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Econometrica, Vol. 70, No. 4 (July, 2002), 1445-1476 

ON THE INTERNAL STRUCTURE OF CITIES 

BY ROBERT E. LUCAS, JR. AND ESTEBAN ROSSI-HANSBERG1 

We prove the existence of a symmetric equilibrium in a circular city in which businesses 
and housing can both be located anywhere in the city. In this equilibrium, firms balance 
the external benefits from locating near other producers against the costs of longer com- 
mutes for workers. An equilibrium city need not take the form of a central business district 
surrounded by a residential area. We propose a general algorithm for constructing equilib- 
ria, and use it to study the way land use is affected by changes in the model's underlying 
parameters. 

KEYWORDS: Land use, rent gradient, urban economics, commuting costs, externalities. 

1. INTRODUCTION 

THE CONCENTRATION of much of the economy's production activity in cities 
reflects the existence of production externalities: Benefits to any one producer 
from the existence of other producers nearby. Without such external benefits 
producers would disperse from cities to areas where land for production and 
residential use is cheaper. In view of these external effects, there is no reason 
to believe that market prices-land rents and location-specific wage rates-give 
firms and households the right incentives for making land use decisions. 

These observations underlie many different kinds of government policies 
intended to influence economic activity in cities: zoning policies to restrict land 
use, location-specific tax incentives, and transportation subsidies to foster con- 
centration. To design such policies well and to assess their potential, one needs 
a theory of equilibrium land use and a theory of optimal land use. Most existing 
spatial models focus on the competition among firms for high productivity sites, 
as in Lucas (2001), or on the competition among workers for housing near jobs, 
as in Mills (1967). Models of both types lead to land price gradients that capture 
elements of reality. But models of both types take a "map" of the city, a map that 
designates some areas for business use and others for residential use, as a given. 
Thus Mills's classic paper assumes a central business district surrounded by a ring 
of residences. The competition between firms and households for land anywhere 
in the city is left unstudied, and central features of the internal structure of cities 
are thus resolved by assumption rather than deduced from economic principles. 

1 We are grateful for comments and discussion at the June, 2000 meetings of the Society for 
Economic Dynamics in San Jose, Costa Rica, and at seminars at ITAM, MIT, the Minneapolis Federal 
Reserve Bank, the University of Chicago, and the University of Paris, Dauphine. We thank Ivar 
Ekeland and Guillaume Carlier for helpful discussions, and the editor and referees of this journal 
for their criticism. 
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1446 R. E. LUCAS, JR. AND E. ROSSI-HANSBERG 

An important exception is Fujita and Ogawa's (1982) theory of land use in a 
linear city. These authors study a linear city with a fixed population, where firms 
and households compete for space at the different locations. The productivity of 
firms is determined by an external effect that depends on the distance at which 
other firms locate. Production requires both land and labor, in a fixed proportion, 
and each worker-consumer requires a fixed quantity of residential land. Thus 
residential and employment densities do not vary across locations. Under these 
assumptions, Fujita and Ogawa construct a series of examples to illustrate some 
possible kinds of equilibria. In their examples, low commuting costs are consis- 
tent with a Mills map, with a specialized production sector bordered by areas 
specialized to residential use. As commuting costs increase, areas of mixed use 
can emerge in equilibrium.2 

This paper provides a competitive market theory of land use in cities that 
shares many features with the Fujita and Ogawa (1982) analysis. We analyze 
a spatial model of a city in which a single good is produced using land and 
labor, and in which people consume goods and residential land. Production takes 
place in the city and not in outlying areas because of a production externality: 
Productivity at any location is higher the higher is employment in neighboring 
locations. Moreover, workers who do not live next to their workplaces lose a part 
of their labor endowment getting to and from work. These two forces draw both 
employment and residential housing together, closer to the city's center, but the 
needs for land in production and for residential housing combine to keep the 
city from collapsing on a point. 

We formulate an explicit model of the interaction of these forces that relaxes 
many of the assumptions imposed by Fujita and Ogawa. We assume a production 
technology that permits substitution between land and labor, so that changes 
in productivity affect the density of workers at different locations. We permit 
consumers to choose any quantities of both land and goods. Residential densities 
will thus also vary across areas of the city. Under these assumptions, we define 
an equilibrium and prove that one exists, and develop and apply an algorithm 
for calculating equilibria. We construct land-use, employment, and residential 
density maps of a hypothetical city, and show numerically how these maps are 
altered by changes in parameters. 

We study a circular city in the plane, considering only symmetric equilibria: 
Resource use and prices at any location are assumed to depend only on that 
location's distance from the city center. Aside from symmetry in this sense, we 
impose no assumptions on land use within the city. Consumers and producers 
compete for land at all locations, subject to no constraints other than the ability 
to pay. A fixed area is thus divided between residential and business use in a way 

2 Other precursors to our work include Stull (1974) and Helpman and Pines (1977) who study 
land allocations that maximize aggregate land rent. These authors restrict attention to cities with the 
"map" of the Mills (1967) city and study land use only at the margin between business and residential 
use. See also Borukhov and Hochman (1977) and Anas and Kim (1996). 

Anas, Arnott, and Small (1998) provide a very useful recent survey that discusses these and other 
related papers. 
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INTERNAL STRUCTURE OF CITIES 1447 

that is fully derived from standard, neoclassical assumptions on preferences and 
the technology for goods production, and on commuting costs. The mathematical 
structure of the problem of determining equilibrium in such a setting is novel, 
and most of the paper is devoted to developing suitable methods of analysis. 

In return, the results are surprisingly simple and easy to interpret economically. 
The main departure from the Mills city is a mixed sector at the center, where land 
is used for both business and residential purposes. The size of this sector, in which 
commuting costs are zero, is larger the more time-consuming the commuting 
technology is assumed to be. A remarkable feature of the examples we compute 
is an extreme sensitivity of the nature of equilibria to small changes in assumed 
travel costs. One wonders whether this feature may carry over to other spatial 
models of trade. 

We will set out the model in the next section, and study its mathematical 
structure in Sections 3 and 4. In Section 3 we take the productivity at each 
location in the city as given, and study the determination of equilibrium land 
use, production, consumption of goods and residential land, wage rates, and land 
rents. We prove the existence of an equilibrium in this restricted sense, and derive 
some of its main properties. In Section 3, the spatial pattern of productivity 
determines the pattern of employment and other variables. Appendix 3 of the 
paper shows that this equilibrium, given productivity, solves a control problem. 

In Section 4, we study an operator that describes the way the pattern of 
employment in turn influences productivity: an external effect that is the key- 
stone of the theory. This simultaneity is captured in a functional equation, on 
which an algorithm for calculating equilibria is based. We prove the existence of 
a solution to this equation, and thus of an equilibrium of the model. Section 5 
presents the results of numerical solutions designed to illustrate the possibilities 
of the theory and the ways its predictions change as key parameters are varied. 

It is evident that the equilibria we calculate in this paper will not be economi- 
cally efficient. The location and employment decisions taken by firms in equilib- 
rium reflect private returns that are quite different from social returns. The anal- 
ysis of optimal allocations and the study of policies that might bring equilibrium 
and optimal allocations closer together is addressed in Rossi-Hansberg (2001). 

2. THE MODEL 

We consider a circular city of fixed radius S, located in a large economy. A 
single traded good is produced within the city, which is sold to (or purchased 
from) the larger economy at a competitive price. This good is produced with 
land and labor, under a technology we describe in a moment. The city land is 
owned by agents who play no role in the theory: absentee landlords. Labor is 
supplied elastically at the reservation utility ui that prevails in the larger economy. 
Workers have preferences over units of the produced good and the quantity of 
residential land that they consume. Symmetrically with our treatment of labor 
input, we could treat land as available at the boundary of the city at a price qf 
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1448 R. E. LUCAS, JR. AND E. ROSSI-HANSBERG 

determined by its value in an agricultural use, say. Instead, we simply take the 
radius S of the city as given. 

Our objective is to understand equilibrium land use in the city, and the deter- 
mination of equilibrium goods production, employment, and consumption. We 
first set up a notation for describing land use, then describe the production tech- 
nology, then describe worker preferences, and finally describe the way employ- 
ment at various locations and housing at other locations can be reconciled, given 
a commuting technology. 

The total land area of the city, irS2, is divided between production use and 
residential use. We describe locations within the city by their polar coordinates, 
(r, 4), but for most purposes we consider only symmetric equilibria, where noth- 
ing depends on b, and refer simply to "location r." For any location r, then, let 
0(r) be the fraction of land used for production, so that the fraction 1 - 0(r) 
is residential land. Let the employment density-employment per unit of pro- 
duction land-at location r be n(r), implying that total employment at r is 
2irr6(r)n(r). Let N(r) be the number of workers housed at r, per unit of res- 
idential land. Then if each such person occupies e(r) units of land, we have 
e(r)N(r) = 1. 

There are three aspects to the production technology. There is an ordinary, 
constant returns production function that relates land, labor, and the technology 
level to goods production. There is the external effect that relates the technology 
level at any one location to the employment, weighted by distance, at other 
locations. Finally, there is a cost-in units of lost labor time-to commuting to 
and from work. We describe each in turn. 

Production of the traded good at location r is assumed to be a constant returns 
to scale function of land, 2irr6(r), and labor, 2irr6(r)n(r), at that location. 
Production per unit of land at location r can thus be written as 

(2.1) x(r) = g(z(r))f (n(r)). 

In all the numerical work reported below, the functions g and f are taken to be 
Cobb-Douglas: 

(2.2) g(z) = zY 

and 

(2.3) f (n) = An'. 

The intercept term g(z(r)) is a productivity term that reflects an external effect 
on production at location (r, 0) of employment at neighboring locations (s, 4). 
This production externality is assumed to be linear, and to decay exponentially 
at a rate 8 with the distance between (r, 0) and (s, 4):3 

z(r) = 1 T | (s, )n(s, 4))e`x(r sk )d4ds, 

3 Changes in 8 affect the rate at which the externality decays with distance as well as the level of 
the external effect. The average external effect is independent of 8. 
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INTERNAL STRUCTURE OF CITIES 1449 

where 

x(r, s, /) = [r2-2 cos(4)rs + S2]112. 

Since allocations are assumed to be symmetric, we can write 

s 
(2.4) z(r) = f f(r, s)s6(s)n(s)ds, 

where 

27r 
(2.5) f(r, s) = j7 e-8x(r s )d4p. 

Each worker is endowed with one unit of labor, which he supplies inelasti- 
cally to the composite activity producing-and-commuting. The third aspect of the 
technology is a commuting cost that takes the form of a loss of labor time that 
depends on the distance traveled to and from work each day. Specifically, if a 
worker lives at location s and works at location r, he delivers 

e-Klr-s| 

hours of labor at location r. (Clearly the restriction to symmetric allocations 
implies that people will commute only along rays.) 

Workers have identical preferences U(c, E) over consumption of the produced 
good c and residential land E. In the numerical work reported below, the function 
U is assumed to be Cobb-Douglas: 

(2.6) U(c, E) = C- E -P. 

Let c(r) and e(r) denote the goods and land consumption of everyone housed at 
r. Every consumer-worker at every location must receive the reservation utility 
level: 

(2.7) U(c(r), E(r)) = ui. 

In this setting an allocation will mean a collection of functions (z, 0, n, N, c, 9) 
on [0, S] that describe productivity, land use, employment, and consumption 
at each location r E [0, S]. To be feasible, an allocation must satisfy 0(r) < 
1, N(r)e(r) = 1, (2.4), and (2.7). In addition, we need a constraint that expresses 
the idea that all workers must be housed somewhere in the city. We develop this 
constraint next. 

We need a test to determine whether any given triple (6(r), n(r), N(r)) of 
functions on [0, S] describes an internally consistent pattern of land use, employ- 
ment and residential housing. Think of filling up the city, proceeding from the 
center, r = 0, outward to the edge, r = S. We define a state variable H(r) with the 
interpretation as the stock of workers that remain unhoused at r, after employ- 
ment and housing have been determined for locations s E [0, r). 
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1450 R. E. LUCAS, JR. AND E. ROSSI-HANSBERG 

Let 

(2.8) y(r) = 2irr[6(r)n(r) - (1 - 0(r))N(r)] 

be the excess of people employed at location r over people housed at r. Thus 
positive y(r) values add to the stock H(r) of unhoused workers and negative 
y(r) values reduce H(r). In addition, even if y(r) = 0, if the stock H(r) is 
positive it will increase by the amount KH(r)s over an interval [r, r + s) because 
housing is moved further away from employment: To bring H(r) units of full time 
equivalent labor to r requires that eKEH(r) units be brought to r + 8, provided we 
are bringing labor toward the center. Combining these two forces, we have that 

(2.9) d( = y(r) + KH(r) if H(r) >0. 

The opposite logic applies when H(r) < 0. In that case, there are people who 
are housed at locations s < r who can be employed at locations s > r: These 
workers are traveling away from the center to get to work, so carrying the stock 
outward brings people farther from home on their way to work. In this case, we 
have 

(2.10) d( = y(r) - KH(r) if H(r) <0. 

Given a function y(r) and the initial condition H(0) = 0, it is clear that (2.9) 
and (2.10) define a continuous function H(r) on [0, S]. For an assignment of 
jobs and residences to be feasible, then, it must be the case that every worker be 
housed on [0, S], or that 

(2.11) H(S)<0. 

Then equations (2.9), (2.10), and (2.11), together with the initial condition 
H(0) = 0, complete the definition of a feasible allocation. 

Now that we have described the feasible allocations, we turn to the economics 
of the problem. In an equilibrium, land must be allocated to firms and house- 
holds, and workers must be allocated over firms. The price of goods, set equal 
to one, and the utility level of workers, ui, are both determined by forces out- 
side the city. It remains to determine the wage paid at location r per unit of 
labor employed there, and the earnings received at r per person housed at that 
location. 

We will use the same notation, w(r), to denote both the wage rate paid at 
location r and the earnings of a worker housed at location r. If r is a purely 
business location, w(r) denotes the wage paid by firms operating there, and a 
worker who commutes to r from s has earnings w(s) =e-Klr-slw(r) available to 
spend at his place of residence. If r is a purely residential location, then w(r) 
denotes the earnings of people who live there, and a resident at r who works at 
s must receive w(s) = eKIr-sIw(r) per unit of labor supplied at s. Finally, if r is 
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INTERNAL STRUCTURE OF CITIES 1451 

a mixed-use location, people who live there also work there, and w(r) denotes 
both the wage rate and net earnings at r. 

We let q(r) be firm profit per unit of land (land rent per unit of land) at 
location r; let Q(r) be the rent per unit of residential land at r. A firm located 
at r chooses employment to maximize profit: 

(2.12) q(r) = g(z(r))f(n(r)) - w(r)n(r) = max{g(z(r))f (n) - w(r)n}. 
n 

The maximized value is q(r). Since the decision problem at location r is com- 
pletely determined by the technology level and the wage rate at r, we can 
solve the first order condition for the maximum problem in (2.12) to obtain 
n = n(w, z). The maximized value can be written q = q(w, z). This is the busi- 
ness bid rent, given (w, z): the rent per unit of land that a firm would be willing 
to pay to operate with these cost and productivity parameters. Under the Cobb- 
Douglas assumptions (2.2) and (2.3) we can solve explicitly for 

^ t cz~Az y 11(1-a) 
n(w,z)= (V aA 

and 
( al j(l-a) 

q4(w, z) = (1 - a) (1)l( 

A consumer who lives at r divides his earnings w(r) over goods consumption 
c and residential land X, at the prices 1 and Q(r). His earnings must be enough 
to yield him utility ui. Thus 

(2.13) w(r) = c(r) + Q(r)e(r) = min[c + Q(r)], 
C,? 

subject to 

U(c, e) > u. 

The minimizing values depend on Q and ui. Suppressing the latter, we write them 
c(Q) and e(Q). Given these functions, we can solve 

w = c(Q) + Qe(Q) 

for Q = Q(w), say, and then define c(w) = c(Q(w)) and e(w) = e(Q(w)). Since 
the market clearing condition for residential land is Nf = 1, we also have N(w) 
1/e(w). Under the assumption (2.6) of Cobb-Douglas utility, the functions N(w) 
and Q(w) are given by: 

N(w) = w 

and 

Q(w) = /'3p/(10 )(1 (w) 
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1452 R. E. LUCAS, JR. AND E. ROSSI-HANSBERG 

It will be assumed that land is allocated to its highest-value use. In context, 
this means that 

(2.14) 0(r) > 0 implies q(r) > Q(r) 

and 

(2.15) 0(r) < 1 implies q(r) < Q(r). 

Finally, free mobility of labor implies a sharp restriction on equilibrium wages 
w(r): 

(2.16) e-Klr-sIw(s) < w(r) < eKlr-sIw(s) for all r, s E [0, S]. 

This wage arbitrage condition says that no one can gain by changing his job loca- 
tion, incurring the loss in labor endowment that such a change may entail. 

We conclude this section with a formal definition of an equilibrium: 

DEFINITION: Let n(w, z) and q(w, z) be the employment and bid-rent 
functions defined by the firm's problem (2.12), and let N(w) and Q(w) be 
the residential density and bid-rent functions defined by the household's prob- 
lem (2.13). Then an equilibrium is a pair of piecewise continuous functions 0 and 
y, and a collection (z, n, N, w, q, Q, H) of continuous functions, all on [0, S], 
such that for all r, 

(i) w(r) satisfies (2.16), 
(ii) n(r) = n(w(r), z(r)) and q(r)q- (w(r), z(r)), 

(iii) N(r) = N(w(r)) and Q(r) = Q(w(r)), 
(iv) 0(r), q(r), and Q(r) satisfy 0 < 0(r) < 1, (2.14), and (2.15), 
(v) y(r), n(r), N(r), 0(r), and H(r) satisfy H(O) = 0, (2.8)-(2.10), 

and 
(vi) H(S) = 0, and 

(vii) z, 0, and n satisfy (2.4). 

An aerial map of an equilibrium city must thus look like a family of concentric 
circles, as in Figure 1. The solid circles on Figure 1 represent locations r where 
H(r) = 0. The dashed circles represent boundaries between all-business and all- 
residential areas. In the area label "mixed" on the figure, every location contains 
both businesses and housing. As we will see, no one ever moves across a solid 
line travelling to or from work. But people are free to move across them, so land 
rents and wage rates must be continuous at these boundaries. The production 
externalities, moreover, do drift across all boundaries, as one can see in the 
formula (2.4). 

For the Cobb-Douglas case, we have translated our assumptions on technology 
and preferences into formulas for the four functions n(w, z), q(w, z), N(w), and 
Q(w). The proof of the existence of an equilibrium and much of the characteri- 
zation of equilibria will be carried out under the more general Assumption (A). 
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FIGURE 2.-Equilibrium wage determination. 

This step will define a correspondence p(; z) mapping initial wages w into 
terminal stocks H(S; w, z). The construction and characterization of this set of 
functions, and the definition of the correspondence ((; z) occupies most of the 
rest of this section. 

Step 2: Given a continuous productivity function z on [0, S], show that there 
is a unique value w* such that 0 E p(w*; z), and exactly one set of equilibrium 
functions (n, N, w, q, Q, 0, y, H) such that H(S; w*, z) = 0. 

That is, we show that for each z, there is exactly one allocation satisfying 
conditions (i)-(vi) in the definition of equilibrium. This conclusion is stated at 
the end of this section, as Theorem 1. 

In light of Theorem 1, land use and employment functions 0(r; z) and n(r; z) 
are uniquely defined for any productivity function z. Using (2.4), these functions 
define an operator T (say) on functions z., 

Step 3: Show that this operator T satisfies the hypotheses of the Schauder fixed 
point theorem, and hence that an equilibrium in the sense of (i)-(vii) exists. 

This result is stated as Theorem 2, in Section 4 of the paper. 
Figure 2 is a useful diagram for thinking about Step 1: the construction of 

an allocation satisfying (i)-(v) with the wage rate at r = 0 set at w > 0. The 
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INTERNAL STRUCTURE OF CITIES 1455 

figure plots various paths for wages w(r) against distance r from the city center. 
The solid curve wm(r)-which we call the "mixed wage" curve-is the function 
defined by 

(3.1) q((wi, z(r)) = Q(Wm). 

That is, the mixed wage at any location is the wage that just equates the business 
and residential bid rents. It is the only wage rate consistent with a mixed land 
use. Clearly, w.(r) depends on r only through the level of productivity z(r) at 
location r. For the case of Cobb-Douglas technology and preferences, the mixed 
wage is given by 

(3.2) Wm(r) - Kz(r) 

where K depends on the production intercept A and the other parameters of the 
theory. In general, w.(r) is higher the higher is the technology level z(r) at r. 

The remaining curves on Figure 2-the dashed lines-are members of the 
families of curves of the form KeKT and KeKT. Of course, some member of each 
family passes through every point in the plane. These curves are the wage paths 
implied under some circumstances by the wage arbitrage condition (2.16). This 
condition involves four inequalities, depending on whether I r - s = r - s or s - r. 
Which of these constraints binds depends on the direction in which people are 
moving to get to work. Consider an interval (r1, r2) on which H(r) > 0, implying 
that people are moving from right to left (toward the center) to get to work. 
Someone living at a location r on this interval has the option to travel to r1, 
reducing his labor endowment by the factor e-K(r-r1) and earning the wage w(r1) 
for each unit he supplies from that point. This option puts a lower bound on his 
earnings: 

w(r) > w(rl)eK(r1) 

By the same reasoning, a firm located at r1 that hires eK(r-r1) units of labor at 
w(r) from someone living at r and moves these units to r1 has the option of 
hiring one unit at w(r1). This option puts an upper bound on the wage it will 
pay at r: 

w(rl) < w(r)eK(rr1) 

Combining these two inequalities, we conclude that for all r E (rl, r2), 

(3.3) w(r) = w(rl)eK(rr1) 

When H(r) < 0, commuting flows are in the opposite direction: Moving to the 
right (away from the center) means getting closer to work. In this case, reasoning 
analogous to the last paragraph implies 

(3.4) w(r) = w(rl )e(rr1) 
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As long as H(r) 7& 0, then, (2.16) implies that either (3.3) or (3.4) must hold, 
which is to say that wages must move along one of the dashed curves in Figure 2. 

We describe a "shooting" algorithm for constructing equilibria, given z(r), 
based on the observation that wages must always vary by location along one 
of the three kinds of paths shown on Figure 2. Before getting into the details 
of this construction, some features of Figure 2 should be noted. First, if the 
wage at a location r lies above the curve wm(r), that location must be in an 
exclusively residential area: By Assumption (A) and (3.1), w(r) > wm(r) implies 
that q(w(r), z(r)) < Q(w(r)) at r . By the same reasoning, a location where the 
wage is below the mixed wage must be a purely business location. 

Second, note that if the wage at r, w(r), is not equal to wm(r) and if H(r) > 0, 
then the wage rate at locations near r must vary along one of the decreasing 
exponential paths KeKI, satisfying (3.3). This is because H(r) > 0 implies that 
people are travelling from right to left to get to work, and wages must vary so 
as to compensate those who travel furthest. By the same reasoning, H(r) < 0 
implies that the wage must vary along one of the increasing exponential paths 
KeKr, satisfying (3.4). 

With these principles in mind, we turn to constructing a wage path w(r; w, z), 
from a given initial value w(O) = w. Figure 3 will be helpful at this point. On the 
figure w < wm (0), so we know that location 0 is an exclusively business location. 
People must travel from right to left to get to work at r = 0-they cannot get 
there any other way-which implies that the wage path w(r; w, z) beginning at w 
must follow the exponentially decreasing path through the point (0, c). As long 
as this path remains below the mixed path, the corresponding land use 0(r; c, z) 
remains at one, employment is given by n(r; c, z) = ni(w(r; c, z), z(r)), and the 
stock H(r) of unhoused workers increases along the path given by (2.9). 

If the wage path so constructed always remains below the mixed path (this 
would require a lower initial wage than the one shown on Figure 3), then all 
of the features just noted will continue to hold on the entire interval [0, S], and 
the stock of unhoused workers at S, H(S; c, z), will be positive. The value of 
the correspondence <o(.; z) will then be the singleton <o(w; z) = H(S; c, z). It is 
evident that p(.; z) will be single-valued, continuous, and strictly decreasing in a 
neighborhood of such an initial value w. 

The path shown on Figure 3 in fact meets the mixed path. At the point of 
intersection, H(r; c, z) > 0, so the path w(r; c, z) continues to the right along 
the same decreasing exponential, passing into a purely residential area. Land use 
switches, residential density is now given by the function N, and the stock H 
continues to follow (2.9) but with y(r) < 0. The associated value of the stock 
H(r; t, z) as this evolution occurs cannot be seen on Figure 3: a third axis would 
be needed. But suppose after a time in the residential area this stock should hit 
zero. Then further residents must travel to the right to get to work-all the jobs 
to the left have been filled-so the wage changes direction and begins to follow 
one of the increasing exponentials. This is the possibility illustrated on the figure. 

Beginning from any initial to, the equilibrium principles illustrated on Figure 3 
can be applied in the way we have just described to derive a unique path 
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A shooting algorithm for constructing an equilibrium wage path: 
1.8 '.' (1) Pick a' wage at r= 0:'wO (say). 

(2) Continue to.the right in the. only possible way; 
'(3) Keep track of'the implied path H(r,wO) of'the 

1.6 _ ' . . ' s'tock of unhoused wokers. 
(4) When the path.crossea Wm(r) into a residential area 

just keep going. 
1.4 ' (5) When .R(r,wO) =.O, rate of change. of wages changes 

(6) Ca'll stock H(S,wO) = phi(wO). . 
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FIGURE 3.-Equilibrium wage determination. 

w(r; w, z) and a unique associated terminal stock q(w; z) = H(S; w, z) provided 
that the path never meets the mixed path at a point r when it has a stock 
H(r; t, z) = 0. If a path meets the mixed path with a nonzero stock, it simply 
crosses over into a different land use area. If the stock H(r) reaches zero at a 
point off the mixed path, the wage simply switches from a decreasing exponential 
to an increasing one (or the other way around). For any such path that may cross 
the mixed path but never coincides with it for an interval of positive length, the 
correspondence q(o; z) will be single valued, continuous, and strictly decreasing 
in a neighborhood of w. 

In our construction of the set of equilibrium paths and the correspondence fc 
it remains only to consider paths that meet the mixed path with a zero stock. 
Suppose, then, that a wage path w(r; w, z) has reached the location r1 with 
w(r1; to, z) = wm(r) and H(r1; to, z) = 0. One such point occurs at r = 0 along 
the path starting at to = wm(0). There may be others. One possibility is shown on 
Figure 4: Here the slope of the mixed wage, w (r1) (where r1 = 4.5 in Figure 4), 
is between Kwm(rl) and -Kwm(rl) so the mixed path satisfies the wage arbitrage 
condition (2.16) to the right of r1. In this situation, the path w(r; t, z) can be 
continued to the right of r1 in three different ways. It can follow the increasing 
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A family of wage paths 

: consistent with mixed use 
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Distance from city center, miles 

FIGURE 4.-Equilibrium wage determination. 

exponential path, or the decreasing exponential path, or it can continue along 
the mixed path. These three possibilities continue to hold at points r > r1 as long 
as the inequality 

-KWm(r) < w (r) < KWm(r) 

continues to hold. 
All of the branches so constructed can be continued using the principles we 

have already applied, possibly branching again later on, until they reach the point 
S. Since all of them have the initial value to, all of the terminal values H(S; t, z) 
are elements of the set D(wo; z). 

Figure 4 illustrates a possible situation in which a path that coincides with 
the mixed path at r2 (where r2 = 7 in Figure 4) with a stock of zero cannot be 
continued along wm(r). On the figure, w (r2) < -KWm(r2). Then continuing on 
wm(r) cannot be equilibrium behavior-wages are declining at a rate exceeding 
K, so no one would be willing to work at r2 if wm(r) were an option to the right 
of r2. Since both the other continuations are above wm(r), they both require 
moving into a residential area. But since the stock H(r2) = 0, workers must 
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commute to the right, ruling out the decreasing exponential curve. This leaves 
only the increasing exponential as an equilibrium continuation. Clearly there is 
an analogous possibility if both branches lie below wm(r). 

In the construction just described, the wage rate uniquely determines the 
employment density in a business area or the residential density in a residen- 
tial area, whichever may be the case, using the functions n, N, and ? defined 
in Section 2. On an interval where the wage coincides with wm(r), the equality 
of q(wm(r), z(r)) and Q(wm(r)) again determines the allocation uniquely. An 
ambiguity arises, however, if the mixed path should happen to coincide with a 
path of the form (3.3) or (3.4) for some interval of positive length. In such a 
case, both the mixed allocation and a specialized allocation would satisfy (ii)-(iv), 
and multiple allocations would be consistent with the same wage. This observa- 
tion does not affect our construction of the family of potential equilibrium wage 
paths, but as noted in the statement of Theorem 1, below, it does affect the way 
this construction is interpreted. 

The next six results collect some features of the construction we have just 
described that we will draw on below. All the proofs of the lemmas can be found 
in Appendix 1. 

LEMMA 1: The correspondence qp: R++ - R is strictly decreasing, 

w' > W, H' E p(w'), and H E (p(w) imply H'< H, 

and for every w > 0, every point in qp(w) is reached by a unique equilibrium wage 
path w(r, t) on [0, S]. 

LEMMA 2: For all t, if a, b E qD(4) and a < b, then there is a point c E q(wo) 
with a <c <b. 

LEMMA 3: For all t, q(wo) is closed. 

LEMMA 4: For all t, qD(4) is convex. 

Lemmas 2, 3, and 4 then imply the following. 

LEMMA 5: The correspondence fo is compact valued and upper-hemicontinuous 
at all w > 0. 

We sum up this analysis in Theorem 1. 

THEOREM 1: Under Assumption (A), for any continuous productivity function 
z there is an allocation that satisfies conditions (i)-(vi). Any such allocation is 
associated with a uniquely determined wage path w(r). Except for intervals on which 
w(r) coincides with the mixed path and with either (3.3) or (3.4), the allocation is 
uniquely determined. 
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H(S,w) 
The correspondence (p(co) from the initial wage 
rate X at r = 0 to the terminal stock H(S,w) of unhoused 
workers at r = S. 

FIGURE 5. 

PROOF: The correspondence fo satisfies q(w) > 0 if w is close enough to 0, 
and q(o) < 0 if to is large enough. It is upper-hemicontinuous, convex valued, 
and strictly decreasing in the sense of Lemma 1: All the features displayed in 
Figure 5 have been verified. Hence there is a unique co* such that 0 E q(to*). By 
Lemma 1, there is a unique wage path that reaches the terminal stock 0 from W*. 
We have shown in the first part of this section that a unique allocation satisfying 
(i)-(vi) is consistent with a given wage path. Q.E.D. 

The external effect in this model involves the effects of the employment dis- 
tribution on the productivity function z. For the analysis of this section, in which 
z is simply taken as a given, the external effect plays no role. It should not be 
surprising, then, that the unique equilibrium allocation solves a maximum prob- 
lem. This problem is formulated and an analogue to the first theorem of welfare 
economics is proved, in Appendix 3. 

We conclude this section with three illustrative applications of the construc- 
tion described above, all for given functions z(r), and all for the Cobb-Douglas 
case described in (2.2), (2.3), and (2.6). The first and simplest is the case of a 
constant z. In this case, the function wm(r) is also constant, at the value given 
in (3.2). Obviously this path satisfies the wage arbitrage condition (2.16), and so 
is an equilibrium wage path. The corresponding mixed allocation is the unique 
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FIGURE 6.-Linear productivity example. 

equilibrium. One can think of this example as an equilibrium with positive trans- 
portation costs and no comparative advantage at any location. In this situation, 
autarchy is the natural-and optimal-allocation. 

The other two examples were solved numerically, using an algorithm based on 
the above construction, which is described in more detail in Section 5. Both are 
based on the parameter valueS K = .005, = 5, -y = 0.04, A = u = 1, a = 0.95, and 
/3 0.9. (See Section 5 for a more detailed discussion of calibration.) 

The first illustration, shown in Figure 6, is based on an assumed productivity 
function z(r) that declines linearly from a peak at r = 0 to the value 0 at r = 

S. The figure plots the stock of unhoused workers H (r) and the total flow of 
unhoused workers accumulated at r, y(r). For this case, there is a mixed area for 
r E [0, 2.7], a business area for r E [2.7, 6], and a residential area for r E [6, 10]. 

The second illustration, shown in Figure 7, is based on the productivity function 

0 if r E [0, 10) U (20, 10] 

3 3 

I ~ r =0 I 20 ife1 :~ _ I 

In this example, people commute both to and away from the center, and some do 
not commute at all. Since productivity is zero at the center and at the boundaries, 
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FIGURE 7.-Step function productivity example. 

the city has residential areas in those locations. Between these residential areas 
land use is given by two business sectors with a mixed sector in the middle. 

4. EXISTENCE OF EQUILIBRIUM 

In the last section we proved that any continuous, nonnegative productivity 
function z on [0, S] implies the existence of an allocation satisfying conditions 
(i)-(vi). Here we combine this result with equation (2.4), which describes the way 
productivity at each location is, through an external effect, influenced by employ- 
ment at neighboring locations. We show that there is an allocation satisfying all 
the conditions (i)-(vii) in the definition of an equilibrium. 

We denote equilibrium employment and land use at location r by n(r; z) and 
0(r; z), where the notation is chosen to emphasize the dependence of both vari- 
ables on the entire productivity finction z: [0, S] -? R+. On any interval on which 
there is more than one allocation consistent with the unique equilibrium wage 
path w(r; z), we use the notation n(r; z) and 0(r; z) to designate the mixed allo- 
cation only. Then (2.4) can be restated as a fixed point problem 

(4.1) z = Tz, 
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where the operator T is defined by 

(4.2) (Tz)(r) = f f(r, s)0(s; z)n(s; z) sds. 

Let M be the space of continuous functions on [0, S], normed by 

(4.3) Ilf 11 = max If (x) 1. 

Let M+ be the subset of nonnegative valued functions. The proofs of Lemmas 
6-12 can be found in Appendix 2. 

LEMMA 6: T: M+ -+ M+. 

For the continuity of T in the norm 11 we need to study the way the func- 
tions 0(s; z) and n(s; z) vary with changes in the entire function z. Since these 
functions are determined by the wage path, we begin by studying the continuity 
of the equilibrium wage paths constructed in Section 3, the existence and unique- 
ness of which was established in Theorem 1. Denote these paths w(r; z). 

LEMMA 7: For each r, w(r; z) is continuous in z. 

The next Lemma uses the continuity of the wage function to prove the conti- 
nuity of the operator T in the sup norm 11 11 

LEMMA 8: The operator T: M+ -+ M+ is continuous in the sup norm 11 

We will use the Schauder fixed point theorem to prove existence of an equilib- 
rium. This theorem requires that T map a certain set M+, to be defined below, 
into an equicontinuous set of functions. The next three lemmas help us define 
and establish this property. 

LEMMA 9: For each r, w(r; z) is an increasing function of z, in the sense that 
z(r) > z'(r) for all r implies w(r; z) > w(r; z') for all r. 

LEMMA 10: There exists a positive number z such that if z(r) < z for all r E 
[0, S], then (Tz)(r) < z for all r E [0, S]. 

LEMMA 11: The operator T maps the set of uniformly continuous functions 
z: [0, SI -> [0, z] into itself. 

LEMMA 12: Let M+ be the set of uniformly continuous functions z: [0, S] -+ 

[0, z]. Then T(M+) is equicontinuous. 

We sum up this analysis in Theorem 2. 
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FIGURE 8.-Iterates of the operator T. 

THEOREm 2: Under Assumption (A), there exists an equilibrium allocation that 
satisfies (i)-(vii). That is, T: M+ --+ M+ has a fixed point in M+. 

PROOF: By Lemmas 8 and 12, T is a continuous operator and T(M+) is 
equicontinuous. The result then follows from Schauder's fixed point theorem. 

Q.E.D. 

The algorithm based on the construction of Section 3 was used as a subroutine 
to calculate the value Tz of the operator T, given a productivity function z. This 
subroutine in turn was used to calculate a sequence 

Tn+lzo = T(T'zo) (n = O, 1, 2,...) 

from an initial function z0. Figure 8 shows one such sequence, based on the 
parameter values given at the end of Section 3. The initial function z0 is linear, 
the straight line on the figure. The equilibrium obtained by applying T to this 
function is shown on Figure 8: It generated the dashed curve that is highest 
at low r-values. Successive iterates Tnzo are also shown. One can see that this 
sequence converges, and that the limit function is a fixed point of T. The figure 
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shows that the operator T in this example is not monotone. This property is the 
one that forces us to use Schauder's Theorem instead of a fixed point theorem 
for monotone operators. 

5. NUMERICAL EXPERIMENTS 

In this section we report the results of computational experiments designed to 
illustrate the implications of the theory of Sections 3 and 4 for equilibrium land 
use and land prices within a city. We will describe the numerical algorithm we 
use to compute the examples, describe the calibration of parameters and discuss 
the results. 

In all the computations presented we use a Cobb-Douglas functional form for 
preferences and technology, as given in (2.2), (2.3), and (2.6). At the end of 
Section 2 we presented the functions n, q, N, and Q implied by this specification. 
In order for these functions to satisfy Assumption (A) we need to impose suitable 
restrictions on the parameters. In particular we need 

(5.1) 0<y<1-a. 

(See Lucas (2001) or Fujita, Krugman, and Venables (1999) for a discussion of 
this condition.) 

The mixed wage function, wm(r), is given in (3.2). Hence the wage arbitrage 
condition (2.16) holds at a location r if the externality function z satisfies 

-y ( - 3z'(r) 
-K < (< K. 

(1 - a/) z (r) - 

In a mixed area, y(r) = 0, which implies that 

6(r)n(wm(r), z(r)) = (1 - 0(r))N(wm(r)). 

Using the Cobb-Douglas formulas for n and N, we conclude that 

(5.2) 0(r)= 

holds at any mixed-use location. (The constancy of 0(r) on mixed areas is specific 
to the Cobb-Douglas specification.) Notice that by construction 0 < 0(r) < 1. 

The numerical exercises that we describe in a moment were carried out with 
an algorithm based on the constructions in Sections 3 and 4. We start with two 
initial wages cl > W2 and compute the corresponding values p(w1) and (c02). 
If 0 > p(w2) > p(w1) or p(W2) > p(w1) > 0 we decrease 02 or increase wl, until 
p(w2) > 0 > p(coi). We proceed using a bracketing algorithm until we reach W* 
such that p(c*) = 0. Notice that if we reach such an c*, it must be the case 
that p(c*) is a singleton. It may also be the case that we converge to an c such 
that p(w + s) < 0 < fp(w - ) for all ? > 0. In that case we know that (clW*) is 
not a singleton. We then fix c and find the location r at which H(r, w) = 0 and 
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w(r) = wm(r). At this location we set y(r) = 0, and proceed to location r + dr 
(where dr is the grid size). At location r + dr we let w(r) grow at rate K and 
calculate the resulting stock of unhoused workers at S. If this stock is equal to 
zero, we have found the equilibrium given the function z. If it is not zero, we 
repeat the calculations but letting w(r) grow at rate -K. Again we compare the 
resulting stock of unhoused workers with zero. If it is not equal to zero, we set 
y(r + dr) = 0 and proceed in the same fashion until either a deviation leads to a 
stock of unhoused workers equal to zero, or we reach S. 

Once such an allocation is found we use equation (4.2) to calculate Tz. Using 
Tz as our new externality function we repeat the algorithm above to find the new 
allocation. This procedure goes on until we find a function z* such that Tz* = z*. 

Notice that in Section 4 we proved that the operator T has a fixed point, but it 
may not be unique. Hence the fixed point may depend on the initial function z. 
In all the results presented below we use a linear function z with intercept z(0) = 
200, and slope z'(r) = -20 as the initial productivity function. This choice is of 
course arbitrary. We calculated some of the exercises below using other initial 
conditions and obtained the same results. 

In the theory developed in this paper, there are 6 parameters describing pref- 
erences and technology: land's share in consumption expenditures, 1 - /, land's 
share in production, 1 - a, the intercept of the production function, A, the two 
externality parameters y and 8, and the travel cost parameter K. The radius S 
of the city is also taken as given. The theory is a partial equilibrium model of a 
single city, situated in a larger economy and taking certain prices as given. These 
prices are the price of goods, unity, and the reservation utility level of workers, ui. 

Taking the eight parameters (a,/, Py, 8, A, K, U, S) as given, the theory deter- 
mines equilibrium land use 0(r), goods production x(r), employment density 
n(r), residential density N(r), and land rents q(r), as well as the equilibrium 
radius S of the city. Given equilibrium behavior at each location r, aggregates 
such as total production and total employment are also determined. 

We calibrate the two share parameters as a = .95 and 3 = .9, following the 
evidence in Casselli and Coleman (2001) and Roback (1982) respectively. The 
externality parameter y is set at y = .04. These numbers will not be varied in 
any of the experiments reported here. 

We fix the size of the city so that S = 10: A city always has a radius of 10 miles. 
In all the calculations presented below, we also set A = 1 and ui = 1. 

The remaining parameters 8 and K will be varied to obtain different structures 
of land use. Specifically, Figures 9, 10, and 11 all show three land rent functions, 
corresponding to the 8 values 5, 10, and 15. Figure 9 uses a K value of .001, 
Figure 10 uses K = .005, and Figure 11 uses K = .07. 

In Figure 9, all three cities portrayed have the Mills map. There is a pure 
business district with a radius just over 4 miles; the rest of the city is purely 
residential. We know (Lucas (2001)) that the limiting city in which K = 0 takes 
this form. Perhaps it is not surprising that it holds for K= .001 (where commuting 
time is one tenth of one percent of the work day per mile) as well. Note too that 

This content downloaded from 128.100.177.16 on Wed, 6 Nov 2013 15:48:10 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INTERNAL STRUCTURE OF CITIES 1467 

0.7 I ! ! ! ! 

0.6 

0 .5 .. . . ... . . ... .. . .... ... . .. .. . .. _ 
Gamma = 0.04' 

0.5- 
'Delta = 15 

8,0.40' '1 
> 0.4 . . . . .. . . . .. . . . . .. . . . .. . . . . .... ... . . . . . . . ..... . . . cr 

. ..0.3.... . .... .. .. 

| \_ ~~~~~~~~Delta=t 5 

:. . . . . . . . . . . . . . . .. . . . .... . .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . 

0 1 2 3 4 5 6 7 8 9 10 
Distance from city center, miles 

FIGURE 9.-Land rents, various delta values, kappa = 0.001. 

on this figure the rent gradient within the business sector can be made as steep 
as desired by increasing the value of 8. 

In Figure 10, K has been increased by a factor of 5, to .005. Now a mixed area 
takes over the center, to a radius of about four miles (depending on 8). A purely 
business district then occupies the ring from r = 4 to almost r = 6. A purely 
residential district occupies the outer ring of the city. For this city, the highest 
land rent peak is associated with the lowest 8 value, and rents at this peak are 
lower, relative to rents at the edge, than in the K = .001 city. 

In Figure 11, K has been increased by another factor of 14, to .07. The mixed 
area now extends to the entire city, for 8 = 5, and to r = 9.5 miles for 8 = 10 
and 15. In the latter two cities the pure business region has shrunk to a narrow 
spike, as has the outer residential ring. Land rents throughout the city are very 
flat at all 8 values. 

The main finding of these three experiments, taken together, is that the larger 
iS K the more land is used as a mixed area. Very low commuting costs lead 
to a Mills-like configuration with specialized land use. For the highest levels of 
commuting costs, the city reverts to something like local autarchy, with everyone 
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FIGURE 10.-Land rents, various delta values, kappa = 0.005. 

living where he works, interacting with the world outside the city (with which 
transportation costs are zero) but less so with other areas within the city. 

Figure 12 shows the result of another experiment, in which K= .005 is com- 
bined with 8 values of 25, 30, and 40 (a 8 value of 40 means that the force of 
the external effect drops by one-half every 90 feet of distance). For 8 = 25 we 
obtain the same pattern of land use structure as the one shown in Figure 10. 
That is, there is a mixed sector in the center for r E [0, 2.9], a business sector for 
r E [2.9, 5.3] and a residential sector for r E [5.3, 10]. As we increase 8 to 30, the 
land use structure changes, and we obtain a small business sector in the middle 
with its corresponding residential sector surrounding it. Then for r E [0.9, 2.8] 
we again obtain a mixed sector and, surrounding it, another business area with 
a residential sector at the boundary of the city. Increasing 8 further, to 8 = 40, 
results in two pure business districts, one within one mile of the center and a 
second occupying a ring between 2.5 and 4 miles. The rest of the city is resi- 
dential. Here the business districts are small and concentrated, due to the high 
8, and people live close to-but not at-their workplace. This figure then illus- 
trates how a higher 8 concentrates production in one or many business sectors 
and how mixed areas tend to disappear. 
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FIGURE ll.-Land rents, various delta values, kappa =0.07. 

The examples in this section illustrate that by changing the commuting cost 
parameter K we can obtain a broad variety of land use patterns that go from the 
classic Mills city to an all mixed city. The intuition for these results is clear: The 
higher is K the more costly it is to commute and so the larger are the mixed areas 
in the city. The effects of 5 are more difficult to interpret. Increasing the value of 
5 decreases the external effect between firms that are far away from each other. 
Hence by increasing 5 we can obtain multiple pure business areas in a city, as in 
Figure 12. 

6. CONCLUSION 

Let us try to summarize as simply as possible what we have learned about the 
spatial structure of cities. For us, a city is contained in a circle, and by virtue of 
symmetry the economics of the city can be studied along any radius: an interval 
[O, S]. The city has an internal structure because of a production externality under 
which employment at any site is more productive the higher is employment at 
neighboring sites, and because producers at the center, r = O, have neighbors to 
the left while producers at the edge, r = S, do not have neighbors to the right. 
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FIGURE 12.-Land rents, various delta values, kappa = 0.005. 

This simple fact of geometry, together with familiar assumptions on preferences 
and technology, generates all the results in the paper. 

Consider, as an initial example, a city in which employment is uniformly dis- 
tributed over the circle and in which everyone lives where he works. In such a 
city, productivity differs from one site to another only because sites near the cen- 
ter have less empty space nearby than do sites near the edge. As we have defined 
the production externality, then, productivity in such a uniform city will be high- 
est at r = 0 and will decline monotonically to a minimum at r = S. This fact will 
draw employment toward the city center and away from the edge, which will in 
turn intensify the productive advantage of the center. Only the higher land prices 
at the center and the necessity of land in production keep the productive activity 
in the city from concentrating at the point r = 0. 

If we maintain the assumption that people live where they work, these forces 
can be shown to produce an equilibrium in which employment and land rents 
decline from the center outward. Apart from symmetry, here we impose no 
assumptions on land use, and let producers and consumers compete for land at 
all locations in the city, just as they would in actual cities in the absence of zoning 
restrictions. Many new possibilities then emerge. 
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The simplest of these arises when commuting costs are high enough that in a 
market equilibrium people live next to their jobs, but by choice, not by assump- 
tion. As commuting costs are lowered, specialized production and residential 
areas emerge, sometimes along side a mixed area, sometimes eliminating the lat- 
ter entirely. In the limit, as commuting costs approach zero, the equilibrium takes 
the familiar form of the Mills city, with production in the center surrounded by 
a residential ring. These effects are illustrated in Figures 9-12 and coincide with 
the results in Fujita and Ogawa (1982). 

The production externality is a second force that works against the desire to 
economize on commuting costs. The more localized is the external effect (the 
higher is the parameter 8) the higher is the value to a firm from locating near 
other producers and the more likely are firms to outbid residential users for land 
near production centers. The force is also shown in Figures 9-12. 

The theory we have developed in this paper provides a basis for a theory 
of zoning. Rossi-Hansberg (2001) characterizes the efficient allocation in this 
framework. He shows numerically that production in market equilibrium is less 
concentrated than is efficient, because a firm deciding where to locate has no 
incentive to take its effect on other producers into account. He also studies 
policies that can increase the efficiency of land use. 

Dept. of Economics, The University of Chicago, 1126 East 59th Street, Chicago, 
IL 60637, US.A.; relucas@midwayuchicago.edu, 

and 
Dept. of Economics, The University of Chicago, 1126 East 59th Street, Chicago, IL 
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APPENDIX 1: PROOFS OF LEMMAS 1-5 

We repeat Lemmas 1-5 from the text, and prove them. 

LEMMA 1: The correspondence tp: R++ -* R is strictly decreasing, 

w' > , H' E p('), and H E Dp(W) imply H' < H, 

and for every to > 0, every point in p(t) is reached by a unique equilibrium wage path w(r, t) on [0, S]. 

PROOF: It is clear from the construction described above that the wage paths satisfy w(r, w') > 
w(r, t) at all r if to' > to. We have shown that a larger wage strictly reduces employment at a business 
location and strictly increases residential density at a residential location. Thus if w(r, w') > w(r, t) 
for any r, the corresponding stocks satisfy H(s, w') < H(s, t) for all s > r. In the same way, if 
w(r, t) and w(r, t) are two paths both starting from to that satisfy w(r, t) > wb(r, t) for any r, the 
corresponding stocks satisfy H(s, t) < H(s, t) for all s > r. Conversely, no two terminal stocks can 
differ unless their associated wage paths differ at some r. Q.E.D. 

LEMMA 2: For all t, if a, b e p(w) and a < b, then there is a point c e p(w) with a < c < b. 

PROOF: By Lemma 1, there are distinct wage paths, wa(r) and wb(r), say, that reach a and b, with 
Wa(0) = Wb(0) = (o. Since a : b, these paths must diverge at some point, which is to say that there is 
a point r1 such that wa(r) = wb(r) for r E [0, r1] and wa(r) > wb(r) for r E (r,, S]. At this point r,, the 
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corresponding values of the state variable implied by these two paths are Ha(rl, co) = Hb(rl, co) = 0 
and the wage rates satisfy wa (r1) = Wb(r1) = wm(r1). To the right of r1, there are several ways in 
which wa(r) and wb(r) can diverge. We consider these in turn. 

Suppose wa(r) begins to grow at the rate K, while wb(r) begins to decline at the rate K. Then 
define the path w,(r) by w,(r) = wa(r) for r E [0, r1], w,(r) = wm(r) for r E (r1, r1 +?], and w,(r) = 

Wm (r1 + E)eK(r-r -) to the right of r1 + E, where E > 0 is chosen small enough so that wm (r) satisfies 
(2.16) on (r1, r1 + E]. Assume that the path wj(r) is then continued as described above. Then the 
terminal stock c associated with the wage path wc(r) is between a and b, and since wc(0) = o, 
c E p(co) as was to be shown. 

Suppose instead that Wa(r) begins to grow at the rate K while wb(r) = wm(r) for r E (r1, r1 + E], 

for some E > 0, chosen as above. Then let wc(r) = wb(r) for r E [0, r1 + E/2] and wc(r) = 
Wm (r1 + s/2)eK(r-r1 -/2) to the right of r1 + E/2. Continue this path as described above. Then the ter- 
minal stock c associated with wc(r) is between a and b, and c E Dp(W). 

The final possibility, that Wa(r) = wm(r) for r E (r,, r1 +? ] while wb(r) begins to decline at the 
rate K, can be treated in the same way. Q.E.D. 

LEMMA 3: For all t, (p(w) is closed. 

PROOF: We show that {an} E (p(w) and an -* a- imply a- E p(W). If there is some N such that 
n > N implies an = a-, then an E Dp(W) implies ac E p(w). Then without loss of generality we can take 
an :A am for n :A m. 

Since an E 0p(w)) for all n, the wage functions Wan (r) and Wa +1 (r) associated with an and an+l must 
be identical on an interval [0, rn] and different on (r,, S], where r,, has the properties Hn(rn, w)) = 0 
and wan (rn) = Wm(rn). Since the sequence {r,1} so defined lies in the compact [0, S], it has a subse- 
quence converging to a point r E [0, S]. 

All of the wage paths Wan (r) depart from the mixed path, either growing or declining at the rate 
K. One of these two possibilities must occur infinitely often. To be specific, we take this to be growth 
at the rate K. Thus we can choose a subsequence of {an} with associated wage paths {Wan (r)} and 
departure locations {In } such that rin -* r and such that every Wan (r) departs from the mixed path at 
rnn by growing at the rate K. We can take {an } to be this subsequence. 

Now we define the wage path w(r) by w(r) = limn sOO Wan(r) for r E [0, r), w- (r) = wm(F), and 
w-(r) _ wm(r)eeK(r-r) to the right of F. Let a be the terminal stock associated with the path wi(r). Since 
Wi(0) = limn,> Wan (0) = wt, a E (p(W). We have constructed w-(r) in such a way that an -* a. Hence 
a = a, which implies ai E tp(W). Q.E.D. 

LEMMA 4: For all t, (p(w) is convex. 

PROOF: Suppose a, b E (p(w) and a < c < b. By Lemma 2, we can construct a monotonic sequence 
{an} of points in (p(wo), either increasing toward c or decreasing toward c. Considering the first 
case only, suppose the limit of any such increasing sequence is less than or equal to a point d < c. 
By Lemma 3, d E (p(w). But then by Lemma 2 there is a point e E 0p(w) with e > d, a contradic- 
tion. Q.E.D. 

LEMMA 5: The correspondence cp is compact valued and upper-hemicontinuous at all to > 0. 

PROOF: The sets (p(wo) are closed by Lemma 3 and each element of 0p(wO) is associated with a wage 
path contained in the interval [teKS, WeKS]. Thus cp is compact valued. Suppose {ItWn} is a sequence 
of positive numbers with o,n -* t > 0, and that {an} is a sequence of numbers with an E 'P(tn). If 

to,n = to for n > N, for some N, then {an} has a subsequence converging to a point a E pp(o) by the 
compactness of the set (p(to). To show that {an} has a subsequence converging to a point a E pp(o) 
for all sequences {ton}, then, we need only show that on the intervals on the interior of which <(co) 
is a function, it is continuous. 

By Lemma 1, each point an is reached by a distinct wage path w(r, on), and by the construction 
above it is clear that (on -* o implies w(r, on) -* w(r, to) for all r. If (p(to) is a singleton, then the 
path w(r, to) is uniquely defined by Lemma 1. If (p(to) is not a singleton then it is an interval, and 
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we take the path w(r, t) to be the uniquely defined path that reaches the appropriate endpoint 
a E (p(w). The continuity of the wage paths then ensures that t), - to implies H(S, wt) -+ H(S, w), 
or that a, -+ a. Q.E.D. 

APPENDIX 2: PROOFS OF LEMMAS 6-12 

We repeat Lemmas 6-12 from the text and prove them. 

LEMMA 6: T: M+ -*M+. 

PROOF: The function qf is continuous in r, so Tz is continuous. It is nonnegative, because the 
functions /, 0(.; z), and n(.; z) are nonnegative. Q.E.D. 

LEMMA 7: For each r, w(r; z) is continuous in z. 

PROOF: In Figure 2, z appears only in the mixed path wage function wm(r) =- 1(z(r)). If a 
sequence {Zn} converges to z in the norm (4.3), the sequence {im(zn(r))} will converge to ibm(z(r)) 
in this norm, too, since the function im (z), as are all the functions defined in Sections 2 and 3, is 
continuous. Then we follow a construction of a wage path from a given initial to, as described in 
Section 3. The same exponentials are followed, and their meeting times with the mixed path vary 
continuously with z. Hence, the implied stocks H(r, t; z) vary continuously with z. 

Suppose that the equilibrium wage path satisfies w(O) = co*(z) where (p(wo*(z)) is a singleton. 
By Lemmas 1 and 5, (p is a continuous and decreasing function for to close to co*. Since o* (z) = 

{I: H(S, t; z) _ 0}, w*(z) is continuous in z. Then w(r; z) is piecewise exponential with intercept 
continuous in z, and slope sign changes at locations that vary continuously with z. Hence w(r; z) is 
continuous in z. 

Suppose that the equilibrium wage path satisfies w(O) = co*(z) where (p(wo*(z)) is not a singleton 
and 0 E int(p(wo*(z))). Assume further that for locations such that w(r; z) = bm(z(r)), tbm(z(r)) 
satisfies the wage arbitrage condition (2.16) with strict inequality. Then there exists an rm(z) such 
that H(rm(z), co*(z); z) = 0 and w(rm(z); z) = zbm(z(rm)). Notice that under the above assumptions, 
for co close enough to co, H(r, t; z) is continuous in z, and H(r, t; z) = 0 defines to as a continuous 
function of z. Hence rm(z) and co*(z) are continuous functions of z. The argument above and zj(z) 
continuous then imply that w(r; z) is continuous in z. 

Assume that either 0 X int(p(wo*(z))) but 0 E Dp(wo*(z)) or vbm(z(r)) satisfies condition (2.16) with 
equality for some location such that w(r; z) = bm(z(r)). It was proven in Lemma 5 that if <(co) 
is not a singleton lim.,,, Dp(W) E 0p(0-), where (p(wo) is a singleton for to close enough to co. Hence 
since in this case 0 E limw, W*(z) lp(to), by both proofs above o* (z) is continuous in z and so w(r; z) 
is continuous in z. Q.E.D. 

LEMMA 8: The operator T: M+ -* M+ is continuous in the sup norm 

PROOF: We need to show that for every z E M+ and any E > 0 there is an r1 > O such that z' E M+ 
and jjz - z'll < q implies 11 Tz - Tz'll < E. For any z, z' E M+ we have 

Tz - Tz'j = IJ (r, s)s0(s; z)ni(w(s; z), z) ds -A jq (r, s)s0(s; z')ni(w(s; z'), z') ds 

< j| q(r, s)s(6(s; z) - 0(s; z'))ni(w(s; z), z) ds 

+ fI .l (r, s)s0(s; z')(h(w(s; z), z) - n (w(s; z'), z')) ds 

<j A i(r, s)s I 0(s; z) - 0(s; z') I n(w(s; z), z) ds 

s 
+ tp (r, s) s 0(s; z') I n (w (s; z), z) -nh(w (s; z'), z') I ds. 
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By Lemma 7, w(s; ) is continuous in z for all s E [0, S]. Since h is a continuous function in both 
arguments, the second term can be made arbitrarily small by choice of z and z'. 

For the first term, recall that the definition of equilibrium implies that 0(s; z) = 1 if wm (s; z) > 
w(s; z), and 0(s; z) = 0 if wm(r; z) < w(r; z). When wm(r; z) = w(r; z), 0(s; z) E [0, 1] varies continu- 
ously with wm(r; z). From Lemma 7, both wm(s; z) and w(s; z) are continuous functions of z. Hence, 
the points at which 0(.; z) jumps are also continuous in z. Since we are integrating over s E [0, S] 
this implies that the first term can be made arbitrarily small by choice of z and z'. Q.E.D. 

LEMMA 9: For each r, w(r; z) is an increasing function of z, in the sense that z(r) > z'(r) for all r 
implies w(r; z) > w(r; z') for all r. 

PROOF: The function wm(r; z) is increasing in z. This implies (see Figure 3) that if z'(r) > z(r) 
for all r, then for any given to, the associated terminal stocks satisfy H(S, t; z) < H(S, t; z'). Since 
by Lemma 1 H(S, t; z) is strictly decreasing in to, this implies that co*(z) > wo*(z'). It follows that 
w(r; z) > w(r; z') for all r. Q.E.D. 

LEMMA 10: There exists a positive number z such that if z(r) < z for all r E [0, S], then (Tz)(r) < z 
for all r E [0, S]. 

PROOF: Let z be any function on [0, S] that takes values z(r) E [0, z] for some z > 0. We find a 
lower bound for w(r; z) and then an upper bound for h[w(r; z), z(r)]. 

An agent who lives at r divides his earnings w(r; z) into goods consumption c(r; z) and residential 
land ?(r; z) in a way that satisfies (2.7): 

u = U(c(r; z), e(r; z)). 

Clearly, w(r; z) > c(r; z) and 2rS2 > ?(r; z), so part (iii) of Assumption (A) implies 

u < U(w(r; z), 2rS) 

For an agent who works at r and lives at r', we have similarly 

u = U(c(r'; z), ?(r'; z)) < U(w(r'; z), 21S2) < U(w(r; z), 21S2). 

Then part (iii) of Assumption (A) implies 

w(r; z) > U- (u-, 21S)w 

where U-' denotes the inverse function of U given a value of e. 
Part (i) of Assumption (A) implies that 

h[w(r; z), z(r)] < h[w, z(r)] for all r E [0, S]. 

Since z(r) < z for all r, part (i) of Assumption (A) also implies 

h[w, z(r)] < h[w, z] for all r E [0, S]. 

The shares 0(s; z) are bounded by one, and fr(r, s) E [0, 2rT]. Thus 

(Tz)(r) = j (r, s)0(s; z)n(s; z)s ds 

s 

< 2T8j n(w(s; z), z(s))s ds 

<i7TS2h[w, 2]. 

By part (ii) of Assumption (A), z can be chosen so that z(r) < z for all r implies 

r5S2h[w, 2] < . 

Hence if z(r) < z for all r, (Tz)(r) < z for all r. Q.E.D. 

This content downloaded from 128.100.177.16 on Wed, 6 Nov 2013 15:48:10 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


INTERNAL STRUCTURE OF CITIES 1475 

LEMMA 11: The operator T maps the set of uniformly continuous functions z: [0, S] -* [0, z] into 
itself. 

PROOF: By Lemma 6, Tz is continuous and since [0, S] is compact, Tz is uniformly continuous. 
The result then follows by Lemma 10. Q.E.D. 

LEMMA 12: Let M+ be the set of uniformly continuous functions z: [0, S] -* [0, ]. Then T(M+) is 
equicontinuous. 

PROOF: By Lemma 11, for any E > 0 there is an qz > 0 such that Ir - r'l < qz implies Iz(r) - 

z'(r)I < E. Since z E [0, z], we can define f1 = inf[qz ] > 0, where the inequality comes from the fact 
that the space of functions with compact range and domain is closed in the sup norm. Hence T(M+) 
is equicontinuous. Q.E.D. 

APPENDIX 3: A CONTROL PROBLEM RELATED TO SECTION 3 

We state a control problem for allocating resources, given a productivity function z, and prove 
that the equilibrium of Section 3 satisfies a version of the first welfare theorem. 

PROBLEM (P): Given z: [0, S] -* R+, choose functions n, N, 0, c, e, and H on [0, S] so as to 
maximize 

(A.1) J 22rr[O(r)g(z(r))f (n(r)) - (1 - 0(r))N(r)c(r)] dr, 

subject to 

(A.2) 1 > 0(r) > 0, 

(A.3) U (c (r), e (r)) > u-, 

(A.4) n(r), N(r) > 0, 

(A.5) e(r) = N(r) 

(A.6) H(O) = 0, H(S) < 0, 

where the evolution of H is given by equations (2.9) and (2.10). 

THEOREM 3: Under Assumption (A), if the set of functions {I, y, n, N, w, q, Q, H} satisfies condi- 
tions (i)-(vi) in the definition of equilibrium given z, the functions {n, N, 0, c, e, H} solve Problem (P). 
That is, given z, the equilibrium allocation is Pareto-optimal. 

PROOF: We need to show that the functions {n, N, 0, c, e, H} solve Problem (P). By Assumption 
(A) the solution to Problem (P) is given by the conditions of the maximum principle; that is, 

g(z(r))f'(n(r)) = A(r), 

c(r) + U,U(r) A(r) 
N(r)227r(l - 6(r)) 

2lTr(l - 6(r))N(r) = 6r) 
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(A.7) dA(r) |-KA(r) if H(r) > 0o 
dr KA(r) if H(r) <0 J 

and constraints (A.3), (A.5), and (A.6), where A is the co-state and e(r) is the Lagrange multiplier 
associated with constraint (A.3). 

Given w, conditions (ii) and (iii) in the definition of equilibrium imply that 

g(z(r))f'(n(r)) = w(r), 

((r) = U e, 

6 (r) Q (r)Q= U(, 

w(r) = c(r) + (r) 
N(r)' 

plus constraint (A.3) and (A.5). These conditions are equivalent to the ones derived for Problem (P) 
if A(r) = w(r). Notice that if A(r) = w(r), A satisfies condition (A.7) and that the n, N, and 0 implied 
by A then satisfy condition (A.6). Q.E.D. 
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