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Abstract

We use data for metro areas in the United States, from the US Census for 1900–1990, to
test the validity of Zipf’s Law for cities. Previous investigations are restricted to regressions
of log size against log rank. In contrast, we use a nonparametric procedure to estimate
Gibrat’s Law for city growth processes as time-varying geometric Brownian motion and to
calculate local Zipf exponents from the mean and variance of city growth rates. Despite
variation in growth rates as a function of city size, Gibrat’s Law does hold. The local Zipf
exponents are broadly consistent with Zipf’s Law. Deviations from Zipf’s Law are easily
explained by deviations from Gibrat’s Law.
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Keywords: Zipf’s Law; Gibrat’s Law; Urban growth; Estimation of Brownian motion

JEL classification: R00; C14.

1. Introduction

This paper reconsiders an alleged statistical regularity known as Zipf’s Law for
cities. As early as Auerbach (1913), it was proposed that the city size distribution
could be closely approximated by a Pareto distribution. That is, if we rank cities
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from largest (rank 1) to smallest (rankN) to get the rankr( p) for a city of sizep,
then:

log r( p)5 log A2z log p, (1)

where A and z are parameters. Zipf (1949) proposed that city sizes follow a
special form of the distribution wherez 5 1. This expression of the regularity has

1become known as Zipf’s Law.
Gabaix (1999), the latest in a series of notable contributions to this literature,

derives a statistical explanation of Zipf’s Law for cities. He shows that if different
cities grow randomly with the same expected growth rate and the same variance
(Gibrat’s Law), the limit distribution of city size will converge so as to obey Zipf’s
Law.

Gabaix’s contribution is significant because it addresses the validity of Zipf’s
Law as the limit of a stochastic process. But the question of the validity of Zipf’s
Law as an empirical regularity ultimately will rest on reliable econometric
findings. Previous empirical investigations have sought to indirectly estimatez in
Eq. (1) by regressing log size against log rank. Obtaining a regression estimate of
z 51.00 is then taken as confirmation of Zipf’s Law.

Thus, for example, Dobkins and Ioannides (2000) report OLS estimates ofz,
obtained from repeated cross-sections of US Census data for metro areas, that
decline from 1.044, in 1900, to 0.949, in 1990. They also report maximum
likelihood estimates for Pareto distributions that decline from 0.953, in 1900, to
0.553, in 1990, and for Pareto distributions (but using the upper one-half of the
sample only) that decline from 1.212, in 1900, with 112 cities in the entire sample,
to 0.993, in 1990, with 334 cities in the entire sample. Gabaix (1999) obtains an
estimate equal to 1.005, using the 135 largest metro areas in 1991. However,
despite general satisfaction (and occasional awe) with the fits obtained for Zipf’s
Law with US city size data, problems remain. Nonparametric results by Dobkins
and Ioannides (2000) and a finding of a significant quadratic term in a log rank
regression performed by Black and Henderson (1999) continue to raise genuine
doubts about the validity of Zipf’s Law, even as an empirical regularity.

In view of Gabaix’s results, an econometric examination may rest oneither the
size distribution of citiesor the growth process of cities. There are a large number
of studies based on the former approach. To our knowledge, this paper constitutes
the first attempt to use the latter approach to test the validity of Zipf’s Law. We
believe that in either case an approach is needed which is not confined to linear
regression techniques that in effect assume the existence of a representative city
and fit the evolution of its mean. It is for these reasons that this paper reconsiders
the recent econometric work, which alleges to be supportive of Zipf’s Law.

1Its deterministic equivalent suggests that the second largest city is half the size of the largest, the
third largest city a third the size of the largest, etc. When expressed like this, the regularity is often
referred to as the rank size rule.
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Section 2 of the paper briefly reviews the basic statistical approach of Gabaix to
provide the foundation for our econometric findings presented in Sections 3 and 4.
Section 5 concludes.

2. Random growth and size distribution of cities

Let S denote the normalized size of cityi, that is, the population of cityii

divided by the total urban population. Following Gabaix, op. cit., city sizes are
said to satisfy Zipf’s Law if the countercumulative distribution function,G(S), of
normalized city sizes,S, tends to

a
]G(S)5 , (2)zS

wherea is a positive constant andz 51.
Gabaix shows that the distribution of city sizes will converge toG(S), given by

Eq. (2), if Gibrat’s Law holds for city growth processes. That is, if city growth
2rates are identically distributed independent of city size. In Section 4 we test for

this independence and show that, despite some variation in growth rates as
function of city size, Gibrat’s Law does hold for US city growth processes.

Recognizing the possibility that Gibrat’s Law might not hold exactly, Gabaix
also examines the case where cities grow randomly with expected growth rates and
standard deviations that depend on their sizes. That is, the size of cityi at time t
varies according to Eq. (11), ibid., p. 756, replicated here:

dSt
]5m(S )dt 1s(S )dB , (3)t t tSt

2wherem(S) ands (S) denote, respectively, the instantaneous mean and variance
of the growth rate of a sizeS city, andB is a geometric Brownian motion. In thist

case, the limit distribution of city sizes will converge to a law with alocal Zipf
exponent,

S dp(S)
]]]]z(S)5 2 ,dSp(S)

2 iIt is straightforward to verify this claim as follows. Letg it be the total growth of cityi:t
i i iS 5g S . If the growth rates are independently and identically distributed random variables witht11 t11 t

`density functionf(g ), and given that the average normalized size must stay constant,e g f(g )dg 5 1,0

then the equation of motion of the distribution of growth rates expressed in term of the countercumula-
itive distribution function ofS , G (S), ist t

`

S
]G (S)5E G f(g )dg.S Dt11 t g

0

It is satisfied byG(S)5 a /S.
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where p(S) denotes the invariant distribution ofS. Working with the forward
Kolmogorov equation associated with Eq. (3), the local Zipf exponent, associated
with the limit distribution, can be derived and is given by Eq. (13), ibid., p. 757,
again replicated here:

2 2
m(S) ≠s (S) /s (S)
]] ]]]]z(S)512 2 1 , (4)2 ≠S /Ss (S)

wherem(S) is relative to the overall mean for all city sizes. This expression for the
local Zipf exponent in terms of the mean and variance of growth rates forms the
basis of our empirical approach.

Variations of the Zipf exponent from above one to below one are quite critical
for the statistical robustness of the finding that the distribution of city sizes obeys a
Pareto Law. Ifz is less than 1, then the distribution has neither finite mean nor
finite variance, and if it is less than 2, but more than 1, it has finite mean but not
finite variance. Before any further (nearly) mystical significance is attributed to
Zipf’s exponent for US (and other) city size data it behooves us to fully explore its
origins.

Gabaix’s theoretical contribution offers an opportunity for a direct test of a
possible foundation for Zipf’s Law in the form of Gibrat’s Law for city growth
rates. Our empirical approach allows for a city’s growth rate to depend on city size
and to vary according to a law like Eq. (3) above. To do this, we non-
parametrically estimate the mean and variance of city growth rates conditional on
size. This allows us to test the validity of Gibrat’s Law. We then use Eq. (4) to
directly estimate the local Zipf exponents. As we saw earlier, direct estimation of
z(S) has turned out to be difficult to implement with standard parametric
econometric procedures. However, non-parametric estimation lends itself readily
to such a task.

3. Nonparametric estimation of the distribution of growth rates conditional
on city size

We work with the same data set as Dobkins and Ioannides (2000, 2001),
Ioannides and Overman (1999), and Overman and Ioannides (2001). Cities in the
data are defined according to contemporaneous US Bureau of the Census for
metropolitan areas. Populations are from the US census, 1900–1990. There are
112 cities in 1900 and 334 in 1990. There are 1654 observations on growth rates,

3defined over 10-year intervals.
Before we consider conditional means and variances, we briefly consider the

3Dobkins and Ioannides (2001, Appendix A), provides a lot of additional detail, especially with
respect to the need for consistency over time.
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entire distribution of growth rates conditional on city size. To do this, we
non-parametrically estimate a stochastic kernel—a three-dimensional representa-
tion of the distribution of growth rates conditional on city size. Fig. 1a,b report the
stochastic kernel and contour for the entire sample. Fig. 1c,d report stochastic
kernels and contours of stochastic kernels for the top 110 cities, of the largest 135
used by Gabaix. Fig. 1e,f report stochastic kernels and contours of stochastic

4kernels for top 110 cities but excluding the last two decades. All figures use
relative population growth rates against relative population, where relative is
meant with respect to total urban population. Both growth rates and populations
are normalized by subtracting the average for the sample period and dividing by
the appropriate standard deviation.

To better understand the information provided by the stochastic kernel, take any
point on the population axis corresponding to a particular city sizeS, and take a
cross-section through the stochastic kernel parallel to the growth axis. This
cross-section gives us a (non-parametric) estimate of the distribution of growth
rates conditional on city sizeS. The stochastic kernel just reports this conditional

5distribution for all values ofS.
The plot for the entire sample suggests that, except for the very smallest cities,

the conditionaldistribution of growth rates is remarkably stable across city sizes.
6The plot for the largest 110 metro areas, is not quite as clear cut. Growth rates for

the middle size cities appear concentrated, but there are some large outlying
(negative) growth experiences for these cities. Similarly, growth rates for the top
size cities are fairly concentrated except for some large outlying (positive and
negative) growth experiences. Interestingly, experimentation suggests that the
larger variance for the largest cities is driven by very recent experience. Fig. 1e,f
shows the plot for the largest 110 cities excluding the last two decades—now, we
can see that the variance of the growth rate does decline for the largest cities over
most of the sample period, at least to the extent that one can discern from the
contour plots. These findings confirm the importance of looking at the entire
evolution of city sizes and growth rates, as the snapshot offered by 1990 data is

4All stochastic kernels are calculated nonparametrically using a Gaussian kernel with bandwidth set
as per Section 3.4.2 of Silverman (1986). To estimate the kernel,we first derive the joint distribution of
normalized population and growth rates. We then numerically integrate under this joint distribution with
respect to growth rates, to get the marginal distribution of population at timet. Finally, we estimate the
marginal distribution of growth rates conditional on population size by dividing the joint distribution by
the marginal distribution. Calculations were performed with Danny T. Quah’s tsrf econometric shell.
The contours work exactly like the more standard contours on a map. Any one contour connects all the
points on the stochastic kernel at a certain height.

5Both population and growth rates are calculated relative to their (time varying) means. In addition,
when pooling across years, we normalize by dividing by the respective total standard deviation for each
variable. This rescales each variable and thus makes for a clear graphical presentation, but does not
artificially induce any of the results which we discuss subsequently.

6The plot uses data across all 10 time periods for the largest 110 metro areas in 1990. In contrast,
Gabaix uses data just for 1990.
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Fig. 1. Stochastic kernel: population to growth rates.
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clearly not sufficient to derive firm conclusions. They are clearly more informative
than descriptive statistics based on raw data (cf. Dobkins and Ioannides, 2001),
and findings that we have obtained ourselves with less smoothing. Indeed, our
results in this section suggest that there are some stable aspects to the distribution
of growth rates with respect to city size.

4. Nonparametric estimation of the local Zipf exponent

If the growth process governing the evolution of city sizes is stable overtime,
then we can pool data from our panel of cities to calculate city growth rates

7conditional on normalized city size. We can then directly calculate the value of
the Zipf exponent as a function of city size (the local Zipf exponent) as per Eq.
(13).

Pooling across time gives us 1654 population-growth rate pairs on which to base
our estimates. Note that the results are robust to dropping individual years, but that
the sparsity in the time dimension of the data makes it impossible to examine
robustness of results with respect to different time intervals. For each population–
growth rate pair, normalized population,S, is defined as the city’s share of total
urban population in the relevant decade. Growth rate,m(S), is defined as the
difference between a city’s growth rate and the mean city growth rate in the

8relevant decade. The nonparametric estimates of the conditional mean and
variances, and the derivates used to calculate the Zipf exponent, are derived
according to the Nadaraya–Watson method. Unless otherwise stated, bandwidths

¨are calculated as per Eq. (3.31) in Silverman (1986). See Hardle (1990) and
Silverman (1986) for details.

Fig. 2a–b gives nonparametric estimates of the conditional mean and variance
9of growth rates. The figure also shows 5% bootstrapped confidence bands. It is

immediately apparent that Gibrat’s Law does not hold exactly for city growth
processes—both the mean and variance vary with city size. However, note that a
constant variance and constant (zero) mean growth rate across all city sizes would
lie within the 5% confidence bands. This suggests that we cannot formally reject
Gibrat’s Law for city growth processes. Despite this, the fact that Gibrat’s Law
does not hold exactly does have interesting implications for Zipf’s Law as

7Results in Black and Henderson (1999) testing for the stability of the Markov-process governing
city transitions suggests that such pooling is valid.

8One slight modification to Eq. (4) is needed when applied to real data. Namely, as we have done
here, we need to normalize by time varying mean city growth rates, rather than a common mean city
growth rate.

9The bootstrapped confidence bands are based on 500 samples. Sampling is with replacement and
bandwidth is re-calculated for each sample. The bands are based on individual confidence points for

¨each of 1000 grid points on the normalized population axis. See Hardle (1990, Sections 4.2–4.3) for
details.
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Fig. 2. Nonparametric estimates.

suggested in our discussion of Eqs. (3) and (4) above. We return to this issue
below.

We can use these nonparametric estimates to calculate the local Zipf exponent
as outlined above. The results are presented in Fig. 2c. There is one technical
problem with this procedure—the sparsity of data at the upper end of the
distribution. Fig. 2d shows just how severe a problem this is at the upper end of
the distribution. The figure shows 5% bootstrapped confidence bands for the Zipf
coefficient estimate. These bands are so wide at the upper end of the distribution
that we have chosen to restrict the sample range. Thus, the figures actually report
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Table 1
Distribution of pooled observations by city sizes

Population Number of
share observations

0.000–0.002 734
0.002–0.004 433
0.004–0.006 163
0.006–0.008 114
0.008–0.010 46
0.010–0.012 36
0.012–0.180 109

results for city shares ranging from 0 to 10%. Table 1 shows the number of
observations falling in to any given range. From the table, we see that the sample
restriction excludes 145 observations corresponding to cities with population
shares greater than 10% of the urban population. This is equivalent to excluding

10approximately 16 cities over the entire sample period. Even with this choice of
cut-off, the estimates at the upper end of the range (where the Zipf exponent
fluctuates considerably) are based on very few observations. To get round this,

11Fig. 2e reports results for the Zipf exponent estimated using a larger bandwidth.
This oversmooths at the lower end of the distribution, but gives more reasonable
values for the Zipf exponent at the upper end of the distribution.

There is actually considerable variation in the estimates of the Zipf exponent. As
suggested by Gabaix (1999), we can understand deviations from a Zipf exponent
of one, by considering the mean and variance of growth rates for cities in any

12given range. We can see from Fig. 2a that mean growth rates peak for cities
between 0.3 and 0.4% of the urban population, then decline and start rising again
after roughly 0.5% of the urban population. Fig. 2b, on the other hand, suggests
that the variance in those growth rates peaks around 0.4% of the urban population,
then declines for higher values until about 0.85%, when it starts rising again quite
sharply. When cities have high growth rates, small cities constantly feed the stock
of larger cities and we would expect the distribution to decay less quickly. That is,
we would expect a Zipf exponent less than 1. For cities around 0.45% of the urban
population, mean growth rates have fallen somewhat, but the variance of the
growth rate is high. Again, this leads to a low Zipf exponent due to both the
growth effect, and the fact that high variance of city growth rates leads to mixing
of smaller and larger cites. Finally, cities around 0.85% of the urban population

10The largest cities will have been in from the start of the sample and thus we will have nine data
points for each city. However, because even the largest cities change rank over time, see Overman and
Ioannides (2001), different cities may be excluded in different years.

11The bandwidth that we use ish 50.002 which is approximately double the optimal bandwidth used
for Fig. 2a–d.

12That is, by considering deviations from Gibrat’s Law.
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have average growth rates, around average variance in those growth rates and,
consequently, a Zipf exponent close to 1.

Our findings also help explain two interesting features of the size distribution of
US cities. First, as outlined above, estimates of the Zipf exponent for US cities
decline overtime. Gabaix suggests that one possible explanation for this declining
Zipf exponent is that towards the end of the period, more small cities enter, and
that these small cities have a lower local Zipf exponent. Our estimations show that
this suggestion is probably correct. That is, from Fig. 2e we have that the
estimated Zipf’s exponent gently increases for lower sizes until it peaks around
0.5% of the urban population.

Second, comparison of nonparametric estimates of the log rank–log size
relationship to a standard parametric estimate suggests that the slope of the
countercumulative function should increase absolutely and then decrease again at

13the upper end of the range of values. Our finding of a local Zipf exponent that
hovers between 0.8 and 0.9 for most of the range of values of city sizes and then
rises and finally falls is consistent with this pattern.

5. Conclusion

We have proposed and implemented a methodology for testing for the validity
of Zipf’s Law for cities and for calculating local Zipf exponents for the US city
size distribution. We have two key findings. First, Gibrat’s Law broadly holds for
city growth processes. Second, Zipf’s Law does hold approximately for a large
range of city sizes. However, our results suggest that local values of the Zipf
exponent can vary considerably across city sizes. As suggested by Gabaix, these
variations of the local Zipf exponent can be understood by considering mean
growth rate and variances in growth rates conditional on city sizes. Further, our
estimates of local Zipf exponents help us to understand several well-documented
features of the US city size distribution. More fundamentally, our method for
calculating the Zipf exponent is quite applicable to estimation of geometric
Brownian motion models, where the parameters of the stochastic structure are not
constant.
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