panel D of Figure I. This difference in employment
density distributions reflects the greater spatial concentration
of employment in nonagriculture, with more observations with
extreme low and high values of employment density.28

From Panel D of Figure I, the employment density distri-
butions for agriculture and nonagriculture shift to the left and
right, respectively, over time. As a result, mean employment
density decreases in agriculture andincreases in non-agriculture,
which results in less overlap between the two distributions in
2000 than in 1880. Furthermore, comparing Panels A and D in

27. Theratioofemployment tototal populationwas about 0.35 in1880 and0.47
in 2000. In both years, it was relatively stable across the population density dis-
tribution, suggesting that labor force participation is not strongly related to pop-
ulation density and hence that employment and population dynamics are similar.

28. We also find that employment per square kilometer is more unequally
distributed in nonagriculture than in agriculture in both 1880 and 2000 using
standard measures of inequality such as the Gini coefficient, the Theil index, the
difference between the 90th and 10th percentiles, and the difference between the
99th and 1st percentiles.
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Figure I, population in 1880 was distributed in a similar way to
agricultural employment in1880, whereas populationin2000 was
more spatially concentrated and distributed in a similar way to
nonagricultural employment in2000. This reflects thesubstantial
decline in agriculture’s share of employment during our sample
period: the average share of agriculture in MCD employment fell
from 63% in 1880 to about 6% in 2000 in our baseline sample of
“A and B” states.29

(5) Mean Reversion in Agriculture. Our fifth stylized fact is
mean reversion in agricultural employment growth. In Panel E
of Figure I, we estimate specification (8) for agricultural employ-
ment growth for a subsample of MCDs for which agriculture is
more than 80% of 1880 employment.30 As shown in the figure,
sparsely populated MCDs in this subsample exhibited more rapid
agricultural employment growth from 1880 to 2000 than densely
populated MCDs. This mean reversion is confirmed using an
OLS regression of agricultural employment growth on log 1880
populationdensity. As reportedinPanel E ofcolumn(1) inTable I,
we findan estimatedcoefficient of−0.006 (p-value< .001), sothat
each additional log point of 1880 population density is associated
on average with just over half a percentage point lower rate of
agricultural employment growth.

(6) Substantially Less Mean Reversion in Nonagriculture.
Our sixth stylized fact is substantially less mean reversion in
nonagricultural employment. In Panel F of Figure I, we estimate
specification (8) for nonagricultural employment growth for a
subsample of MCDs for which agriculture accounted for less than
20% of 1880 employment. As shown in the figure, nonagricultural
employment growth in this subsample is largely uncorrelated
with 1880 population density. This pattern of results is con-
firmed using an OLS regression of nonagricultural employment
growth on log 1880 population density. As reported in Panel F of

29. TheMCD populationdistributionis skewed, witha longlowertail of MCDs
with low population but high shares of agriculture in employment. The share of
agriculture in aggregate employment for our baseline sample of MCDs in the A
and B states fell from 42% in 1880 to less than 2% in 2000.

30. Although the agricultural employment share for this subsample was over
88% in 1880, it fell to below 10% in 2000. Hence this subsample does not entirely
capture agricultural dynamics alone. Nevertheless, since this subsample was
initiallymostlyagricultural, it is likelytocapturethemainfeatures of agricultural
growth. In our counties data, we find mean reversion in agricultural employment
from 1880 to 1900 for counties with more than 80% of their employment in
agriculture in both 1880 and 1900.
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column (1) in Table I, we find an estimated coefficient of −0.0002
(p-value = .515), which while negative is statistically insignificant
and more than an order of magnitude smaller than for agricul-
tural employment. As shown in the table, the null hypothesis that
mean reversion in nonagriculture is the same as in agriculture is
easily rejected at conventional levels of statistical significance.

In the next section, we present our baseline evidence on
the role of structural transformation away from agriculture in
explaining these six stylized facts, before returning in Section
VI.A to demonstrate the robustness of the stylized facts across
a wide range of samples and specifications.

V.C. Baseline Evidence on Structural Transformation

Our first approach to examining the explanatory power
of structural transformation away from agriculture builds on
standard accounting or decomposition methods. Total employ-
ment growth in each MCD can be decomposed into employment
growth in agriculture and nonagriculture weighted by the initial
shares of each sector in employment. In our Employment Shares
specification, we therefore predict MCD population growth using
aggregate employment growth in agriculture and nonagriculture
for the United States as a whole and each MCD’s own initial
employment in each sector.

We first scale up observed 1880 employment in MCD m in
sector j (Ejm1880) by the aggregate employment growth rate for
the sector from 1880 to 2000 (1 + gEj) to obtain predicted MCD
2000 employment in each sector (Êjm2000). Summing the predicted
values for agriculture and nonagriculture gives predicted total
MCD 2000 employment (Êm2000). We next scale up predicted
total MCD 2000 employment by the observed aggregate ratio of
population to employment for the United States as a whole in
2000 (k2000) to obtain predicted MCD 2000 population (L̂m2000).
From predicted MCD 2000 population and observed MCD 1880
population (Lm1880), we obtain predicted population growth from
1880 to 2000 (ĝLm):

Êjm2000 = Ejm1880 (1 + gEj) ,

Êm2000 = ÊAm2000 + ÊNm2000,(9)

L̂m2000 = k2000Êm2000,

ĝLm = ln

(
L̂m2000

Lm1880

)

.
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where a hat above a variable denotes a prediction. Note that this
measure of predicted population growth only varies across MCDs
because of differences in the 1880 shares of agriculture and non-
agriculture in MCD employment.

In Panel A of Figure II, we display the mean of actual
and predicted population growth for each 1880 log population
density bin. The predicted population growth rate (labeled Emp
prediction) captures the relationship between population growth
andinitial populationdensity inStylizedFact 2. Regressingmean
actual population growth on mean predicted population growth
across the initial log population density bins shown in Panel A of

FIGURE II

Employment Share and Regression Predictions

This figure displays actual population growth, population densities, and
employment densities as well as the predictions for each of these variables from
the Employment Shares prediction. The figures are based on our baseline sample
of MCDs from the A and B states. The x-axes are population density bins, defined
byroundingdownloginitial populationdensity foreachMCD tothenearest single
digit after the decimal point. For example, all MCDs with log population density
greater than or equal to 0.1 and less than 0.2 are grouped together in bin 0.1.
The y-axes show means for each population density bin. Since population density
bins at the extreme ends of the distribution typically contain few observations,
the figure in Panel A (but not the estimation) omits the 1% most and least dense
MCDs in 1880. See the text and the Online Appendix for further discussion of the
construction of the figures.
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FIGURE II

(continued)

Figure II, we find a highly statistically significant coefficient of
0.438 (standard error 0.053) and a regression R2 of 0.41.

Although the Employment Shares prediction captures
the increasing relationship between population growth and
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initial population densities at intermediate densities and the
roughly constant relationship at high densities, the decreasing
relationship at low densities is less apparent than for actual
population growth. One potential reason is that the Employment
Shares prediction assumes a constant growth rate of employment
in each sector equal tothe value for the United States as a whole,
and hence does not allow for mean reversion in agricultural
employment growth (Stylized Fact 5). To allow the relationship
between employment growth and initial population density to
vary with the initial share of agriculture in employment, we
consider a second Regression specification, which is based on
regressing actual employment growth on log population density
in 1880, the share of agriculture in employment in 1880, and the
interaction between these two variables:

Δ lnEmt = b0 + b1
EAmt−T

Emt−T
+ b2 ln

Lmt−T

Hm

(10)

+ b3

(
EAmt−T

Emt−T
× ln

Lmt−T

Hm

)

+ umt,

where Lmt
Hm

denotes population density; {b0, b1, b2, b3} are
parameters that we estimate; the main effect of initial population
density (b2) allows for the possibility of mean reversion in
nonagriculture; the coefficient on the interaction term (b3) allows
the degree of mean reversion tovary with the share of agriculture
in employment; umt is a stochastic error.

From the regression’s fitted values, we obtain a predic-
tion for the total employment growth rate for each MCD from
1880 to 2000. Our Regression specification scales up observed
MCD 1880 total employment (Em1880) by this predicted total
employment growth rate (1 + ĝEm) to obtain predicted MCD
2000 total employment (Êm2000 = (1 + ĝEm)Em1880). Using pre-
dicted MCD 2000 total employment, we generate predictions for
MCD 2000 population and MCD population growth from 1880 to
2000 following the same method as for the Employment Shares
specification (9)

Table II reports the results of estimating the regression (10).
In column (1), we find a negative and statistically significant
relationship between population growth and the initial share
of agriculture in employment, which is robust to controlling for
initial log population density in column (2). When we include the
interactiontermincolumn(3), wefinda negativeandstatistically
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TABLE II

REGRESSION PREDICTION FOR MCDS

Employment growth 1880–2000 (1) (2) (3)

Agricultural employment share
in 1880

−0.0096∗∗∗ −0.011∗∗∗ −0.0083∗∗∗

(0.0007) (0.00092) (0.0015)
Log population density in 1880 0.00067∗∗∗ −0.00022

(0.00022) (0.00025)
Interaction term −0.00099∗∗

(0.0005)
Observations 10,856 10,856 10,856
R-squared 0.06 0.06 0.06

Notes. This table reports the regressions used to generate the Regression prediction for our U.S. MCD
data. Observations area cross-sectionof MCDs from1880–2000 forourbaselinesampleof A andB states. The
agricultural employment shareis employment inagricultureas afractionoftotal employment. Theinteraction
term is the product of the other twovariables. Robust standard errors in parentheses are clustered by county.
See the text and the Online Appendix for further discussion of the construction of the data.
∗ Significant at the 10 percent level. ∗∗ Significant at the 5 percent level. ∗∗∗ Significant at the 1 percent
level.

significant coefficient on this variable, which is consistent with
greatermeanreversioninemployment growthinagriculturethan
in nonagriculture. We use the fitted values from column (3) in our
Regression prediction.

In Panel A of Figure II, we display mean predicted popula-
tion growth (labeled Reg prediction) across initial log population
density bins. We again capture the initially decreasing, later
increasing, and finally roughly constant relationship between
population growth and initial population density. Regressing
mean actual population growth on mean predicted population
growth across the initial log population density bins shown in
Panel A of Figure II, we find a positive and statistically signifi-
cant coefficient of 1.162 (standard error 0.118) and a regression
R2 of 0.65.

In Panels B andC of Figure II, we showthat the Employment
Shares prediction can account not only for population growth
(Stylized Fact 2) but also for changes in the population density
distribution (Stylized Fact 1) and the employment density dis-
tributions for each sector (Stylized Fact 4). We find a similar
pattern of results using the Regression prediction, as shown in
Figures A.3 and A.4 in the Online Appendix. In both cases, there
is a close correspondence between the actual and predicted dis-
tributions for population density and employment density in each
sector.
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VI. FURTHER EVIDENCE

Having shown that structural transformation away from
agriculture provides a parsimonious explanation for the stylized
facts, we nowprovide further evidence in support of this explana-
tion and against potential alternative explanations.

VI.A. Robustness

Inthis section, wefirst examinetherobustness oftheEmploy-
ment Shares and Regression predictions in the previous section.
Wenext demonstratetherobustness of thestylizedfacts inTable I
across a number of different samples and specifications.

A first concern about the Employment Shares andRegression
predictions is the role of structural transformation within
nonagriculture from manufacturing to services. In Figure A.5
in the Online Appendix, we use our county subperiods data to
show the shares of agriculture, manufacturing, and services
in aggregate U.S. employment over time. In Figure A.6 in
the Online Appendix, we use the same data to examine the
population densities at which these sectors are concentrated. For
each sector, we calculate its employment-weighted average of
county log population densities. Consistent with other studies
such as Desmet andRossi-Hansberg (2009), we findthat in recent
decades manufacturing has dispersed to lower densities, while
services has continued to concentrate at higher densities. Over
a longer time horizon from 1880 until around 1980, we find that
employment in both manufacturing and services shifted toward
higher densities, with services displaying the larger change.

To show that our predictions for MCD population growth
in the previous section capture reallocation from agriculture to
nonagriculture as a whole, rather than reallocation within nona-
griculture, we replicate the Employment Shares and Regression
predictions treating manufacturing and services as separate sec-
tors. As shown in Figures A.7 and A.8 in the Online Appendix,
we find that disaggregating nonagriculture contributes relatively
littletotheabilityofstructural transformationtoexplainpatterns
of population growth from 1880–2000. This finding reflects the
following two features of the data, as discussed further in the
Online Appendix. First, the difference in aggregate employment
growth rates from 1880 to2000 between agriculture and nonagri-
culture (–0.016 versus 0.017) is much larger than that between
manufacturing and services (0.013 versus 0.018). Second, the



URBANIZATION AND STRUCTURAL TRANSFORMATION 569

variation in the shares of agriculture and nonagriculture in
1880 total employment across 1880 population density bins (from
around0.8 to0.1) is much larger than the variation in the share of
manufacturing and services in 1880 nonagricultural employment
(from around 0.2 to 0.4). We present further evidence on the
robustness of our findings to structural transformation within
nonagriculture when we consider subperiods (Section VI.B) and
when we augment our population growth regressions with addi-
tional controls (Section VI.C.).31

A second concern about the Employment Shares and Regres-
sion predictions is the extent to which population growth in each
MCD is affected by the characteristics of neighboring MCDs. To
address this concern, we augment the Regression prediction (10)
with the initial agricultural employment share and initial popu-
lation density for the county of which the MCD is part as well as
their interaction. Although the county variables are statistically
significant, their inclusion again adds little to the ability of struc-
tural transformation to explain patterns of population growth, as
shown in Figure A.10 in the Online Appendix. In the remainder
of our empirical analysis, we control for spatial autocorrelation
by clustering the standard errors on county and including county
fixed effects in some of our empirical specifications.

We now turn to the robustness of the stylized facts in
Table I. A first potential concern is their sensitivity to imper-
fections in the matching of MCDs across censuses. For example,
in cases where MCDs are aggregated to construct geographic
units that are consistent over time, some of the population and
employment of MCDs with intermediate densities could be as-
signed to MCDs with either higher or lower densities, which
could in turn influence relative population growth at differ-
ent densities. To address this concern, the second column of
Table I shows that all our stylized facts remain intact when we
restrict the sample to MCDs in the “A states,” where match rates
with no aggregation are over 90% for every state. As further con-
firmation of the robustness of our results, Panel A of Figure A.11

31. When we use our county subperiods data andfocus on the subperiod1960–
2000, we findthat disaggregating nonagriculture intomanufacturing andservices
has more of an impact on predicted population growth across initial population
densities, as shown in Figure A.9 and discussed further in the Online Appendix.
But even for this more recent subperiod the differences between manufacturing
and services are smaller than those between agriculture and nonagriculture as a
whole.
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in the Online Appendix shows that the pattern of an initially
decreasing, laterincreasing, andfinallyroughlyconstant relation-
ship between population growth and initial population density
(Stylized Fact 2) is still strongly apparent in this sample.32

Two other concerns are the extent to which the stylized
facts are affected by the incomplete geographical coverage of
our baseline sample (A and B states) and the particular level
of spatial aggregation used in the analysis (MCDs rather than
counties). To address both points, the third column of Table I
reports results using our county data set, which covers almost
all of the continental United States, as discussed in Section IV.
In the fourth column, we compare results using MCD and county
data fora commongeographical samplebyrestrictingthecounties
sample to the A and B states. In the fifth column, we provide
additional evidence that our findings are not driven by incomplete
geographical coverage by reporting results for a hybrid sample,
which includes MCDs for all states for which we have subcounty
data (A, B, and C states) and counties otherwise.

Across columns (3)–(5), we find a similar pattern of results
with two caveats. In column (3), the standard deviation of log
population in 1880 is higher than in 2000, although the difference
is not statistically significant at conventional critical values. In
columns (3) and (5), there is some evidence of mean reversion
in both agriculture and nonagriculture, although in both cases
there is substantially less mean reversion in nonagriculture than
in agriculture. These findings are perhaps not surprising because
the samples in columns (3) and (5) include western states that
were not yet fully settled in 1880. Early settlement dynamics
in these states, around the time of the “closing of the frontier”
(identified in the 1890 census), could be different from those
elsewhere. As the western states include areas that were largely
uninhabited in 1880, they have correspondingly high standard
deviations of log population in 1880.33 The subsequent settlement
of these largely uninhabited areas provides a natural explanation
forsomemeanreversioninnonagriculture. Despitethesecaveats,

32. See the Online Appendix for further discussion of the samples and specifi-
cations in Table I and Figure A.11.

33. Consistent with this, we find that the higher standard deviation of log
population in 1880 than in 2000 is driven by a tail of very sparsely populated
counties in 1880. The interquartile range of the population distribution is greater
in 2000 than in 1880, so that Stylized Fact 3 is confirmed using measures of
dispersion that are less sensitive to the tails of the distribution.
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Panels B–D of Figure A.11 show that the pattern of departures
from constant population growth (Stylized Fact 2) is strongly
apparent in all three samples.

While columns (3)–(5) address the concern of imperfect geo-
graphical coverage, a related but separate issue is the sensitivity
of our results to the westwards expansion of the frontier of U.S.
settlement. In particular, the higher average growth in low-
densitylocations couldbedrivenbythedramaticgrowthofasmall
number of places in the West that were largely unpopulated in
1880 and grew rapidly in the succeeding decades. To address this
concern, we restrict the MCD sample to the subset of the A and B
states that were part of British colonial claims in 1775.34 In this
subsample, which includes only states along the eastern seaboard
of the United States, we find a very similar pattern of results, as
shown in column (6) of Table I and Panel E of Figure A.11.

Although MCDs provide a fine level of spatial disaggrega-
tion, there remains the concern that they may not correspond
to economic units if their boundaries do not coincide with local
labor and product markets, especially around cities. To address
this concern, we aggregate MCDs within the boundaries of each
2000 MSA. As shown in column (7) of Table I and Panel F of
Figure A.11, we observe the same pattern of stylized facts in
this sample. One potential concern about this specification is the
endogeneity of 2000 MSA boundaries topopulation growth during
our sample period. To address this concern, we also construct
historical metropolitan areas based on classifying cities as MCDs
wherelogpopulationpersquarekilometerin1880 was largerthan
6. To each of these cities, we add the land area, population, and
employment of any MCD whose geographic centroid lies within
25 km of that city.35 As shown in column (2) of Table A.1 and
Panel A of Figure A.12 in the Online Appendix, we again find the
same pattern of results.

A relatedbut somewhat different concern is the role of subur-
banization or a more general shift of population to lower-density

34. The states included in this sample are Connecticut, Delaware, Georgia,
Maine, Maryland, Massachusetts, NewHampshire, NewJersey, NewYork, North
Carolina, Pennsylvania, Rhode Island, South Carolina, Vermont, Virginia, and
West Virginia.

35. When two or more cities and their surrounding areas overlap, we merge
them together. We experimented with other historical definitions of metropolitan
areas, including defining “cities” as MCDs with 50,000 or 100,000 or more inhab-
itants in 1880 and using a distance threshold of 50 km. Using these alternative
definitions yields a similar pattern of results.
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areas. As a first steptowardaddressingthis concern, column(8) of
TableI andPanel B of FigureA.12 report results inwhichwedrop
from our sample all MCDs within the boundaries of a 2000 MSA.
In column (3) of Table A.1 and Panel C of Figure A.12, we report
analogous results in which we drop from our sample all MCDs
within the boundaries of a historical metropolitan area as defined
above. For both these nonmetropolitan samples, the stylized facts
are confirmed.

As a further robustness check, we exclude MCDs proximate
to urban areas by restricting the sample to MCDs with centroids
more than 100 km from the centroid of a metropolitan area, as
defined using either 2000 MSAs or the historical metropolitan
areas discussed above. As shown in columns (4) and (5) of Table
A.1 and Panels D and E of Figure A.12, we find a similar pattern
of results in both subsamples. Although these findings already
provide strong evidence against an explanation based on subur-
banization, we present further evidence below when we consider
subperiods (Section VI.B) and when we augment our population
growth regressions with additional controls (Section VI.C).

Another potential concern is that converting land from agri-
cultural to non-agricultural use could be easier than converting
land from nonagricultural to agricultural use, which could be
responsible for differences in the degree of mean reversion in
employment growth across sectors. Because our sample period
is characterized by a large-scale reallocation of employment and
land from agricultural to nonagricultural use, difficulties in the
conversion of land in the reverse direction are unlikely to be the
dominant influence on employment and population growth. But
they could contribute towards differences in the degree of mean
reversion across sectors. To address this concern, column (6) of
Table A.1 and Panel F of Figure A.12 report results excluding
the 278 MCDs in our baseline sample that experienced a decline
in nonagricultural employment between 1880 and 2000. Again
the stylized facts are confirmed with greater mean reversion in
agriculture than in nonagriculture.

Finally, although the results in this section confirm that our
stylized facts are robust features of the evolution of population
and employment in the United States from 1880 to2000, we have
also replicated our entire analysis for Brazil from 1970 to 2000.
Although there are many differences between the two countries
andtimeperiods, botharecharacterizedbysubstantial structural
transformationawayfromagriculture, andhencewewouldexpect
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the stylized facts to apply. As discussed in the Online Appendix,
we find a strikingly similar pattern of results for Brazil, which
reassures us that our findings are not driven by idiosyncratic
features of the data or institutional environment for the United
States and confirms the relevance of our results for a developing
country in recent decades.

VI.B. Timing of Structural Transformation

According to our explanation for the stylized facts, the in-
crease in population growth over the range of intermediate initial
population densities is driven by an aggregate reallocation away
from agriculture combined with a sharp decline in agriculture’s
share of employment over this range of intermediate densities.
A key implication of this explanation is that the increase in
populationgrowthovertherangeof intermediatedensities should
be stronger in subperiods and regions characterized by greater
structural transformation away from agriculture.

Toexamine this implication, we require data on both popula-
tion growth and sectoral employment for years in between 1880
and 2000, which are available for counties but not MCDs. Since
structural transformationawayfromagriculturewas largelycom-
plete in the United States by 1960, we begin by splitting our
sample into the three subperiods of 1880–1920, 1920–1960 and,
1960–2000.36 For each of these subperiods, we compute actual
and predicted population growth using the same approach as in
Section V.C. While we focus on the Employment Shares predic-
tions, which use aggregate sectoral employment growth for each
subperiod and initial shares of agriculture in MCD employment
at the beginning of each subperiod, we find similar results with
the Regression predictions.

As shown in Panels A–C of Figure III, the increase in popu-
lation growth over the range of intermediate densities is strongly
apparent from 1880–1920 and1920–1960 for both actual andpre-
dicted population growth, which is consistent with the sharp de-
cline in agriculture’s share of aggregate employment during these
periods.37 Incontrast, actual andpredictedpopulationgrowthare

36. As shown in Figure A.5 in the Online Appendix, the share of agriculture
in aggregate U.S. employment declines rapidly until around 1960, after which it
converges to less than 2%.

37. While Panels A–C of Figure III focus on initial population densities be-
tween 0 and 6 log points to highlight the contrasts between the earlier and later
subperiods, a similar pattern of results is observed across the full range of initial
population densities.
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FIGURE III

County Subperiod Results

Panels A, B, and C show actual population growth and predicted population
growth based on the Employment Shares prediction for the full sample of states
from our county subperiods data set. In these panels, the x-axes are population
densitybins, definedbyroundingdownloginitial populationdensityforeachMCD
tothe nearest single digit after the decimal point. The y-axes showmeans for each
population density bin. Since population density bins at the extreme ends of the
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FIGURE III

(continued)

distribution typically contain few observations, the figures in panels A–C (but not
the estimations) focus on the density range 0–6. Panel D shows the difference
in mean population growth for 3–5 minus 1–3 log points of initial population
density. The y-axis and x-axis show this difference for actual population growth
and predicted population growth based on the Employment Shares prediction,
respectively. The figure uses our county subperiods data. See the text and the
Online Appendix for further discussion of the construction of the figures.
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largely uncorrelated with initial population density from 1960 to
2000, which is consistent with agriculture’s small share of aggre-
gate employment during this period and the lack of correlation
between nonagricultural employment growth and initial popula-
tion density. In Figure A.13 of the Online Appendix, we showthat
the rise in population growth at intermediate densities in 1880–
1920 and 1920–1960 coincides with a sharp decline in the share
of agriculture in employment at these intermediate densities.38

The contrast between Panels A–B and Panel C of Figure III
provides further evidence against an alternative explanation
based on reallocation from manufacturing to services. Such real-
location was more important from 1960–2000 than from 1880–
1920 and 1920–1960, yet the increasing relationship between
population growth and initial population density at intermediate
densities is strongerinthetwoearliersubperiods thaninthelater
subperiod.39 These results also provide further evidence against
an alternative explanation based on suburbanization, which was
more important from 1960–2000.40

To tighten the link between the timing of structural trans-
formation and the increase in population growth over the range
of intermediate initial population densities, we now use varia-
tion across each 20-year interval and Census region. For both
MCDs (Panel B of Figure I) and counties (Panels A–B of
Figure III), the increasing relationship between population
growth and initial population density is observed for initial popu-
lation densities in between roughly 2 and 4 log points. Because
there are far fewer counties than MCDs and we now consider
Census regions and subperiods separately, some initial popula-
tion density bins have few counties for some Census regions. For
example, the West and North-East Census regions each have
around 200–250 counties compared tomore than 10,000 MCDs in

38. For later 20-year periods, we find some evidence of a decline in the
population growth of counties with the highest initial population densities, which
is consistent with the results of Holmes and Lee (2010) using census tract data for
1990–2000. However, this feature appears toward the end of our sample period
and is less precisely estimated using county rather than census tract data, which
makes it harder to distinguish from constant population growth.

39. As shown in Figure A.5 in the Online Appendix, the shares of manufactur-
ingandservices inaggregateemployment trackoneanotherrelativelycloselyuntil
around 1960, after which manufacturing’s share declines and services’s continues
to rise.

40. Forempirical evidenceonsuburbanizationfollowingtheconstructionofthe
interstate highway system from the late 1950s onward, see Baum-Snow (2007).
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our baseline sample for the United States as a whole. Therefore,
we examine mean population growth rates over ranges of initial
population density bins centered on 2 and 4 log points. In partic-
ular, we consider the ranges of 1–3 versus 3–5 log points, which
capture the increase in population growth at intermediate initial
population densities in Stylized Fact 2.

In Panel D of Figure III, we display the difference in mean
population growth between these two ranges (3–5 minus 1–3) for
both actual population growth (y-axis) and predicted population
growth based on the Employment Shares prediction (x-axis).
Points are labeled according to Census region codes and the final
year of the interval over which population growth is computed, so
that 1960 corresponds to the subperiod 1940–1960.41

Across subperiods and regions, we observe a strong positive
relationship between the actual increase in population growth
at intermediate densities and the predicted increase based on
structural transformation away from agriculture. Regressing the
actual increase in population growth between the two ranges
(3–5 minus 1–3) on the predicted increase, we find a positive
and statistically significant coefficient (standard error) of 1.230
(0.322), as shown in the regression line in Panel D of Figure III.
Augmenting this regression with region and subperiod fixed
effects, we continue tofind a positive and significant relationship,
with a coefficient (standard error) of 1.480 (0.295).

Looking across 20-year intervals in Panel D, the size of the
actual and predicted increase in population growth at interme-
diate densities is larger for 1940–1960 (labeled 1960) than for
1920–1940 (labeled 1940) or for later subperiods. This pattern
of variation is consistent with the historical literature on the
development of U.S. agriculture, which emphasizes the role of
technological change as a driver for structural transformation, in-
cludingmechanization(U.S. Department ofAgriculture1947)and
biological innovation (Griliches 1957). This historical literature
highlights a deceleration of technological change from 1920 to
1940, which includes the agricultural depression of the 1920s
and the Great Depression of the 1930s, and an acceleration of
technological change from 1940 to 1960, as increased demand for
U.S. agricultural products in the years surrounding World War II
stimulated the adoption of productivity-enhancing technologies
(see for example Rasmussen 1962).

41. The region labels are: MW (Midwest), NE (Northeast), S (South), and W
(West). Washington D.C. is assigned to the South.
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Looking across regions in Panel D, the size of the actual and
predicted increase in population growth at intermediate densities
from 1940 to1960 (labeled 1960) is larger for the Midwest, South,
and West than the Northeast. This pattern accords with the
literature on regional development in the United States, which
emphasizes the later timing of structural transformation in the
South than in the North (Wright 1986; Caselli and Coleman
2001), and the role of technological change in the years surround-
ing World War II in increasing agricultural productivity in the
Midwest and West (Cochrane 1979).

While Panel D is based on the Employment Shares predic-
tion, we find a similar pattern of results using the Regression
prediction, as shown in Figure A.14 in the Online Appendix.42

For both sets of predictions, there are a small number of cases of
zeroorsmall negativeincreases inpopulationgrowthbetweenthe
ranges of 1–3 and 3–5 log points, which reflects mean reversion
that raises population growth rates toward the bottom of the 1–3
range.

As a final piece of evidence on the timing of structural trans-
formation, we use our full panel of data on counties and 20-year
subperiods. Columns (1) and (2) of Table III show that actual and
predicted population growth rates (using both the Employment
Shares and Regression predictions) are strongly correlated even
after controlling for county and subperiod fixed effects. This spec-
ification has a “differences-in-differences” interpretation: in coun-
ties and subperiods where predicted population growth is higher
than implied by the means for the county and subperiod, actual
population growth is also higher than implied by the means for
the county andsubperiod. In columns (3)–(4) of Table III, we show
that these findings are robust to replacing the subperiod fixed ef-
fects with state×subperiodfixedeffects, which allowfor heteroge-
neous growth rates across states. In both specifications, we find a
close connection between actual population growth and predicted
population growth based on structural transformation away from
agriculture.

42. Regressing the actual increase in population growth between the ranges of
1–3 and 3–5 log points of initial population density on the predicted increase from
theRegressionprediction, wefinda positiveandstatisticallysignificant coefficient
(standard error) of 0.619 (0.162). Augmenting this regression with region and
subperiod fixed effects, we continue to find a positive and statistically significant
relationship, with a coefficient (standard error) of 1.167 (0.163).
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TABLE III

EXPLANATORY POWER OF THE EMPLOYMENT SHARE AND REGRESSION
PREDICTIONS FOR COUNTIES

Population growth (1) (2) (3) (4)

Population growth predicted
by Employment Shares

0.503∗∗∗ 0.382∗∗∗

(0.0354) (0.0377)
Population growth predicted

by Regression
0.641∗∗∗ 0.651∗∗∗

(0.0183) (0.0201)

Year fixed effects Yes Yes
County fixed effects Yes Yes Yes Yes
State-year fixed effects Yes Yes

Observations 14,496 14,696 14,496 14,496
R-squared 0.42 0.62 0.52 0.68

Notes. Thetableuses ourcountysubperiods data. Observations arecounties across 20-yeartimeintervals
from 1880–2000. Population growth and predicted population growth rates are measured by annualized log
differences. Robust standard errors clustered by county are shown in parentheses.The sample includes all
U.S. states except Alaska, Hawaii, North Dakota, Oklahoma, South Dakota, and Wyoming. See the text and
the Online Appendix for further discussion of the construction of the data.
∗ Significant at the 10 percent level. ∗∗ Significant at the 5 percent level. ∗∗∗ Significant at the 1 percent
level.

VI.C. Potential Alternative Explanations

In this section, we return toour more spatially disaggregated
MCD data to provide additional evidence against a variety of
possible alternative explanations. Table IV reports the results
of regressing actual population growth on predicted population
growth basedon structural transformation away from agriculture
for our baseline MCD sample for the A and B states from 1880 to
2000. Panels A andB use the Employment Shares andRegression
predictions, respectively.43

Incolumn(1)ofTableIV, weregress actual onpredictedpopu-
lationgrowthwithout controls andfinda positiveandstatistically
significant coefficient. For the Employment Shares prediction, the
coefficient on predicted population growth is less than 1, which
reflects the fact that actual population growth responds more
sharply toinitial population density at lowand intermediate den-
sities than predicted population growth (see Panel A of Figure II).
While many idiosyncratic factors can affect actual population

43. While Table IV reports standard errors clustered by county, Table A.3 in
the Online Appendix reports standard errors based on the alternative approach
to allowing for spatial correlation of Bester, Conley, and Hansen (2011). Both pro-
cedures result in similar standard errors, so that all statements about statistical
significance are robust to the use of either approach.
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growth in individual MCDs, predicted population growth alone
accounts for around 10% of the variation in actual population
growth in both panels of Table IV.

In column (2), we consider local differences in physical ge-
ography and natural endowments, as highlighted by for example
Rappaport andSachs (2003). Controllingformeasures forproxim-
ity torivers, lakes, coastlines, andmineral resources, we continue
to find a positive and statistically significant effect of structural
transformation. In column (3), we examine local variation in
demography, fertility, and education, as discussed for example
in Beeson, DeJong, and Troesken (2001). Including the share
of each MCD’s population that is white, the share born outside
of the MCD’s state (as a measure of national and international
migration), the share aged less than 6 (as a measure of fertil-
ity), and the share aged 14–18 in education (as a measure of
educational investments), the effect of structural transformation
again remains robust.

In columns (4)–(6), we examine changes in transport technol-
ogy and suburbanization, as considered by Baum-Snow (2007),
Michaels (2008), and Duranton and Turner (2010), which could
have contributed to a more general shift in population toward
lower densities. In column (4), we include the distance from the
centroid of each MCD to the closest interstate highway based
on the 1947 plan. In column (5), we introduce distance from the
centroid of each MCD to the closest railroad based on the 1898
railroad network. In column (6), we control for distance between
the centroid of each MCD and the centroid of the closest 2000
MSA. Across all three columns, we continue to find a statistically
significant effect of structural transformation away from agricul-
ture. While column (6) is based on 2000 MSAs, we find a similar
pattern of results using the historical definition of metropolitan
areas discussed in Section VI.A.44

In column (7), we examine structural transformation within
nonagriculture from manufacturing to services, as considered
in Desmet and Rossi-Hansberg (2009). To control for such
reallocation, we include the initial share of manufacturing in
nonagricultural employment in each MCD as an additional
regressor. Again we find similar results, consistent with our
findings in Section VI.A that disaggregating nonagriculture into

44. Reestimating the two specifications in column (6) using the historical
definition of metropolitan areas, we find estimated coefficients (standard errors)
in Panels A and B of 0.427 and 0.906 (0.025 and 0.054), respectively.
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manufacturing and services contributes relatively little to the
explanatory power of structural transformation over our long
historical time period.

In column (8), we include a full set of fixed effects for
initial log population density bins. While our earlier analysis of
population growth in Panel A of Figure II used variation across
initial log population density bins, here we only exploit variation
within initial log population density bins. Again we finda positive
and statistically significant coefficient. Therefore, even among
MCDs with similar initial log population densities, structural
transformation away from agriculture has predictive power for
population growth.

In column (9), we include a full set of county fixed effects,
which control for any observed or unobserved characteristics of
counties that affect rates of population growth. These character-
istics include state and county policies and institutions as well as
physical geography, including climate as emphasized by Glaeser
(2008), since climate typically varies relatively little within coun-
ties. Again we find a positive and statistically significant effect of
structural transformation away from agriculture.

In column (10), we demonstrate that the statistical signif-
icance of structural transformation is robust to simultaneously
including the full set of controls considered in columns (2)–(9).
Some of these controls, such as demography, fertility, and ed-
ucation, are likely to be endogenously influenced by structural
transformation away from agriculture, which implies that some
of structural transformation’s effect is likely to be attributed to
the controls. Furthermore, this specification includes both county
fixed effects and initial population density bins, which implies
that the effect of structural transformation is identifiedfrom vari-
ation across MCDs within counties with similar initial population
densities but different initial patterns of specialization between
agriculture and nonagriculture. Remarkably, even using this lim-
itedvariation andincluding all of our controls, we continue tofind
statistically significant effects of structural transformation away
from agriculture.

VII. CONCLUSION

While as recently as the nineteenth century around one
sixth of the world’s population lived in cities, urban residents
now account for a growing majority of the world’s population.
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Arguably few other economic changes have involved as dramatic
a transformation in the organization of society. In this article, we
provide theory and evidence on patterns of urbanization using
a new data set that enables us to trace the transformation of
the U.S. economy from a predominantly rural to a largely urban
society.

Our analysis has two main contributions. First, we provide
evidence of six stylized facts that are robust features of data
sets that cover both rural and urban areas over time periods
characterized by substantial structural change. These stylized
facts encompass empirical regularities from existing research for
densely populatedlocations, but alsointroduce hithertoneglected
features of the data, such as an increasing relationship between
population growth and initial population density observed at
the intermediate densities where most of the population lived
historically.

Second, weprovidea simpleexplanationforthestylizedfacts,
which emphasizes an aggregate reallocation of employment away
from agriculture combined with cross-section differences in agri-
culture’s share of initial employment. At lowpopulation densities
where agriculture dominates initial employment, mean reversion
in agricultural productivity generates a decreasing relationship
betweenpopulationgrowthandinitial populationdensity. At high
population densities where nonagriculture dominates initial em-
ployment, a largely constant rate of nonagricultural productivity
growth generates population growth that is largely uncorrelated
with initial population density. In between, the share of agricul-
ture in initial employment is decreasing in population density,
and structural transformation from agriculture tononagriculture
raises population growth at higher densities with lower shares of
agriculture in employment.

According to our explanation for the stylized facts, the
increasing relationship between population growth and initial
population density at intermediate densities should be more
pronouncedin periods andregions characterizedby greater struc-
tural transformation away from agriculture. We find strong con-
firmation that this is indeed the case. Although there are many
factors that can potentially influence population growth, the
close relationship between employment structure and population
growth in both the United States and Brazil, the tight connection
between the timing of structural transformation andour findings,
and the predictive power and robustness of our results suggest
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that structural transformation is a key part of the urbanization
process.
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