
Urban Evolutions: 
The Fast, the Slow, and the Still 

By GILLES DURANTON* 

With the use of French and US data, new and systematic evidence is provided about 
the rapid location changes of industries across cities (the fast). Cities are also 
slowly moving up and down the urban hierarchy (the slow), while the size distri- 
bution of cities is skewed to the right and very stable (the still). The model proposed 
here reproduces these three features. Small, innovation-driven shocks lead to the 
churning of industries across cities. Then, cities slowly grow or decline following 
net gains or losses of industries. These changes occur within a stable distribution. 
The quantitative implications of the model are also explored. (JEL R12, R32) 

A fundamental but much neglected issue in 
urban development is the role played by the 
churning of industries across locations. Jane 
Jacobs (1970) provides early anecdotal evi- 
dence about what the key mechanisms at stake 
might be. In the late nineteenth century, New 
York City was the capital of the photographic 
industry, whereas Rochester, New York, was 
the leading city for precision instruments. 
George Eastman, while working at improving 
optical instruments in Rochester, invented an 
emulsion-coating machine that enabled him to 
mass-produce photographic dry plates. His 
company soon took over the market for photo- 
graphic film. As a consequence, Rochester re- 
placed New York as the main center for the 
industry. Rochester, 50 years later, was still the 
capital of the US film industry, whereas New 
York was that of the duplication industry. Then, 
Haloid Company, a firm specialized in the man- 
ufacturing of photographic papers and operating 

in the shadow of Eastman Kodak, came up with 
a new process for making copies without the 
need for developing. The process, called xerog- 
raphy, made Rochester the new capital of the 
duplication industry in place of New York 
(again), where the previous dominant technol- 
ogy, the varityper, was produced. These two 
industries came to represent an important part of 
Rochester's employment. 

Section I presents novel and systematic evi- 
dence that there is indeed considerable indus- 
trial churning across cities. Industries move and 
cities experience rapid changes in the composi- 
tion of their economic activity. This stylized 
fact, the fast, is closely related to two better- 
known features of urban evolutions: the slow, 
where cities move slowly up and down the 
distribution of city sizes as they grow or decline 
relative to other cities; and the still, where the 
size distributions of cities tend to be stable over 
time and skewed to the right. 

The model in Section II provides microeco- 
nomic foundations for the churning of indus- 
tries across cities. Formally, it embeds an 
extension of Gene M. Grossman and Elhanan 
Helpman's (1991) quality ladder model in an 
urban framework. In each industry, research 
firms try to invent the next step up the quality 
ladder in order to reap monopoly profits. Re- 
search firms may be successful in their own 
industry or may develop a new leading quality 
in another industry. Local spillovers induce re- 
search firms in an industry to co-locate with 
production in the same industry and in most 
industries, successful innovators need to start 
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producing where they did their research. This 
implies that own-industry innovations lead to a 
change of monopoly but to no change of loca- 
tion for an industry. By contrast, cross-industry 
innovations imply not only a change of monop- 
oly but also, typically, a change of location, 
since the old and new monopolies are not gener- 
ally located in the same city. Hence, innovation- 
driven shocks provide the basis for the growth and 
decline of cities so that urban evolutions result 
from the aggregation of small industry-level 
shocks. 

The results derived in Section III show that, 
over a specific time period, a city typically 
experiences employment gains in some sectors 
and losses in others. Since gains and losses 
partially offset each other, net employment 
changes in cities are smaller than gross employ- 
ment flows, and cities move slowly up and 
down the size distribution. Furthermore, these 
changes occur within an approximately stable 
right-skewed distribution of city sizes. Hence 
the model can replicate the three stylized facts 
above. 

The quantitative predictions of the model are 
explored in Section IV using simulations. The 
model is calibrated to replicate French and US 
city-size distributions. The simulations approx- 
imate the US distribution well. The model does 
better than Zipf's law according to a natural 
efficiency criterion.' For France, the perfor- 
mance is also good. Interestingly, the model can 
replicate the nonregular features of the French 
and US Zipf's curves like their concavity, al- 
though it exaggerates them. 

These systematic deviations can be reduced 
or eliminated altogether by considering a natu- 
ral extension of the model. In Section V, the 
returns to innovative activities in cities are af- 
fected by their size: positively, through (reduced- 
form) dynamic agglomeration economies, and 
negatively, through crowding. When agglomer- 
ation economies dominate crowding, the prob- 
ability of innovating in a city increases more 
than proportionately to its size. This reduces the 
Zipf's coefficient in the upper tail and increases 
it in the lower tail. Under empirically plausible 
values for the trade-off between agglomeration 

economies and crowding (Stuart S. Rosenthal 
and William C. Strange 2004), it is possible to 
replicate the US and French urban systems very 
closely. 

There is a large urban growth literature that 
builds on the trade-off between agglomeration 
economies and crowding (see Marcus Berliant 
and Ping Wang 2004, or J. Vernon Henderson 
2006, for surveys). Like this paper, this litera- 
ture often views purposeful innovative activity 
as a key engine of urban growth. Its main em- 
phasis, however, is on how the growth process 
depends on urban agglomeration, and vice 
versa, an issue that is intentionally left aside 
here. On the other hand, the spatial churning of 
industries, the slow mobility of cities in the 
urban hierarchy, and their heterogeneity in pop- 
ulation size are usually neglected in this 
literature.2 

A second important strand of literature, 
which dates back to Herbert Simon (1955), has 
sought to generate distributions of city sizes that 
would obey Zipf's law. This literature, recently 
revived by the work of Xavier Gabaix (1999), is 
successful at generating realistic and stable dis- 
tributions of city sizes with some mobility 
within them. It has two main limitations. First, it 
ignores the churning of industries across cities, 
the main focus of this paper. Second, and more 
subtly, urban evolutions in this literature are 
driven by ad hoc exogenous shocks: amenity 
shocks in Gabaix (1999), preference shocks in 
Juan-Carlos C6rdoba (2003), and productivity 
shocks in Jan Eeckhout (2004) and Esteban 
Rossi-Hansberg and Mark L. J. Wright (forth- 
coming). By contrast, the model presented here 
offers detailed microeconomic foundations for 
technology shocks.3 Such microeconomic foun- 
dations are important because these shocks are 

' 
Zipf's law refers to the well-known empirical claim 

that the size distribution of cities follows a Pareto distribu- 
tion with unitary exponent. See below for more information. 

2 A possible exception is Duranton and Diego Puga 
(2001), who examine the movements of firms from diver- 
sified to specialized cities in steady state. Their focus is 
nonetheless different, since churning occurs across cities 
that keep the same population and sectoral structure. 

3 In a companion paper (Duranton 2006), a Zipf's law 
model with detailed microeconomic foundations is pro- 
posed. This companion paper builds on the product prolif- 
eration model of endogenous growth (Paul M. Romer 1990) 
instead of its quality ladder version. This companion model 
is unable to deal with the churning of industries-a crucial 
focus of the present paper-since existing industries never 
move. Furthermore, this Zipf's law model does not examine 
the higher moments of the city size distribution, nor does it 
examine quantitatively the deviations from Zipf's law. 
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the fundamental drivers of the distribution of 
city sizes in steady state. Furthermore, sound 
foundations for these shocks should provide 
important guidance for future empirical work 
by telling us where and how to look for the 
ultimate sources of urban growth. 

The rest of the paper is organized as follows. 
Section I provides systematic evidence about 
the three stylized facts mentioned above. Sec- 
tion II proposes a simple benchmark model. It is 
solved in Section III, where its main qualitative 
features are discussed. Simulations results are 
discussed in Section IV. The benchmark model 
is then enriched in Section V, where more realistic 
urban assumptions are introduced. Finally, the last 
section contains some conclusions. 

I. Three Stylized Facts about City Sizes 

A. The Fast 

Detailed evidence about the fast, the slow, 
and the still of urban evolutions is provided for 
French and US cities. For the United States, I 
use employment data from the US Census Bu- 
reau County Business Patterns for 272 metro- 
politan areas between 1977 and 1997 at the 
level of 70 two-digit sectors, and population 
data for the same units from the US Census.4 
For France, I used the Enquete Structure des 
Emplois from the French Institute for National 
Statistics. French employment data are col- 
lected at the level of 96 two-digit sectors for 
plants with more than 20 employees and are 
available for 217 French metropolitan areas 
from 1985 to 1993.5 

It is useful to start with a comparison of the 
location patterns of population and employment 
in selected industries in the largest US cities 
between 1977 and 1997. The first two columns 
of Table 1 rank the ten largest US metropolitan 
areas in 1977 and indicate in brackets their 
changes in ranking with 1997. Changes over 
this 20-year period were small, with only the 
growth of the San Francisco area and the de- 
cline of Cleveland to be noted. This can be 
contrasted with the much larger changes in em- 
ployment rankings for three large industries in 
the next three columns. In apparels (a low-tech 
industry), most cities changed rank. Sometimes 
the movements were quite large, with Washing- 
ton losing 7 places while San Francisco gained 
12. In transportation equipment (a mid-tech in- 
dustry), there was some stability at the very top 
(though big changes in absolute employment), 
but New York and Cleveland dramatically 
moved from third to twenty-third and from sixth 
to twenty-first, respectively. Finally, instru- 
ments (a high-tech industry) also exhibits sub- 
stantial changes over the 1977-1997 period. 
Overall, Table 1 suggests much more variability 
for sectoral employment than for aggregate pop- 
ulation. This is shown formally by the last row of 
the table, which sums all rank variations. 

To examine the spatial churning of industries 
in greater detail, an index of gross employment 
reallocation across sectors within each city c 
can be defined following the literature on indus- 
try dynamics (Steven J. Davis and John C. 
Haltiwanger 1998). For each US city, this index 
averages yearly relative employment gains and 
losses over all sectors and years: 

(1) Churn, 

1 1996 70 l e(, t + 1) - ec(z, /) 
20 x 70 ec (t) t = 1977 z = 1 

where e,(z, t) (>0) is employment in metropol- 
itan area c and sector z for year t. It is also 
useful to compute an index of employment re- 

4 County-level data are aggregated into Metropolitan 
Statistical Areas/Consolidated Metropolitan Statistical Ar- 
eas outside New England and into New England County 
Metropolitan Areas in New England using year 2000 defi- 
nitions. To look at churning, one needs sector-level data by 
location, which are publicly available only at the county 
level. Hence documenting the fast one is restricted to the 
largest units, that is, metropolitan areas, which are counties 
or aggregates of counties. However, to explore some impli- 
cations of the model regarding city size distribution, it is 
better to use a more complete sample of cities. This is what 
I do below, where sector-level information is not needed. 
Consistent definitions are used throughout the paper. 

5 The possible (minor) problems caused by the employ- 
ment cutoff are discussed in Pierre-Philippe Combes, 
Thierry Magnac, and Jean-Marc Robin (2004), who also 
provide a more detailed description of these data. There 
were some data problems in 1988 in 15 cities. I excluded 

them here (but will use their population data below when 
looking at the distribution of city sizes in France). Finally, 
note that only a short time period is available because of 
data problems in 1984 and a change of industrial classifi- 
cation in 1994. 
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TABLE 1-RANKINGS AND CHANGES FOR THE TEN LARGEST US METROPOLITAN AREAS, 1977 AND 1997 

Rank in 1977 (and change in rank Total Transportation 
between 1977 and 1997) population Apparel equipment Instruments 

New York 1(0) 1 (+1) 3 (+20) 2(+2) 
Los Angeles 2 (0) 2 (-1) 2 (0) 5 (-3) 
Chicago 3 (0) 11(-3) 8 (+4) 4 (+5) 
Washington 4 (0) 13 (+7) 29 (+8) 16 (-6) 
Philadelphia 5 (+1) 3 (+3) 13 (-3) 7 (+4) 
Boston 6 (+1) 4 (0) 17 (+24) 3 (-2) 
Detroit 7 (+1) 10 (0) 1(0) 20(-1) 
San Francisco 8 (-3) 15 (-12) 9 (0) 6 (-3) 
Cleveland 9 (+5) 18 (+26) 6 (+15) 12(+6) 
Dallas 10 (-1) 5 (+4) 7 (-2) 13 (-5) 
Total rank variation (12) (57) (76) (37) 

Notes: The first number in each column is the 1977 ranking (among 272 metropolitan areas). It is followed (in parentheses) 
by the change in ranking between 1977 and 1997 (where an increase is a decline). The final row sums the absolute value of 
all the changes above. All calculations use the year 2000 definition of US metropolitan areas. Columns 3 to 5 give the ranking 
(and the 1977-1997 change) for total employment in SIC23 (apparel and other textile products), SIC37 (transportation 
equipment), and SIC38 (instruments and related products). 
Source: US Census, County Business Patterns, and author's calculations. 

allocation for each US metropolitan area over 
the 1977-1997 period: 

1 1996 
lec(t 

+ 1) - ec(t)I 
(2) AEmpc= ec 20 

t 1977 
() 

where 
ec(t) 

is total employment in city c for year 
t. Similar indices can be defined for French 
cities between 1985 and 1993 by changing the 
number of sectors and years. 

By definition, Churnm is expected to be larger 
than AEmpc. The interesting question is by how 
much. The difference Chumrn - AEmpc is 
called "excess sector churning." For the index 
of gross city employment reallocation across 
sectors, Churnm, the averages are 8.26 percent 
for US cities and 11.40 percent for French cit- 
ies. They are more than twice as large as the 
averages of 

AEmpc, 
which are 4.10 percent for 

US cities and 5.20 percent for French cities. 
There is, thus, a large amount of excess sector 
churning and in this sense the movement of 
industries across cities is fast compared to the 
slow movement of cities. 

When repeating the same exercise for only 
manufacturing sectors, I found an average of 
9.81 percent for Churnm and 4.82 percent for 
AEmpc in the United States. The figures for 
France are 12.24 and 6.62 percent, respectively. 
This points at more sectoral mobility when only 
manufacturing sectors are considered. 

All of this churning cannot be the result of 
sectoral change. To see this, an index of 
changes in sectoral employment at the national 
level can be computed: 

(3) ASecEmp 

1 1996 
70 

20 70 
0 

le(z, t + 1) - e(z,t)I 
20 x 70 e(t) t = 1977 z 1 

where e(z, t) is employment in sector z for all 
metropolitan areas in year t. Calculations show 
that ASecEmp is very close to 5 percent for both 
France and the United States.6 

To complement this analysis, I used Markov 
transition matrices for employment across areas 
in each sector. For each US metro area, I used 
sectoral employment in 1977, 1982, 1987, 
1992, and 1997. For these years, the distribution 
of employment for each sector was divided into 
four quartiles and the maximum likelihood 
probability of moving between them was 
computed. A convenient way to summarize the 

6 More disaggregated studies typically indicate that sec- 
toral change accounts for only a tiny part of the observed 
employment churning (Davis and Haltiwanger 1998). In 
this respect, and in absence of more detailed sectoral divi- 
sions, sectoral churning will be underestimated since many 
changes of employment within finely defined sectors will 
wash out at a more aggregated level. 
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information is to compute the mean first passage 
time from the lowest quartile to the highest. 
This corresponds to the expected time a city in 
the lowest quartile takes to reach the highest 
quartile of employment in the sector (see Dun- 
can Black and Henderson 2003 for details). In 
the United States, the cross-sector average of 
mean first passage time is 277 years. Despite 
relatively short periods of five years, the transi- 
tion matrices are stationary at a 5-percent con- 
fidence level for 66 of 70 sectors (including all 
manufacturing sectors). 

This mean first passage time of 277 years for 
sectors should be compared to a mean first 
passage time of 1,428 years for the population 
of US metropolitan areas (see below for de- 
tails). Viewed differently, over a five-year pe- 
riod, 97.1 percent of metropolitan areas in the 
top quartile remain in the same cell, whereas 
90.1 percent do so in the bottom quartile. For 
industries in cities, the corresponding figures 
are much lower at, on average, 89.3 percent and 
75.1 percent, respectively.7 This suggests that 
the mobility of employment in sectors is much 
faster than that of city population. 

A second interesting feature is that downward 
mobility is faster than upward mobility. The 
mean first passage time from the top cell to the 
bottom is only 176 years, showing that within a 
sector it takes longer to reach the top than to fall 
from it. Interestingly, this faster downward mo- 
bility is driven by a number of factors consistent 
with the model below. First, sectors can literally 
fall from grace in some cities. Every five years, 
1.5 percent of city sectors in the top decile fall 
to the bottom, whereas less than 1 percent do 
the opposite. Second, more mobility at the bot- 
tom of the distribution implies that any progres- 
sion is easily reversed. Finally (and consistent 
with the model below), note that cities with very 
little employment in some industries tend to 
remain with very little employment. 

The same exercise can be conducted for 
France, using 1985, 1989, and 1993. Given that 

the population threshold for French cities in the 
data is very low and that there is a threshold of 
20 employees per plant, there are too many 
zeroes for the analysis to be conducted mean- 
ingfully with the entire set of French data. The 
sample is thus restricted to the largest 100 cities 
and to the 32 industries for which less than 25 
percent of these cities have zero employment. 
The mean first passage time is 207 years from 
bottom to top, and stationarity is not rejected in 
29 industries. This is much faster than the mean 
first passage time for city employment (446 
years). As in the United States, downward mo- 
bility is also faster than upward mobility (a 
mean first passage time of 154 years instead of 
207). 

These findings are consistent with previous 
work by Black and Henderson (1999). They 
compute mean first passage times for three 
high-tech and three capital goods sectors across 
US metropolitan areas (using a different data 
source). They find that the mean first passage 
from the bottom to the top cell is on average 90 
years for high-tech sectors and 150 years for 
capital goods sectors. In a more systematic anal- 
ysis of industry mobility across cities, Moham- 
mad Arzaghi and James C. Davis (2005) also 
obtain results that are consistent with those 
computed here.8 In detailed industry studies, 
Mark Beardsell and Henderson (1999) and 
Nancy E. Wallace and Donald W. Walls (2004) 
examine the location patterns of the US infor- 
mation technology industry over time. Despite 
different time frames and different definitions 
for this industry, both studies find substantial 
turbulence. According to Beardsell and Hender- 
son (1999), mean first passage time from the 
lowest to the highest cell (of four) for a typical 
US metropolitan area is only 39 years. In their 
detailed examination of employment changes 
by location between 1989 and 2002, Wallace 
and Walls (2004) find both big winners and big 
losers. While employment grew nationally by 
20 percent in the industry over that period, it 

7 
Obviously these figures depend on the cutoffs. Taking 

a more restrictive set of cutoffs (say the fifth, fifteenth, and 
fourtieth centile instead of the twenty-fifth, fiftieth, and 
seventy-fifth) yields longer mean first passage times (427 
years for sectors and 4,027 years for city population). How- 
ever, the much faster relative mobility of city sectors is 
robust to the choice of cutoff. If anything, taking smaller 
cells at the top magnifies the results reported above. 

8 Using a radically different approach for US states be- 
tween 1972 and 1992, Guy Dumais, Glenn Ellison, and 
Edward L. Glaeser (2002) find very small changes in the 
geographic concentration of most industries, but very sig- 
nificant changes in where they concentrate. This again sug- 
gests that industries, even the more concentrated ones, are 
quite mobile over time. These results are confirmed by 
Salvador Barrios et al. (2005) for two European countries. 
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grew by nearly half or more in Washington, DC, 
San Francisco, and Atlanta, despite their high 
initial bases. Conversely, Dutchess, New York, 
and Colorado Springs (twenty-first and twenty- 
third in 1989) lost roughly half of their employ- 
ment in this sector over the same period. All this 
suggests, again, substantial industry mobility. 

B. The Slow 

These high levels of industry churning must 
be contrasted with much slower changes in city- 
wide employment. In their analysis of 39 
French cities between 1876 and 1990, Jonathan 
Eaton and Zvi Eckstein (1997) use Markov tran- 
sition matrices. They assess mobility directly by 
looking at the off diagonal terms. They find that 
about 20 percent of cities change cell (among 
six) every 20 years or so-arguably a small 
proportion. Black and Henderson (2003) also 
find fairly low levels of mobility for 282 US 
metropolitan areas between 1900 and 1990, 
since only about 15 percent of them change cell 
(among five) every ten years. 

To complete this evidence and to provide a 
benchmark for the figures about industry mo- 
bility reported above, the transition matrix anal- 
ysis can be repeated for city-level data. The 
mean first passage time is 1,428 years for the 
United States and 446 years for France.9 In both 
cases, this implies far less mobility than for 
sectors. Despite slower mobility, some aggre- 
gate employment churning is nonetheless ob- 
served. To evidence this, the average index of 
employment changes for US metropolitan areas 
(see equation (2)) is compared to an index of 
employment change for all metro areas: 

1 1996 e(t + 1) - e(t) 
(4) A UrbEmp = e(t) 

20= 1977 e(t) 
t =1977 

where e(t) is the employment of all metropolitan 
areas in year t. A similar index can be defined 
for France between 1985 and 1993. AUrbEmp 
is equal to 2.77 percent for the United States 
and 3.32 percent for France. The difference 
between (2) and (4) can be called "excess em- 

ployment churning" and is equal to 1.34 percent 
for the United States and 1.88 percent for 
France. Put differently, employment changes in 
cities are about 50 percent larger than they need 
to be to accommodate the changes in aggregate 
metropolitan employment. 

C. The Still 

To examine the stability of size distribution 
of French urban areas, Eaton and Eckstein 
(1997) use three different approaches. After 
normalizing the overall French urban popula- 
tion, they first compute the Lorenz curves of the 
spatial Gini coefficients for French urban areas 
for each census year. The Lorenz curves are 
remarkably close to each other. Second, for 
each year of data they estimate 

(5) 

log Rankc 
= Constant - C log Sizec 

+ error,, 

where c is a subindex for cities. They find that 
C, the Zipf's coefficient, remains approximately 
constant over time. Finally, they assume that 
cities follow a first-order Markov transition pro- 
cess, estimate the transition probabilities be- 
tween different size cells, and compute the ergodic 
probability distribution. This ergodic distribution 
is very close to the current distribution. 

For US metropolitan areas, Black and Hen- 
derson (2003) find that their probability distri- 
bution function in 1990 is remarkably close to 
that in 1900. When estimating equation (5) for 
each decade, the Zipf's coefficient is close to 
constant over time. Black and Henderson 
(2003) estimate transitions probabilities for a 
Markov process as well. Like Eaton and Eck- 
stein (1997) on French data, they find that the 
1990 distribution is very close to the ergodic 
distribution. These findings broadly confirm 
those of Linda Harris Dobkins and Yannis M. 
loannides (2000), who use different US data. 

D. Some Links 

The link between the last two stylized facts, 
the still and the slow, is straightforward. Cit- 
ies can be thought of as experiencing popula- 
tion shocks within a steady-state distribution. 
The link between industry mobility and city 
population changes deserves closer scrutiny. 

9 These two figures cannot be compared directly because 
the size thresholds differ widely for the two countries. Note 
also that, in both cases, stationarity is not rejected. 
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Population changes in cities could well be the 
consequence of local industry shocks, but this 
need not be the case. Causality could in princi- 
ple run in the opposite direction. Anecdotal 
evidence suggests nonetheless that technology 
shocks in industries constitute an important 
channel for urban growth and decline. Extreme 
examples include, among others, the demise of 
the steel industry in Pittsburgh and the rise of 
Internet-related industries in San Jose. 

Beyond anecdotal evidence, Edward N. 
Coulson (1999) and Gerald A. Carlino, Robert 
H. DeFina, and Keith Sill (2001) provide more 
systematic evidence on the role of industry 
shocks to explain US metropolitan employment 
fluctuations. Using a time series methodology to 
disentangle common shocks and sector-level 
shocks locally, both papers attribute an over- 
whelming share of local fluctuations to the lat- 
ter. These findings complement those of Olivier 
Jean Blanchard and Lawrence F. Katz (1992), 
showing that in- and out-migration is the main 
channel of adjustment to local shocks in US 
states. 

II. The Model 

The model is a variation of Grossman and 
Helpman's (1991) quality ladder model of 
growth which is embedded below in an urban 
framework. Consider an economy with a large 
(discrete) number of industries, n, each of which 
produces one good that can potentially be sup- 
plied in an infinite number of qualities.10 Qual- 
ity j of good z is given by qj(z) = 8', with 8 > 
1. At time t = 0, the quality of all goods is 
normalized to unity so that any good must be 
improved j times to reach quality j. Quality 
improvements stem from research investments, 
which are described below. 

A. Preferences 

Consider a population of long-lived house- 
holds whose mass is normalized to one and 
whose instantaneous utility is given by 

" 1 J(z,t) 
(6) u(t) 

1 
- log q,(z)d,(z, t) , 

z= L j= 

where dj(z, t) is the consumption of quality j of 
good z at time t, and j(z, t) its highest available 
quality at time t. For reasons made clear below, 
location indices can be ignored for the time 
being. Total expenditure is 

n j(z,t) 

(7) E(t) - pj(z, t)dj(z, t), 
z=lj=l 

where pj(z, t) is the price of quality j of good z 
at time t. The objective of consumers is to 
maximize the discounted sum of their future 
instantaneous utilities 

c- 
(8) U u(7)e-PT dT, 

0 

subject to the intertemporal budget constraint 

(9) J'E(r)e-R() dr 5 W(O), 

where R(7) is the cumulative interest factor be- 
tween 0 and 7, and W(0) is the net present value 
of the stream of income plus the initial asset 
holdings at t = 0. 

The maximization of the consumers' program 
can be performed in two stages. First, allocate 
instantaneous expenditure, E(t), to maximize u(t) 
and then choose the intertemporal allocation of 
expenditure. The maximization of instantaneous 
utility (6) for any positive level of consumption 
expenditure implies equal shares of expenditure 
across industries. Then, to solve for the allocation 
of expenditure within industries, define J(z, t) 
Argminj_(z,ot(pj(z, t)/qj(z)), the quality of good z 
for which the ratio of price to quality is the lowest. 
When J(z, t) is unique (and it is so in equilibrium), 
demand in industry z is then given by 

E(t) forj = J(z, t), 
(10) dj(z, t) = npj(z, t) 

0 otherwise. 

Inserting these demands into (6) yields 

10 
Here, there is a small difference with Grossman and 

Helpman (1991): a discrete set of industries instead of a 
continuum. This prevents the law of large numbers from 
applying at the level of individual cities. 
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1n 

(11) u(t)=-= [log E(t) - log n 
n 

z= 

+ log qj(z, t) - log pj(z, t)], 

where pj(z, t) and qj(z, t) are the price and 
quality of J(z, t), respectively. Equation (11) 
can now be used to solve the optimal consump- 
tion path whose solution is characterized by 

(12) E/E = R - p, 

together with the budget constraint and a trans- 
versality condition. After normalizing total ex- 
penditure E(t) to n through the choice of 
numeraire, equation (12) implies R = p, that is, 
the nominal interest rate is always equal to the 
subjective discount rate. 

B. Technology 

As is standard in quality ladder models of 
growth, there is competition in each industry to 
innovate and occupy the next step up the quality 
ladder. Research is performed by research firms 
(which produce no output in equilibrium). Any 
successful innovator is rewarded with a patent 
giving it a monopoly right over the produc- 
tion of this quality, j(z, "). 

This patent can- 
not be licensed, and it expires only when yet 
another successful innovator manages to de- 
velop the following quality step. Thus, there is 
free entry among price-setting oligopolists for 
qualities below j(z, t). In all industries and 
irrespective of quality, producers need one unit 
of labor to produce one unit of good. 

Free entry and unit marginal costs imply that 
for any nonleading quality, j < j(z, t), the price, 
pj(z, t), is equal to the wage rate, w(t). Together 
with (10), this implies that any quality leader in 
industry z has a revenue pf(z, t)df(z, t) = E(t)/ 
n = 1 when pf(z, t)/qJ(z, t) < pf- l(Z, t)/qJ- I(z, 
t), that is, when pf(z, t) - 6w(t). Prices above 

8w(t) imply zero demand for the industry's 
leading quality. Hence, with unit elastic de- 
mand, any industry leader maximizes its profits 
by selling its quality at the limit price p = 6w. 
Since the assumptions about product develop- 
ment ensure that in every industry there is a 

unique quality leader, this leader is also the only 
active firm in the industry: j(z, t) = J(z, t). 
Using p = Sw and pd = 1, the profit of any 
industry leader is thus 

1 
(13) r = (p - w)d = 1 8 * 

There is free entry in the race to be the next 
leader in each industry. A research firm k in 
industry z, by investing Ak(z) units of research 
labor for a time interval of length dt to work on 
the highest existing quality, j(z, t), succeeds in 
inventing the next step up the quality ladder in 
this industry,j (z, t) + 1, with probability I3Xkdt. 
Thus, as in Grossman and Helpman (1991), 
research firms use the state-of-the-art technol- 
ogy J(z, t) in an industry as a base to invent the 
next step up the quality ladder in the same 
industry. 11 

There is, however, a slight difference with 
Grossman and Helpman' s (1991) framework 
regarding the research technology. A research 
effort targeted at improving industry z may be 
successful, not only in this particular industry 
(as just described), but also in any other indus- 
try because of serendipity in the research pro- 
cess. Frederic M. Scherer (1984) provides very 
strong empirical support regarding the perva- 
siveness of such cross-industry innovations.12 
Formally, a research firm k in industry z, by 
investing Ak(z) units of research labor over dt, 
succeeds in inventing the next step up the qual- 
ity ladder in industry z' 0 z with probability 
yAkdt with y < 3. 

" As in most endogenous growth models, innovations 
have both a private good dimension (patenting) and a public 
good aspect (increase of own-industry stock of knowledge). 
Note, also, that without any cost advantage in research, 
industry leaders do not attempt to innovate since, in case of 
success, the incremental profit would be less than that of a 
new entrant. Thus, in equilibrium, research is performed 
only by would-be entrants. 

12 So far, after the choice of a discrete number of indus- 
tries as opposed to a continuum, this is only the second 
difference with Grossman and Helpman (1991). In their 
setting, none of these differences would change their results 
in any meaningful way. In a spatial setting, however, the 
possibility of cross-industry innovations is crucial to allow 
a research firm located in a given city to "capture" an 
industry located in another city, and thus provides a reason 
for city size to change. 
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In total, a research firm k in industry z, which 
invests Ak(z) over dt, expects to invent the next 
step up the quality ladder in industry z with 
probability 3Ak(z)dt and in each of the other 
industries with probability yhk(z)dt. After de- 
noting A(z) -= f Ak(z) dk, the sum of all research 
investments made by research firms in industry 
z, the probability of an innovation taking place 
in industry z over dt is L(z)dt, where 

(14) L(z)- p3A(z) 
+ y > A(z'). 

z' ,Z 

Note that this probability increases in both the 
industry and the aggregate research efforts.13 

For the sake of clarity, the assumptions pre- 
sented here stick as closely as possible to the 
canonical model of Schumpeterian growth de- 
veloped by Grossman and Helpman (1991): a 
multi-industry model where firms compete and 
invest in research in order to reap the monopoly 
profits associated with the highest quality. Self- 
sustaining and nonexplosive growth is possible 
since new innovations are neither more difficult 
nor easier than past ones. This well-known 
model can now be embedded in a very simple 
urban setting. 

C. Cities 

Consider m cities across which final goods 
are freely tradable. There are many more indus- 
tries than cities: n > m. Workers are freely 
mobile, and there are neither advantages nor 
costs to city size so that any city can accommo- 
date any number of workers at zero cost. This 
last assumption is relaxed in Section V. 

Regarding research, recall that a quality im- 
provement in an industry requires the knowl- 
edge associated with the leading quality. In turn, 
this knowledge is available only to research 
firms located in the same city as the industry 
leader. A possible justification is that one may 

learn about leading technologies only by ob- 
serving how industry leaders produce, through 
small talk with workers involved in production, 
or by being involved indirectly in production as 
supplier. All this requires physical proximity. 
This assumption of local knowledge spillovers 
has received ample empirical support. (See 
Rosenthal and Strange (2004) for a review of 
the literature.) 

Turning to the location of production, note 
that a mechanism is needed to allow industries 
to change location. The possible mobility of all 
industries may, however, lead cities to lose all 
their industries and thus fall into a zero popu- 
lation trap. The simplest way to satisfy these 
modeling requirements is to assume that each 
industry is of one of two types: first-nature or 
second-nature. 

First-nature industries are immobile. They 
provide both a first-nature justification for the 
existence of cities and a way by which to iden- 
tify them. For simplicity, each city hosts one 
such industry. Any successful innovator in a 
first-nature industry, if located in a different 
city, must then relocate at no cost to implement 
its innovation. One may think of some natural 
advantages, like a primary resource, that tie 
these industries to some particular cities. For 
instance, any improvement in coal extraction 
can be implemented only close to coal fields. 

The remaining n - m industries are labeled 
second-nature, in the sense that production must 
take place where the last quality innovation 
occurred. A possible justification for this as- 
sumption is that, in this type of industries, the 
production of the highest quality depends on the 
many workers who took part in the innovation. 
Although they are individually freely mobile, 
coordinating the relocation of these workers to a 
particular city may be difficult.14 In this respect, 
note that in many industries where quality in- 
novations are rather complex, such as in the 
electronics industry, the highest-quality prod- 
ucts are nearly always manufactured close to the 
research centers where they were developed 
(see Masahisa Fujita and Ryoichi Ishii 1998 for 
evidence regarding Japanese electronics firms). 

In summary, first-nature industries are "an- 
chors" that prevent cities from disappearing, 

13 On a more technical note, we consider only the case of 
a single innovation taking place between t and t + dt. 
Following a classical reasoning in the literature, the case of 
two or more innovations taking place between t and t + dt 
can be neglected. Formally, the probability of exactly k 
innovation happening over dt is given by (Ldt)ke-d't/k!. The 
time interval dt can be made arbitrarily small. Conse- 
quently, the probability of two or more innovations taking 
place between t and t + dt can be neglected since it is a 
function of (dt)2 and terms of higher order. 

14 Alternatively, assume that state-of-the-art knowledge 
is too complex to be codified and exported to another city. 
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whereas second-nature industries provide a rea- 
son for the growth and decline of cities.15 

III. Steady-State Growth and City Size 
Distribution 

A. Steady-State Economic Growth 

In absence of costs or benefits to city size, 
profits are independent of location. The model 
can thus be solved for research and growth 
independently from the urban structure. Denote 
by v the stock market value of an industry 
leader. If this stock market value is the same 
across industries (which is the case at the sym- 
metric equilibrium), then firm k, at a cost of 

whk(z)dt, can expect to win (P + (n - 1)y) X 
Ak(Z) X vdt. Profit maximization by research 
firms implies that, in equilibrium, 

w 
(15) v = P + (n- 1)y 

Turning to the stock market valuation of 
firms, industry leaders pay a dividend 7rdt over 
the period dt since their profits are not rein- 
vested in research. The value of an industry 
leader appreciates by idt when no research firm 
succeeds in inventing the next step up the qual- 
ity ladder. This occurs with probability 1 - 
t(z)dt. In the opposite case, when an innovation 
takes place in the industry, the value of its 
leader goes to zero. This loss of v occurs with 
probability L(z)dt. Summing these terms (and 
neglecting the terms in (dt)2) implies that the 
(instantaneous) expected yield for a shareholder 
is 7r + vi - L(z)v. Investing in any firm is risky, 
but perfect diversification is possible since there 
is always one leader, so that profit is constant in 
each industry. Hence, firms are valued so that 
their expected stock market return is equal to 

the safe interest rate, R, which is itself equal to 
the subjective discount rate, p. Consequently 

IT + 
(16) L(z) = p. V 

Equations (13), (15), and (16) imply the fol- 
lowing no-arbitrage equation: 

w ( 1 + (n - 
1)p. (17) -+ 1(Z)+ p. 

In steady state, equations (14)-(16) imply a 
symmetric research effort in all industries: 
A(z) = A. The aggregate probability of an in- 
novation taking place in an industry is then 
L(z) = L = (p + (n - 1)y)A. After inserting this 
in equation (17), rearranging yields the follow- 
ing differential equation guiding (nominal) 
wages: 

1 iw 1 
(18) 

A-= -1 1 
w P + (n - )y w w 

P + (n - l)y' 

This no-arbitrage condition is such that higher 
wages, which make research more expensive, 
have a negative effect on employment in re- 
search. Furthermore, a higher efficiency of re- 
search (p or y) raises returns to this activity and 
thus employment therein. Finally, an increase in 
the discount rate, p, is equivalent to an increase 
in interest rate. This lowers the net present value 
of future profits and thus reduces employment 
in research. 

The model is closed by equating labor market 
demand and supply. Recall that each monopoly 
employs 1/(8w) units of labor and that research 
employment is the same in all industries. Con- 
sequently, aggregate labor demand is equal to 

n[1/(Sw) + A]. Since aggregate labor supply is 
inelastic and equal to one, labor market clearing 
implies 

1 1 
(19) A = 

n 8w 

The evolution of the economy is depicted in 
Figure 1. The (NN) locus is the no-arbitrage 

15 Although this dichotomy between first- and second- 
nature industries may seem a bit extreme, it captures in a 
stylized way the existing opposition between knowledge- 
driven and more footloose industries, on the one hand, and 
those bound by natural resources, on the other. Several other 
mechanisms could have generated results, similar to those 
below, albeit in a more complicated way. For instance, the 
existence of a durable stock of housing with the possibility 
of luring away a few industries (at a small cost) would also 
prevent cities from disappearing. 
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FIGURE 1. DETERMINATION OF THE EQUILIBRIUM 

condition (18) under vi = 0, and the (LL) locus 
is the labor market clearing condition (19). The 
economy must always lie along (LL) for the 
labor market to clear. For values of w below 
(NN), wages and research employment would 
fall to zero. Since expenditure is constant, ex- 
pected profits must rise above research costs, a 
contradiction with free entry in research. A sim- 
ilar argument applies for values of w above 
(NN). The economy must thus always be in 
steady state at point S. 

The steady-state values of w and A solve 
equations (18) and (19) with vw = 0: 

+1 p - + 
n /3 + (n- 1)y 

(21) Ax=- ( 1-1 n \ 8 [/3 + (n - 1) ,]8 

Note first that the steady state is characterized 
by constant employment in each industry for 
both production and research, as well as con- 
stant nominal wages: with aggregate expen- 
diture normalized to n, consumers benefit 
from growth through lower quality-adjusted 
prices. As usual in the endogenous growth 
literature, the subjective discount rate must be 
low enough, i.e., p a (6 - 1)[P + (n - 
1)y]/n, for research employment to be posi- 
tive. 

In steady state, the instantaneous probability of 
an innovation taking place in the economy over a 
period dt is tndt. Using equation (14), this is equal 
to (p + (n - 1)A)ndt, with A given by (21). Each 
innovation then increases the aggregate quality- 
adjusted output by (6 - 1)/n. After simplification, 
the expected growth rate, g, of quality-adjusted 
output in the economy over dt is 

8-1 
(22) goutput = ln X 

n 

This expected growth rate is increasing with the 
size of the quality improvements, 6. There is a 
direct effect caused by larger quality improve- 
ments and an indirect effect, whereby larger 
improvements imply higher profits and thus 
stronger incentives to do research. The growth 
rate also increases with 0 and y, the two effi- 
ciency parameters of research. It is also obvi- 
ously decreasing with the rate of time 
preference, p. More interestingly, growth de- 
creases with the number of industries (keeping 
population constant). This is a dilution effect: 
with more industries, a research investment has 
a probability of success, 0, to yield a monopoly 
over a smaller part of the economy, 1/n, and a 
probability of success, y (lower than 3), over a 
larger part of the economy, (n - 1)/n. 

B. Steady State of the Probability Distribution 
of City Sizes 

Turning to city sizes, recall that each firm 
with a monopoly over the highest quality in an 
industry is the sole producer in this industry. 
Furthermore, because of local spillovers, re- 
search is geographically tied to production. 
Consequently, symmetry across industries and 
free worker mobility imply that the population 
of a city is 1/n times its number of monopolies. 
Thus, the latter quantity is a sufficient statistic 
to describe a city. As a shorthand, the number of 
active industries in a city is referred to as its 
size. 

To explore the properties of the model with 
respect to the size distribution of cities, I first 
solve analytically for the steady state of the 
probability distribution. This is a situation 
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where the number of cities of any size is ex- 
pected to stay constant. More formally, it is 
such that 

(23) E[mi(t + dt)] - mi(t) = 0, 

where mi(t) is the number of cities with i indus- 
tries at time t. Note that this corresponds to a 
limit case for which cities would be perfectly 
divisible. In particular, condition (23) imposes 
point-wise stationarity, which cannot generally 
be satisfied with a finite discrete number of 
cities. This limit case is nonetheless a very 
useful approximation to understand the working 
of the model and to exhibit its main properties. 
A number of other properties, such as conver- 
gence toward steady state and the fluctuations 
around it when cities are not divisible, are ex- 
plored by means of simulations in Section IV. 

Note first that in absence of cross-industry 
innovation between t and t + dt, the urban 
structure is left unchanged. Changes in the size 
distribution of cities happen only when a sec- 
ond-nature industry is improved by a research 
firm located in a different city. In this case, a 
city loses an industry while another gains one. 

Conditional on the occurrence of a cross- 
industry innovation between t and t + dt, the 
number of cities of size 1, m1, increases by one 
unit when a second-nature industry located in a 
city of size 2 is successfully improved by re- 
search in an industry located in another city of 
size 2 or above. All n(n - 1) possible cross- 
industry innovations occur with the same prob- 
ability. Since there are m2 second-nature 
industries in cities of size 2, each of which can 
each be improved by one of n - m, - 2 other 
industries, the conditional probability of this 
event is thus 

m2 X (n - m - 2) 

n(n - 1) 

Again, because dt can be made arbitrarily small, 
the terms in (dt)2 and higher order can be ne- 
glected. Hence, cases like that of a city of size 
3 losing its two second-nature industries over dt 
can be neglected so that equation (24) accounts 
for all possible increases in mil. 

The number of cities of size 1, mi, declines 
by one unit when a second-nature industry, not 

located in a city of size 2, is successfully im- 
proved by research in a city of size 1. Since 
there are n - m - m2 such industries that can be 
captured by m, industries in cities of size 1, this 
event occurs with the conditional probability 

(n- m - m2) X mi 
n(n - 1) 

In the steady state defined by (23), the proba- 
bility of having one more city of size 1 must 
equal that of having one less city of the same 
size. Equality of (24) and (25) implies 

n-2 

In Appendix A, the reasoning is generalized 
to cities of size i > 2. For any i ax 1, equation 
(23) then becomes 

(27) i(n - i - 1)mi,+ = [(2i - l)n 

- im - 2i(i - 1)]mi 

- (i- 1)(n-m-i+2)mi-l. 

Note that (26) is a special case of (27) for which 
i = 1. Appendix A also shows that the sequence 
defined by equation (27) admits the following 
closed-form solution: 

(28) 

m(m - 1) j= m-2n+-m-i+j 
= n-1H n-mi+j 

j=lI 

The first important property of equation (28) 
is that the steady state of the probability distri- 
bution is fully characterized by its numbers of 
cities and industries, m and n. The other param- 
eters of the model affect only the growth rate of 
output: a more innovative research sector 
(higher 3 and y), larger quality improvements 
(higher 8), and a higher supply of investment 
(lower p) all lead to higher growth. In turn, 
higher growth means a faster convergence to- 
ward steady state. However, this steady state is 
itself determined solely by how many cities are 
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FIGURE 2. PLOT OF THE STEADY STATE OF THE 
PROBABILITY DISTRIBUTION 

Notes: The figure plots equation (28) with m = 232 cities 
and n = 1,500 industries (each with 22,800 workers). These 
values are the same as those used below to replicate the 
French urban system. 

competing for the existing industries. A small 
number of external parameters will turn out to 
be a very useful property to assess the model 
quantitatively in Section IV. Nonetheless put- 
ting more structure in the modeling of cities will 
lead to qualify this result in Section V. 

The second important property of equation 
(28) is that mi decreases monotonically with i. 
As shown in greater detail below, this result is 
driven by the fact that larger cities have more 
second-nature industries to lose at home and 
fewer to gain from outside than smaller cities. 
Hence, the expected growth rate of larger cities 
is lower and, in turn, there are fewer of them in 
steady state. The precise shape of the distribu- 
tion in (28) is also explored more in depth 
below. To fix ideas at this stage, it is nonethe- 
less useful to represent equation (28) in a log 
rank-log size plot. Figure 2 does this for m = 
232 cities and n = 1,500 industries (each with 
22,800 workers). These parameter values corre- 
spond to those used in Section IV to replicate 
the French city size distribution.16 

C. Properties of the Steady State: The Fast 

According to the model, over a given time 
period, industries should be experiencing greater 
turbulence than cities, because the growth of a 
given city is the sum of the industries it gains 
minus the industries it loses. Over a given period, 
cities will, in general, experience both gains and 
losses of industries. Consequently, the sum of 
their employment gains and losses across indus- 
tries should be larger than their overall population 
change. This prediction is consistent with the ev- 
idence presented in Section 1.17 

Second, according to the core mechanism of 
the model, more investment in research should 
lead industries to move up the quality ladder 
faster, and faster progress should be associated 
with more spatial mobility. In their study of the 
determinants of industry mobility in the United 
States, Arzaghi and Davis (2005) find some 
robust support in this direction. The spatial mo- 
bility of industries appears to be strongly asso- 
ciated with their employment share of scientists 
and engineers and with their expenditure share 
in R&D. There is also a strong positive associ- 
ation between the mobility of industries and 
their total factor productivity. 

Third, the growth in industry-city employ- 
ment should be negatively related to its initial 
level. This is because industry mobility involves 
a city with an established industry losing it and 
a city without prior employment in this industry 
gaining it. In his analysis of employment 
changes by sector across US metropolitan areas, 
Curtis J. Simon (2004) finds a strong negative 
correlation between initial sector employment 
and its subsequent growth. 

Finally, the model also implies that larger 
cities are more likely both to lose and gain 
industries so that industry churning should in- 

16 This graph must be read with some caution. Recall 
that the steady state of the probability distribution ignores 
the indivisibility of cities. Consequently, the size corre- 
sponding to log Rank = 0 in Figure 2 is that of the 
fractional city of rank 1. There are other larger fractional 

cities of rank 0.99, 0.98, etc. Hence, the fractional city of 
rank 1 is expected to be smaller than the largest indivisible 
city. A similar distortion, albeit smaller, also exists for cities 
of rank 2 and below. Unsurprisingly, in Section IV, the plot 
of the outcome of the simulations using the same parameter 
values (Figure 3, panel A) exhibits a larger largest city, a 
slightly larger second largest city, etc., than Figure 2. 

17 This is consistent with the microfoundations of the 
model, R. Jason Faberman (2005), in his study of employ- 
ment dynamics in cities, finds that high employment growth 
in cities is associated with a strong presence of young 
establishments that tend to experience fast employment 
growth. 
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crease with city size. Furthermore, when a 
cross-industry innovation takes place in a city, 
the likelihood that the improved industry is al- 
ready located there increases with the size of 
that city. To take an extreme case, a city of size 
n - m + 1 can no longer grow since it already 
hosts all second-nature industries. For this city, 
the probability of losing an industry is also 
small, since it can occur only through cross- 
industry innovation originating from a first- 
nature industry in another city. More generally, 
this own-size effect implies that the probability 
of gaining and losing industries increases less 
than proportionately with city size.'18 

To test this important prediction, I regressed 
the log of the index of sectoral reallocation for 
each US metropolitan area between 1977 and 
1997 (as defined by equation (1)) on the log of 
city employment in 1977. Since the index of 
sectoral reallocation is normalized by city pop- 
ulation, a coefficient above -1 signifies an in- 
crease in reallocation with city size. If this 
increase is less than proportional to city size, 
this coefficient should also be below zero. The 
results are supportive of the prediction, since 
the coefficient is -0.21 with a standard error of 
0.016. When restricting the analysis to manu- 
facturing industries, the coefficient is -0.30 
with a standard error of 0.016. Reproducing the 
same exercise for 217 French cities between 
1985 and 1993 yields significant coefficients of 
-0.20 for all industries and -0.14 for manu- 
facturing only. 

D. Properties of the Steady State: The Slow 

Following industry churning, cities in the 
model experience small positive or negative 
shocks, driving them slowly up or down the 
urban hierarchy. This prediction is obviously 
consistent with the slow mobility of cities within 
their distribution documented in Section I. 

Beyond this, the model also predicts that over 
a period of time, there should be a distribution 
of growth rates across cities. Some cities will 
receive many new industries and grow a lot. 
Others, on the contrary, will lose many indus- 
tries and experience a strong decline. By the law 

of large numbers, however, most cities should 
receive both positive and negative shocks and 
enjoy a rate of growth close to the mean. To 
verify this prediction (as well as all the predic- 
tions that follow and do not involve the sectoral 
composition of cities), it is preferable to use the 
most comprehensive sample of cities. I thus use 
data for 232 French urban areas (the same sam- 
ple as in Section I after reintegrating the 15 
cities with data problems at the sectoral level) 
and 922 US metropolitan and micropolitan ar- 
eas (rather than the 272 metropolitan areas used 
above).19 In both countries, a nonparametric 
estimation of the probability distribution func- 
tion for city growth rates yields a single-peaked 
distribution skewed to the right. 

It is also possible to compute the expected 
growth rate of cities as a function of their size. 
Conditional on a cross-industry innovation tak- 
ing place, the probability of a city with i indus- 
tries gaining an industry is equal to the 
probability of the innovation taking place there, 
i/n, multiplied by the probability of the im- 
proved industry being a second-nature industry 
originally located in another city, (n - m - i + 

1)/(n - 1). By the same token, the probability of 
losing an industry is equal to [(i - 1)/(n - 1)] 
x [(n - i)/n]. After simplification, the condi- 
tional expected growth of a city is 

n - im 
(29) g(i) = 

(n - 1)ni 

This quantity decreases with i. Hence, the 
model predicts that city growth should be neg- 
atively correlated with size.20 

The relationship between the growth and size 
of cities has been often investigated. Mean re- 
version, that is, a negative effect of initial size 
on subsequent growth, is a pervasive finding in the 

'8 Going against this is the fact that first-nature industries 
cannot be lost and are relatively more important in small 
cities. However, the own-size effect can be shown to dom- 
inate in the upper tail. 

19 As defined by the US Census Bureau, micropolitan 
areas must have an urban cluster with a population between 
10,000 and 50,000. Micropolitan areas do not overlap with 
metropolitan areas and are smaller than counties, rather than 
entire counties or aggregates thereof. With consistent defi- 
nitions for metropolitan areas, micropolitan areas can thus 
be viewed as an addition of smaller cities to the original 
sample. 

20 Note, however, that when n is large, the range for g(.) 
may be small. As shown below in the simulations, for a 
realistic amount of churning across cities, the growth rate of 
most (if not all) cities may not appear to be significantly 
different from zero over a decade. 
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literature (see Gabaix and loannides 2004 for a 
discussion). Black and Henderson (2003) find 
strong mean reversion for US metropolitan ar- 
eas in their decade-by-decade analysis covering 
the twentieth century. They confirm earlier find- 
ings by Glaeser, Jose A. Scheinkman, and An- 
drei Shleifer (1995), who find that mean 
reversion also holds when controlling for other 
factors associated with urban growth. For cor- 
roboration, the same exercise can be conducted 
for the 232 largest French metropolitan areas 
between 1990 and 1999. When regressing aver- 
age annual growth on log initial population, the 
coefficient is highly significant at -0.11. 

The model also provides a prediction regard- 
ing the variance of the growth of cities. Because 
in large cities cross-industry innovations are 
more likely to improve industries that are al- 
ready located there, the variance of city growth 
is expected to decline with size. Formally, con- 
ditional on a cross-industry innovation taking 
place, the variance of the growth of a city of 
size i is 

in-m-i+l /i+1 2 
(30) 2(i) = - 1 

i-i n-i i-1 

n-1 n i 

i(2n - m + 2 - 2i) - n 

n(n - 1)i 

Simple algebra then shows that this variance is 
a decreasing and convex function of city size, i. 

The relationship between the variance of the 
growth rate of city population and the initial 
size is far less frequently investigated than the 
growth-size relationship. Henry G. Overman 
and loannides (2001) find that second-tier cities 
experience more mobility than first-tier cities in 
the United States, while Eaton and Eckstein 
(1997) find a similar pattern for French cities. 
Among the 922 US metropolitan and micropoli- 
tan areas for the 1990s, only one (Las Vegas) of 
the ten fastest growing cities and none of the ten 
fastest declining cities had a 1990 population 
above 200,000. A similar pattern emerges for 
the 232 French urban areas. Only one city in the 
top ten (Nice) and one in the bottom ten (St. 
Etienne) had a 1990 population above 100,000. 
Thus, smaller cities seem to experience larger 

relative changes, as predicted by the model. To 
be more systematic, I followed Overman and 
loannides (2001) and regressed the "variance" 
of the growth of each city for the 1990s (i.e., the 
square of its growth minus the cross-city mean) 
on the log of its initial size and its square. For 
both French and US cities, the two coefficients 
have the expected sign and are highly signifi- 
cant, indicating a decreasing, convex relation- 
ship between the variance of city growth and 
initial size. 

E. Properties of the Steady State: The Still 

The existence of a steady state with small- 
scale fluctuations around it reproduces the sta- 
bility of the distribution of city sizes. The steady 
state characterized by equation (28) is also 
skewed. To investigate this skewness more in 
depth, mi and mi+1 can be written using equa- 
tion (28). Simple algebra then yields 

mi+ 1 n+ 1-m-i (3 1) = 
mi n-l-i 

It is convenient to note that for any continuous 
distribution m(i), the local Zipf's coefficient, 
ax(i), estimated in a log Population-log Rank 
plot is such that (am(i)/ai)(ilm(i)) = -1 - 
C(i).21 The discrete equivalent of this expression 
for the sequence mi is 

(32) 

mi+i - mi (m - 3)i - n + 1 

mi/i n- 1 - i 

For small cities, the Zipf's coefficient is low, 
which corresponds to a quasi-flat Zipf's curve 
(recall that n > m implies m2 

- mI through 
equation (26)). As larger cities are considered, 
the Zipf's coefficient increases (a8d/i > 0). Put 
differently, the steady-state Zipf's curve is con- 
cave with a Zipf's coefficient below one in the 
lower tail and above one in the upper tail. 

The intuition for this result is the following. 
If cities were to gain or lose industries with a 

21 This corresponds to a local approximation by a power 
law. For instance, when Zipfs law is verified, the proba- 
bility distribution function follows m(i) = ai-2, where a is 
a positive constant (and the counter cumulative is classically 
ai-'). Then, it can be readily verified that C(i) = ax = 1. 
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probability proportional to their size, this would 
imply Zipf's law (Gabaix 1999; Duranton 2006). 
As shown above, the model here deviates from 
this well-known benchmark because the chances 
of losing an industry increase more than propor- 
tionately with city size while the chances of gain- 
ing an industry increase less than proportionately. 
These two features lead to a steady state, which 
is less skewed than Zipf's law in the upper tail. 
This prediction of a concave Zipf's curve is not 
counterfactual. A concave Zipf's curve is in- 
deed observed for the 922 US metropolitan and 
micropolitan areas and for the 232 French urban 
areas (see Figure 3, panels A and B, below, for 
graphical representations). This feature is also 
observed in many other countries (Kenneth 
Rosen and Mitchell Resnick 1980; Kwok Tong 
Soo 2005) and it holds at the world level (Hen- 
derson and Hyoung Gun Wang 2005). 

Finally, with all industries being symmetric 
and having only one location, an obvious pre- 
diction of the model is that larger cities should 
host more industries. Indeed, small cities tend to 
be highly specialized in their manufacturing 
employment, while large cities are more diver- 
sified (Black and Henderson 2003). 

In conclusion, the model is successful at rep- 
licating the three stylized facts mentioned in the 
introduction. Furthermore, there is also some 
empirical support for its other predictions. 

IV. Simulations and Quantitative Predictions 

With the model able to match many qualita- 
tive features of existing city size distributions, 
the important issue at this stage is to know how 
good an approximation it provides in quantita- 
tive terms. Because the steady state of the prob- 
ability distribution explored above is just a limit 
case, a quantitative evaluation may be carried 
out only by means of Monte Carlo simulations. 
The size distributions of cities for France in 
1999 and for the United States in 2000 are used 
as benchmarks. 

To perform these simulations, recall that only 
two parameters must be exogenously set, m and 
n. To limit the number of degrees of freedom, 
the values for these two parameters should be 
obtained from the empirical distributions. Re- 
garding the number of cities, m, the data for 
both countries are quasi-exhaustive, so that 
mFrance = 232 and mus = 922. Obtaining a 
value for the number of industries, n, is more 

difficult. The procedure to derive n from the 
data is detailed in Appendix B. It relies on the 
idea that the system is close to its steady state 
and thus the smallest cities have only one in- 
dustry. This procedure yields nFrance = 1,500 
and nus = 12,820 (or a population per industry 
of 22,800 in France and 20,400 in the United 
States). 

For both sets of parameters, 1,000 sequences 
of simulations are run. Each sequence takes 
place as follows. Initially the n industries are 
distributed across the m cities proportionately to 
their existing population.22 In the US case, this 
allocation implies 898 industries for "New 
York," 606 for "Los Angeles," etc. Then, note 
that the only events of interest are the cross- 
industry innovations, because own-industry in- 
novations leave the distribution of city sizes 
unchanged. It is therefore convenient to redefine 
the time scale and discretize it so that consecu- 
tive cross-industry innovations occur at consec- 
utive dates. This "normalization" is without loss 
of generality, since the previous section showed 
that the rate of innovation did not affect the 
steady state. At the first date, the first "innovating" 
industry is picked at random, with all industries 
equally likely to innovate. Its corresponding "in- 
novated" industry is also drawn from the pool of 
(mobile) second-nature industries. The innovated 
industry then relocates to the city of the innovating 
industry. The process is repeated for subsequent 
dates. By simulating a large number of innova- 
tions (e.g., one million), one can check that the 
steady state is reached, since any number of extra 
draws (e.g., 10,000) has only a minimal effect on 
the average Zipf's coefficient for the 1,000 distri- 
butions (less than 0.01). 

Each sequence of simulations thus yields a 
fictitious population for each city. After ranking 
cities by decreasing log size within each se- 
quence, the mean log size across simulations is 
computed for each rank. This quantity can then be 
plotted and compared to the empirical Zipf's 
curve. Panels A and B in Figure 3 represent the 
results for France and the United States. In both 
cases, the fit is good, albeit seemingly better for 
the United States than for France. These two pan- 
els also plot the 5- and 95-percent confidence 

22 Each city receives, first, the integer part of the ratio of its 
population by the size of an industry (22,800 for France in 
1999 and 20,400 for the United States in 2000). The remaining 
industries are allocated according to the largest remainder. 
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FIGURE 3. BASELINE SIMULATIONS 

Notes: Panels A and B plot the actual distributions of city sizes, Zipf's law, the mean rank-size distributions from the 
simulations, and their 5- and 95-percent confidence bands for France and the United States, respectively. Panels C and D plot 
the actual observations for the normalized growth rates of French and US cities during the 1990s against their 1990 
populations, the nonparametric estimations of these growth patterns (labelled NP), the mean growth rates for each size from 
the simulations, and their 5- and 95-percent confidence bands. Panels E and F plot the actual observations for the normalized 
squared-growth of cities during the 1990s against their 1990 populations, the nonparametric estimations of these (labelled 
NP), the mean-squared growth for each size from the simulations, and their 95-percent confidence band. The 5-percent 
confidence band is 0 throughout for both countries. 

Source: US Census Bureau (1990 and 2000 Censuses), INSEE (1990 and 1999 Censuses), and author's simulations. 
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bands. These bands give an indication of the vari- 
ation generated by the model. Their interpretation 
in terms of statistical test should be downplayed, 
since by construction no simulated city has a pop- 
ulation below 20,000 (because of fixed industry 
size), while this is the case for actual French and 
US cities at the bottom of the distribution. Hence, 
the smallest simulated cities (with only one indus- 
try) always lie outside the confidence bands. 

To evaluate more precisely how well the 
model fits the data, the empirical variances for 
log city sizes, varFrance for 1999 and varus for 
2000, are first computed. Then, the mean squared 
differences between the actual distribution and the 
mean simulated distribution, msdFrance and msdus 
for the same dates, are computed in the following 
fashion: 

m 
(33) msd = 1 [Actual log Size(j) m 

j=1 

- Mean log Simulated Size(j)]2, 

where j is the rank of cities. Finally, the R2 is 
calculated according to R2 = 1 - msd/var. Like 
for the R2 used in regression analysis, it takes a 
value of 100 percent when the mean simulated 
values reproduce exactly the actual values and a 
value of 0 when the mean simulated values are 
all equal. However, unlike "regression R2," 
which result from an optimization, the R2 used 
here can be negative.23 

As an alternative to the model (though it 
ignores industry churning), Zipf's law can be 
evaluated in the same way. Under Zipf s law, 
the expected distribution of city sizes on a log 
size-log rank plot is a straight line of slope -1. 
It should therefore be that the population in a 
"Zipf urban system" is the same as that of the 
empirical urban system it seeks to replicate. 
These two features are enough to characterize a 
counterfactual Zipf urban system. Thus, the fit 
of Zipf's law can be evaluated without simula- 
tions. The Zipf counterfactuals for France and 
the United States are also plotted in Figure 3, 
panels A and B. 

For France, the R2 of the simulations is a 
satisfactory 85 percent. Zipf's law nonetheless 
does better since its R2 is 97 percent. This last 
result is not very surprising since the OLS Zipf 
coefficient for France is -0.97 with a regres- 
sion R2 of 98 percent. Interestingly, the simu- 
lated Zipf s curves are concave like the French 
Zipf s curve, though more so. For the United 
States, the performance of the simulations is 
better than in the French case, with an R2 of 91 
percent. This is also better than Zipf's law 
(R2 = 89 percent). The simulated Zipfs curves 
also replicate the concavity of the US Zipf's 
curve but exaggerate it again. 

In a nutshell, in a log size-log rank plot, the 
Zipf's curve generated by Zipf s law are "too 
straight" while those generated by the model are 
too concave. Since the US Zipf s curve is more 
concave than the French, the model does better 
in this former case and worse in the latter. Note 
finally that because industries are symmetric, 
the simulated Zipf s curves are stepwise contin- 
uous in their lower tail. Having some heteroge- 
neity in industry sizes would, of course, get 
rid of this counterfactual property, since the 
smallest cities would no longer bunch at the 
employment size of the representative industry. 
Introducing some heterogeneity in industry em- 
ployment could also introduce the possibility of 
more dispersion in the upper tail when a number 
of large industries locate in the same city. This 
realistic extension would, however, require a 
very detailed estimation of industry size heter- 
ogeneity and is best left for future work. 

Simulations are also useful to examine how 
well the model can replicate other moments of 
existing city size distributions, namely the 
growth and variance of French and US cities 
during the 1990s. The simulations here are con- 
structed as follow. For each country, industries 
are initially distributed across cities proportion- 
ately to their size in 1990. Then a series of 
cross-industry innovations is drawn and the 
simulations proceed as before. A key question, 
of course, is how many shocks to draw. I as- 
sume that a third of industries are hit by cross- 
industry innovations (i.e., 500 industry shocks 
for France and 4,270 for the United States). This 
is a conservative figure, since for the United 
States between 1987 and 1997, the average of 
the index of reallocation across sectors and cit- 
ies, Churnc (calculated over a ten-year interval 
instead of annual intervals as in equation (1)), 

23 Negative R2 occur when the variance of the difference 
between the empirical distribution and the simulations is 
greater than the variance in the empirical distribution. This 
can happen if the largest simulated city becomes much 
larger than its empirical counterpart. 
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net of population growth is around 40 percent. 
These simulations are repeated 1,000 times. For 
each simulated city, the initial and final sizes are 
compared to compute the growth rate and its 
square. Then, the mean growth of cities for each 
initial size, as well as the 5- and 95-percent 
confidence bands, can be nonparametrically es- 
timated. This information is plotted in Figure 3 
(panel C for France and panel D for the United 
States). These two figures also plot the (normal- 
ized) growth of all cities and a nonparametric 
estimate of the empirical growth-size relation- 
ship for France and the United States. The ex- 
ercise is then repeated for the variance. It is 
plotted in Figure 3, panels E and F. 

The important conclusion here is that a rate of 
sectoral reallocation across cities of a third per 
decade yields (more than) enough variation to 
be consistent with the observed patterns of 
growth. In Figure 3 (panels C to F), only very 
few cities are outside the confidence bands. For 
France, only five cities in 232 had a rate of 
growth outside the bands, while only two had 
too large a variance. For the simulated US size- 
growth relationship, the number of cities out- 
side the bands is larger but still well below 5 
percent (26 in 933), while only four cities were 
outside the variance bands.24 

V. Adding Urban Features to the Benchmark 

The main drawback of the model in Section II 
is its simplistic modeling of cities with neither 
costs nor benefits to size. This fits uneasily with 
the large literature documenting that cities face 
a trade-off between various forms of agglomer- 
ation economies and crowding costs. 

Adding agglomeration economies in final 
production would make labor more efficient in 
larger cities, while crowding costs would make 
it more costly. The profit of monopolists may 
increase or decrease depending on which force 
dominates. Monopoly profits then determine the 
incentives for research firms to invest, which in 
turn affect the growth of cities. Agglomeration 
economies in research would have a more direct 
effect and make research labor more innovative 
in larger cities, while crowding costs would 
make it more costly. 

To solve the model with agglomeration econ- 
omies, one would need to derive a solution to 
the size-innovation relationship accounting for 
these features. Because of worker mobility, gen- 
eral equilibrium effects imply that the expected 
growth of any city depends (nonlinearly) on the 
entire distribution of city sizes so that no closed- 
form solution can be obtained.26 

Instead, the objective of this section is more 
modest. I consider a reduced form, whereby the 
probability of an innovation taking place in a 
city with i industries in steady state is propor- 
tional to i X (i), where tr(i) is the innovative- 
ness of the city relative to its size. This reduced 
form can encapsulate any trade-off between ag- 
glomeration economies in research and crowd- 
ing costs. Crowding costs alone imply i(i)' < 
0, whereas agglomeration economies in re- 
search alone imply I(i)' > 0.27 Since this func- 

24 Using the same R2 approach as previously, the perfor- 
mance of the model can be compared to that of Gibrat's law 
(i.e., all cities face a random growth process with the same 
mean and variance), which is the most popular growth process 
underlying Zipf's law. For both growth and variance, the 
model has a better performance than Gibrat's law for French 
cities and a slightly worse performance for US cities, reversing 
the results above regarding the steady-state distribution. Not 
too much emphasis should be put on this comparison, since the 
differences stem mostly from the lower tail. The high growth 
and variance in the French lower tail is better captured by the 
model, whereas the lower growth and variance in the US lower 
tail is better captured by Gibrat's law. 

25 See Duranton and Puga (2004) for a recent survey of 
the theoretical literature, and Rosenthal and Strange (2004) 
for a review of its empirical counterpart. A single location 
for each industry could, however, be interpreted as agglom- 

eration economies within industries (a.k.a. localization 
economies). 

26 Because of the complex stochastic forward-looking 
nature of the dynamics, even simulations are well beyond 
the scope of this paper. To see this, note that the underlying 
dynamics is non-Markov in the sense that the growth of a 
city between t and t + At affects its expected growth 
between t + At and t + 2At, etc. In turn, this affects ex ante 
investment. 

27 This exercise is "partial" since agglomeration econo- 
mies in production are ignored (or assumed to cancel out 
directly with crowding costs). This omission is not as im- 
portant as it seems. First, with agglomeration effects, the 
level of employment in industries will depend on the size of 
the city. With each industry receiving a constant share of 
expenditure and modest agglomeration economies, this ef- 
fect is unlikely to be large. Second, agglomeration econo- 

rries in production affect the profit of monopolists and thus 
the incentive to invest in research. This second effect can be 
ignored since it is redundant with the direct effect of ag- 
glomeration economies in research. Finally, note that ignor- 
ing agglomeration effects in production makes it possible to 
focus the simulations on the key function qi(i), without 
introducing too many degrees of freedom. 
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TABLE 2-SUMMARY STATISTICS FOR THE SIMULATIONS 

France United States 

o100 C232 R2 (percent) 1loo C232 R2 (percent) 

e = 0 1.28 0.83 85 1.49 0.71 91 

e = 0.005 1.25 0.84 88 1.40 0.73 93 

e = 0.01 1.21 0.84 89 1.22 0.88 80 

e = 0.02 1.15 0.85 92 1.11 1.09 44 
e = 0.025 1.09 0.95 97 1.07 1.16 30 

e = 0.03 1.07 1.02 92 1.04 1.23 16 
e = 0.04 1.04 1.11 80 1.00 1.35 -5 

e = 0.05 1.04 1.17 67 0.96 1.44 -25 
Zipf's law 1.00 1.00 97 1.00 1.00 89 
Empirical values 1.02 0.97 - 1.07 0.82 

Notes: Empirical values are for 1999 (France) and 2000 (United States). The C coefficients reported in the different columns 
are estimated as in equation (5) for the number of cities in subindex. The R2 are evaluated as described above. 

tion, iaxi), is not derived explicitly from an 
underlying model, some external information 
should be used for calibration purposes. 

Unfortunately different proxies for urban in- 
novativeness (such as patenting per capita, rates 
of firm creation, or various measure of city 
education) give fairly different estimates for 
f(i).28 It is thus better to take values for i(i) that 

are within an empirically plausible range and 
look at how changes in 1(i) affect the steady- 
state distribution, instead of using a particular 
data source and a "carefully selected" estimate 
for the size-innovation relationship. In their re- 
view of the empirical literature, Rosenthal and 
Strange (2004) argue that most estimates for 
agglomeration economies imply an elasticity of 
productivity to size in the 3- to 8-percent range. 
These estimates concern gross agglomeration 
economies. After taking crowding costs into 
account, a 0- to 5-percent range is probably 
realistic for net agglomeration economies. 

Using the same simulation approach as pre- 
viously, the effect of agglomeration economies 
in research net of crowding costs can be as- 
sessed quantitatively. The only difference with 
the baseline simulations is that the probability 
of a city generating an innovation is no longer 
proportional to its size, but rather is propor- 
tional to its size times tr(i) = ie, with e being 
allowed to vary over the 0- to 5-percent range. 
The parameter e captures net dynamic econo- 
mies of scale: the probability of innovating 
within a given industry increases by 1 + e 
percent when the size of its city increases by 1 
percent. 

An increase in net agglomeration economies 
in research, e, makes larger cities more likely to 
innovate relative to smaller cities. Hence, the 
expected growth of larger cities relative to 
smaller cities should increases with e. As a 
result, the steady-state distribution should be- 
come more skewed in the upper tail. Smaller 
cities will also find it more difficult to grow so 
that there should be more of them in steady 
state. 

This is exactly what we observe in the sim- 
ulations. A summary of the results is given in 
Table 2. As e increases, the upper tail becomes 
more skewed, as shown by the decline of the 
Zipf's coefficients for the upper tails (ClOO for 
France and C15o for the United States). As e 
increases, there are also more smaller cities. 
This implies a higher Zipf' s coefficient for the 
lower tail. Given that there are many more 
cities in the lower tail than in the upper tail, 
the second effect dominates and a rise in e 
leads to higher Zipf's coefficients for the entire 

28 Patenting (i.e., average number of utility patents per 
capita between 1990 and 1999 for US metropolitan areas 
from the US Patent and Trademark Office) is arguably the 
best proxy, but the estimates are sensitive to the chosen 
functional form. This is in part because there is a peak of 
innovativeness for population between half a million and a 
million (the five most innovative US cities are San Jose, 
California; Boulder, Colorado; Rochester, New York; and 
Saginaw and Ann Harbor, Michigan). Looking at firm cre- 
ation leads to the same broad pattern (a per capita increase 
with city size that tails off for larger cities), but the elastic- 
ities are much smaller (around 1 to 2 percent as opposed to 
10 percent or more). The proportion of university graduates 
in the city work force also implies high elasticities, whereas 
for the average years of education the elasticities are much 
smaller. 
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Panel A. France: 
Simulated and actual city size distributions 
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Simulations: 
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0- 
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Panel B. US: 
Simulated and actual city size distributions 

log Rank 
3. 
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\,og Pop 
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FIGURE 4. SIMULATIONS WITH SCALE EFFECTS IN INNOVATION 

Notes: The figures plot the actual distributions of city sizes, the mean rank-size distributions from the augmented simulations, 
and their 5- and 95-percent confidence bands for France and the United States, respectively. Panel A was produced with 232 
cities, 1,500 industries each with 22,800 workers, and e = 0.025. Panel B was produced with 932 cities, 12,820 industries 
each with 20,400 workers, and e = 0.007 + 0.05/i0.2. 

Source: US Census Bureau (2000 Census), INSEE (1999 Census), and author's simulations. 

distributions (ax232 for France and C922 for the 
United States). Further increases in e lead to 
some convexity in the upper tail and further 
reductions of the concavity in the lower tail. 

Since the baseline case (e = 0) generated 
overly concave Zipf's curves, a positive e may 
thus improve on the performance of the base- 
line. For France, the best fit is obtained for e = 
2.5 percent. With this value of e, the perfor- 
mance of the simulations is better than that of 
Zipf's law. With R2 = 97.2 percent, there is 
little room for improvement because the lump- 
iness of industries makes it impossible to get an 
R2 above 98.5 percent. Panel A of Figure 4 
shows that the mean simulation is indeed very 
close to its empirical counterpart. It also shows 
that all French cities with a population above 
30,000 are within the confidence bands of the 
simulations. For the United States, the R2 is 
maximized for e = 0.5 percent, offering only a 
modest improvement on the baseline case. The 
reason is that, with further increases of e, the 
largest city in the simulations becomes too large 
in comparison to New York. Because of the 
large number of second-nature industries in our 
simulated US urban system, even a small degree 
of unmitigated agglomeration economies can 
lead to a very large dominant city. This problem 

is avoided by allowing (realistically) for ag- 
glomeration effects to tail off when cities get 
very large. For e = 0.007 + 0.05/i0.2, the R2 for 
the entire US distribution is 96 percent, and 
above 99 percent for the 300 largest cities. This 
functional form corresponds to net economies 
of agglomeration of about 6 percent for the 
smallest cities and about 2 percent for a city the 
size of New York. Panel B of Figure 4 shows 
that these simulations are indeed very close to 
the US urban system. 

In conclusion, these richer simulations show 
that the model can accommodate important fea- 
tures of cities that were hitherto ignored. Inter- 
estingly, for empirically plausible values of 
agglomeration effects, the simulations can get 
very close to existing urban systems.29 

29 One should not attempt, however, to read too much 
into these simulations. In particular, agglomeration effects 
cannot be precisely identified by applying a maximum like- 
lihood approach to the simulations. First, the confidence 
bands get fairly wide for the largest cities. Second, higher 
net agglomeration economies in the upper tail can be com- 
pensated by even higher agglomeration economies in the 
lower tail to yield very similar distributions of cities sizes. 
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VI. Concluding Comments 

To summarize, the contributions of this paper 
are the following. First, it provides a simple 
mechanism (innovation-driven shocks at the 
level of industries and cities) to explain the 
growth and decline of cities. This model is able 
to replicate three major stylized facts about ur- 
ban evolutions: the fast, the slow, and the still. 
Through simulations, it can also replicate effec- 
tively various moments of the French and US 
city size distributions. Second, this paper shows 
that the fit of the model is improved when 

standard urban features like agglomeration 
economies and crowding costs are considered. 
The last contribution of the paper is more sub- 
tle. Replicating existing patterns of city size 
distributions may not be as difficult as previ- 
ously thought. This implies that the real test to 
distinguish between different mechanisms like 
the one highlighted here, that of Gabaix (1999), 
and any potential alternative is not whether they 
can replicate observed patterns. Instead the key 
issue regards the empirical importance of these 
mechanisms as determinants of the growth of 
cities. 

APPENDIX A: STEADY STATE OF THE PROBABILITY DISTRIBUTION 

The number mi of cities of size i ax 2 grows by two units when a second-nature industry located in a 
city of size i + 1 is successfully improved by a research firm located in a city of size i - 1. Since there 
are n(n - 1) possible cross-industry innovations, imi,, second-nature industries in cities of size i + 1, 
and (i - 1)mi- 1 potential sources of innovations in cities of size i - 1, this event occurs with 
probability 

[imi+1] X [(i - 1)mi-11 
n(n - 1) 

conditionally on a cross-industry innovation taking place. Then, mi grows by one unit when an 
industry relocates from a city of size i + 1 to a (different) city of any size, except i and i - 1. Since 
there are imi+, industries that can be captured this way by n - (i + 1) - imi - (i - l)mi_ - 
industries, this event takes place with the conditional probability 

(A2) [imi,+] 
X [n - i - 1 - imi - (i - 1)mi-il 

n(n - 1) 

Finally, mi also increases by one unit when research in a city of size i - 1 successfully improves a 
second-nature industry located in a different city of any size but i and i + 1. Since there are (i - 

l)mi_ 1 industries in cities of size i - 1 that can capture one of n - m - (i - 2) - (i - l)mi - imi+ 1 
industries, this event takes place with the conditional probability 

[n - m - (i - 2) - (i - 1)mi - imi+ ] 
X 

[(i- 1)mi- ] 

n(n - 1) 

The number mi of cities of size i ax 2 decreases by two units when a second-nature industry located 
in a city of size i is successfully improved by a research firm located in another city of size i. Since 
there are imi industries that can capture one of (i - 1)(mi - 1) industries, the conditional probability 
of this event is 

(A4) [(i - )(m - 1)] [imi] 
n(n - 1) 

Then, mi declines by one unit when an industry relocates from a city of size i to a city of any size 
except i and i - 1. With (i - l)mi industries that can be captured this way by n - imi - (i - 1)mi- 1 
industries, this event takes place with the conditional probability 
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(A5) [(i - 1)mi] X [n - imi - (i - 1)mi-1 ] 

n(n - 1) 

Finally, mi also decreases by one unit when research in a city of size i successfully improves a 
second-nature industry located in a city of any size but i and i + 1. Since there are imi industries in 
cities of size i that can capture one of n - m - (i - 1)mi - im, + 1 industries, this event takes place 
with the conditional probability 

[n - m - (i - 1)mi - imi+l] 
X [imil 

n(n - 1) 

Using (A1)-(A6), the steady-state condition (23) for i ax 2 yields equation (27) in the text. The 
general solution to the sequence defined by (27), mi+ 1 = {[(2i - 1)n - im - 2i(i - 1)]mi - (i - 
1)(n - m - i + 2)mi-1}/[i(n - i - 1)], is 

F(n - m) F(n - - i + 1) 

A well-known property of F-functions is F(x) = (x - 1)F(x - 1). Using this property in equation 
(A7) yields, after simplification, 

j=m-2 

(A8) mim= m n n-m+j 
j=1 

(For i = 2, it is easy to verify that equation (A8) boils down to equation (26). For i 
- 

2, it can also 
be verified that mi + 1, mi, and mi - 1, as derived from (A8), satisfy equation (27).) 

To derive m1, it must be noted first that summing industries across all possible sizes for cities from 
1 (the smallest) to m - n + 1 (the largest) implies In--+ mi = m. Using equation (A8) then yields 

i=n-m+1 i=n-m+ j=m-2 

(A9) m= r m; = m, I + . 
1n 

- m + 
i= 1i= 1 j= 

To simplify this expression, it is convenient to define the series so = 0 and si = mi + si_- for all 
i > 1. The general solution to this series is 

n- 1 n - i- 1 (n- i- 1) F(n - m +1) 
(A10) si- m, - F(n- 1) F(n- m' m-1 m-1 F(n-1) F(n-m+1-i) 

For the largest possible city size, i = n - m + 1, we have F(n - m + 1 - i) = F(0) = +oo, so that 
the last term in equation (A10) is zero. Consequently, this yields 

n-1 
(All) Sn-m+l 

m- 1 m, 

since, by definition, sn-m+1 = m, ml is given by 

m(m - 1) 
(A12) m = 

n-i 

Finally, inserting equation (A12) into (A8) yields equation (28) in the text. 
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APPENDIX B: SIMULATIONS: DERIVING AN EMPIRICAL VALUE FOR N 

Note first that equation (A12) can be rewritten as 

1 1 

(n m(m - 1) 
+1 

ml 

Then, assume that the smallest m1 cities in the empirical distribution have only a single industry. 
Denote 

Size(ml) 
the average size of the m1 smallest cities in the distribution. In this case, the 

model implies that Size(m1), which is also the size of an industry, is such that 
Size(ml) 

X n = 

Pop, where Pop denotes the overall urban population. Inserting this equality into (B1) implies that 

m1 can finally be computed as the (empirical) fixed-point of 

Pop 
(B2) Size(m) = m(m1) m(m - 1 

MI+1 ml 

In France, the population of the 232 largest cities is 34.2 m. The 36 smallest cities have an average 
population of circa 22,800. These numbers approximately verify equation (B2) (subject to the integer 
constraint regarding the number of cities). We thus obtain nFrance = 1,500. For the United States, the 
overall urban population of the 922 largest areas is 261.5 m. The average population of the 66 
smallest areas is around 20,400. Again these numbers approximately verify equation (B2). They 
imply nus = 12,820. 
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