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THE STRUCTURE OF URBAN EQUILIBRIA: A UNIFIED
TREATMENT OF THE MUTH-MILLS MODEL*
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1. Introduction

A principal challenge facing the urban economist is the formulation of a rigorous
economic explanation for a variety of observed regularities in the spatial struc-
tures of real-world cities. The most obvious among these is the dramatic spatial
variation in the intensity of urban land-use. Buildings are tall near the centers of
most cities, while suburban structures embody much lower ratios of capital to
land. Providing a precise explanation of this pattern is an important goal of
urban economic analysis. Among other obvious regularities requiring explanation
is building height variation among (as opposed to within) cities. Buildings near
the centers of large urban areas appear to be much taller than those near the
centers of small cities, and a successful economic model must be able to isolate
the causes of this observed difference.

Urban economics has met the challenge of scientific explanation, with consider-
able success. The last twenty years have seen the emergence and refinement of a
simple yet powerful model of urban spatial structure that successfully explains the
principal regularities observed in the urban landscape, including those mentioned
above. This model, which derives from the work of Alonso (1964), Mills (1967,
1972b), and Muth (1969), is built around the key observation that commuting
cost differences within an urban area must be balanced by differences in the price
of living space. This compensating price variation, which reconciles suburban
residents to long and costly commuting trips, has far-reaching implications for
the spatial structure of the city. While Alonso explored these implications in a
framework where individuals consume land directly, Muth and Mills analysed a
more realistic model where land is an intermediate input in the production of
housing, which is the final consumption good.

The purpose of the present chapter is to provide a unified treatment of the

*I1 wish to thank Mahlon Straszheim, Takahiro Miyao, and Edwin Mills for comments. Any errors
are mine.
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Muth-Mills version of the urban model, deriving the well-known results on the
internal features of cities in a framework which is then used for comparative
static analysis. This unified approach offers clear insight into the structure of the
urban equilibrium. We begin by deriving the model's implications regarding the
intracity spatial variation of the important urban variables (the central city-
suburban building height differential noted above is, for example, shown to be an
implication of the model). While the approach is somewhat different, the
conclusions of the analysis are familiar from Muth (1969). Next, we offer a
comparative static analysis of the urban equilibrium, deriving results that are
useful in comparing the spatial structures of different cities (the large city-small
city building height differential noted above is derived from the model). This
discussion generalizes Wheaton's (1974) comparative static analysis of the Alonso
model to an urban economy with housing production (many mathematical
details are relegated to an appendix). It should be noted that while the method of
analysis (and many of the results) are familiar from Wheaton, comparative static
analysis of the Muth-Mills model has not previously appeared in the literature.'
Finally, the chapter concludes with a short survey of papers that attempt to
modify in various interesting and realistic ways the basic assumptions of the
model.

2. Intracity analysis

In the stylized city represented by the model, each urban resident commutes to a
job in the central business district (CBD) along a dense radial road network.
Commuting cost per round-trip mile equals t, so that commuting cost from a
residence x radial miles from the CBD is tx per period (the CBD is a point at
x =0).2 All consumers earn the same income y per period at the CBD, and tastes
are assumed to be identical for all individuals. The common strictly quasi-
concave utility function is v(c, q), where c is consumption of a composite non-
housing good and q is consumption of housing, measured in square feet of floor
space. Note that although real-world dwellings are characterized by a vector of
attributes, the analysis ignores this fact and focuses on a single important
attribute: interior living space. While the price of the composite good c is
assumed to be the same everywhere in the city (the price is taken to be unity for
simplicity), the rental price per square foot of housing floor space, denoted p,
varies with location.

Since consumers are identical, the urban equilibrium must yield identical utility

'While Mills (1967, 1972b) was the first to analyse the overall equilibrium of an urban economy, his
analysis lacked generality.

2All the results of the analysis can be derived for a general commuting cost function T(x), provided
the function satisfies a rather weak requirement (T"<O0 guarantees satisfaction of this requirement).
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Figure 1.

levels for all individuals. Spatial variation in p provides the key to achieving
equal utilities throughout the city. In particular, the price per square foot of
housing will vary over space so that the highest utility level attainable at each
location equals some constant u. Substituting for c in the utility function using
the budget constraint c +pq =y-tx, the requirement that the maximized utility
level equals u can be written

max v(y - tx - pq, q)= u. (1)
{q}

Eq. (1) reduces to two separate statements. First, since consumers choose q
optimally conditional on p, the first-order condition

2 (yt - pq, q)4 (2)
vl(y-tx-pq, q)

must hold (subscripts denote partial derivatives). The key additional requirement
is that the resulting consumption bundle must afford utility u, so that

v(y - tx -pq, q) = u. (3)

The simultaneous system composed of (2) and (3) yields solutions for the
unknowns p and q. The solution values depend on the parameters of the equation
system: x, y, t, and u.

Figure 1 illustrates various solutions to (2) and (3). The indifference curve with
the given utility level is plotted first. Then a budget line with c-intercept equal to
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y -tx is drawn so that it is tangent to the indifference curve. The absolute slope of
the resulting line equals p, and q is read off from the tangency point. Note that
this procedure is the reverse of normal consumer optimization, although the
diagram is identical. Utility is fixed, then a price is determined, rather than vice
versa. The determination of the urban utility level will be discussed below.

The nature of the dependencies of p and q on the parameters x, y, t, and u can
be derived mathematically by totally differentiating (2) and (3). The results can
also be inferred diagrammatically from Figure 1. For present purposes, the most
important relationships are those between p and x and q and x. These re-
lationships indicate the spatial behavior of housing prices (per square foot) and
housing consumption within the city. Totally differentiating (3) with respect to x
yields

-V t+ p +p )q + v, aq =0 (4)

Since 2 =pu, by (2), (4) yields

.p r < 0. (5)
ax q

Thus, the price per square foot of housing is a decreasing function of distance x to
the CBD. This result, which is of fundamental importance, can be seen directly in
Figure 1. An increase in x from x0 to xl reduces the c-intercept of the budget line,
as shown in the figure, so that reestablishing the tangency requires a counter-
clockwise rotation of the line around the new intercept. Since the budget line's
absolute slope decreases, it follows that p declines as a result of the x increase.

As can be seen from Figure 1, the associated change in q (from q to q) is
positive, establishing that q is an increasing function of x. Concretely, this means
that dwelling sizes increase moving away from the center of the city, a prediction
which appears to be confirmed in the real world. Note that since utility is
constant, the increase in q corresponds exactly to the substitution effect of the
housing price decrease. Formally, it follows that

aq ap 0, (6)

where <0 is the slope of the appropriate income-compensated (constant-utility)
demand curve.3

The intuitive explanation behind the spatial behavior of p and q is straightfor-
ward. Consumers living far from the CBD must be compensated in some fashion
for their long and costly commutes (otherwise, no one would live voluntarily at
great distances). Compensation takes the form of a lower price per square foot of

3 Note that r=dMRSj/qluji,y=,, a negative expression given the convexity of indifference curves
(MRS v,2 /u i).
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housing relative to close-in locations. The resulting decline with x in the price of
housing causes consumers to substitute in its favor, leading to larger dwellings at
greater distances.4

The influences of the parameters y, t, and u on p and q tell us nothing
immediate about the internal structure of the city. However, since the various
partial derivatives play a crucial role in the comparative static analysis presented
below, derivation of their signs is helpful at this point. The discussion will make
use of Figure 1. Since an increase in y has the same effect as a decrease in x on the
c-intercept of the budget line, it follows that a rotation opposite to that discussed
above is needed to restore a tangency. By the above arguments, it then follows
that5

Op>0, <0. (7)

Similarly, since an increase in t has the same effect on the budget line's c-intercept
as an increase in x, it follows that

aP<0, ->0. (8)

Finally, an increase in u holding x, y, and t fixed raises the level of the indifference
curve but leaves the c-intercept of the budget line unchanged. A counterclockwise
rotation of the line around its fixed intercept is therefore required to restore the
tangency, reducing p. The effect on q of the increase in u depends on whether
housing is a normal good. If housing is normal, then rotation of the budget line
leads to an increase in consumption, as shown in Figure 1 (housing consumption
rises from qO to q). Therefore, when housing is a normal good, it follows that6

4Note that (6) together with (5) implies that 2p/0x2 >0, or that p is a convex function of x. The
same conclusion would hold with a general commuting cost function T(x) as long as T"<O. Also,
note that while the price per square foot of housing declines with x, dwelling rent, which equals pq,
may either rise or fall. This follows because a(pq)/ax=(1 +plq)qOpax-_(1 +r)qOp/Ox, where a is the
income-compensated price elasticity of demand. Note that :(pq)/Ox 0 as a 1 -1.

SNote that aq/ay bears no relation to the regular income effect since utility is held fixed.
'The results in (7), (8), and (9) are derived mathematically by total differentiation of (2) and (3) with

respect to Y, t, and u. This yields

ap 1 ap -x ap -1
->0, =-0-<, -= <0

Oy q at q au qvu

Oq p Oq ap aq =p OMRS 1]
- _-<O - = _p _ 1I>0.

ay ay at at au au ec Ir

The sign of aq/au is derived using the inequality MRS/ac>0, which must hold for q to be a normal
good. The inequality states that indifference curves become steeper moving vertically in Figure 1.
Together with convexity, this property implies that a parallel upward shift in the budget line moves
the tangency point to the right.
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-P<0, -q>0. 19)

Turning now to the supply side of the housing market, it is assumed that
housing square footage is produced with inputs of land and capital N according
to the concave constant returns function H(N, 1). This function gives the number
of square feet of floor space contained in a building with the specified inputs.7

Concavity of H means among other things that H <0 (capital's marginal
productivity diminishes), reflecting the fact that as buildings become taller, capital
is increasingly consumed in non-productive uses such as stairways, elevators, and
foundations.

An important feature of the model is that the issue of the durability of
structures is avoided via the implicit assumption that housing capital is perfectly
malleable. In effect, the analysis portrays producers as able to costlessly adjust
both their capital and land inputs from period to period. Accordingly, producers
are viewed as renting the inputs rather than purchasing them outright, an
assumption which may appear particularly unrealistic for the capital input. It
should be realized that the assumption of malleable capital is invoked to achieve
analytical tractability. Models in which the durability of structures is explicitly
recognized are more realistic than the present one but considerably more
complex. s

Recalling that floor space is rented to consumers at price p, it follows that the
revenue from a building is pH(N, 1). Note that the building is implicitly being
divided up into dwellings (apartments) of the size demanded by consumers.
Letting r denote land rent per acre (an endogenous variable) and i denote the
spatially-invariant rental price per unit of capital, it follows that producer profit
is pH(N, )-iN- rl. Since H exhibits constant returns, profit may be rewritten as
1(pH(N/1, 1)-iN/ - r). To simplify notation, let S denote the capital-land ratio
N/I, which is an index of the height of buildings (S will be referred to as structural
density). Substituting S, profit can be rewritten as

1(ph(S) - iS - r), (10)

where h(S)-H(S, 1) gives floor space per acre of land. The function h satisfies
h'(S)_ H(S, 1)>0 and h"(S) H,,(S, 1)<0.

For fixed , the producer chooses S to maximize profit per acre of land (the
expression in parentheses in (10)), and land rent r adjusts so that profit per acre is
zero. Since total profit is then zero regardless of the value of , the scale of the

'It is easy to see that in order for this production function to be well-defined, the fraction of the
land area covered by the capital must be specified in advance. For a model where the open space
surrounding the structure gives utility to the consumer and consequently becomes a choice variable of
the producer, see Brueckner (1983).

SFor a survey of such papers, see the chapter by Miyao in this volume.
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producer's building (represented by ) is indeterminate. From (10), the first-order
condition for choice of S and the zero-profit condition are

ph'(S) = i, (11)

ph(S)- iS = r. (12)

Recalling that p is already a function of x, t, y and u from the solution to the
consumer problem, it follows that (11) and (12) determine S and r as functions of
these same variables and i. Totally differentiating (11) and (12) with respect to x,
t, y, and u yields

h' + ph"- =0, (13)

aS ap ar(ph' - i) + h= , =x,t,y,u (14)

Recalling (11), (14) and (13) yield

ar ap
a =h ap (15)

as _ h' ap
at=- ph" ~a 4 =x ,ty, u. (16)a- ph" ' xy

The effect of a change in the capital cost parameter i is not considered in the
analysis.

Since h"<O, (16) implies that as/q has the same sign as ap/a¢, while ar/a
and ap/a¢ also have the same sign by (15). Recalling (5), the important results

<r0, as 0, (17)

are then immediate. Thus, land rent and structural density are both decreasing
functions of x, so that land is cheaper and buildings are shorter farther from the
CBD. The latter result shows that the model successfully predicts the decline in
building heights over distance that is observed in real-world cities. The intuitive
explanation for the results in (17) is that lower land rents are required at greater
distances to compensate producers for the lower price per square foot of housing.
The resulting decline with distance in the relative price of land causes producer
substitution in its favor, leading to lower structural densities.

An additional variable of interest is population density, denoted D. Assuming
without loss of generality that households each contain one person, D is given by
h(S)/q, which equals square feet of floor space per acre divided by square feet of
floor space per dwelling, or dwellings (persons) per acre. Since aq/ax>O and
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aS/ax <, it follows immediately that aDlax <o; population density is a decreas-
ing function of distance. The intuitive reason is that since buildings are shorter
and the individual dwellings contained within them are larger at greater dis-
tances, fewer dwellings and hence fewer people fit on each acre of land. Note that
the spatial behavior of population density is a joint result of consumer and
producer decisions; consumer substitution in favor of housing and producer
substitution in favor of land as x increases are together responsible for the decline
of density.

Summing up, the analysis so far has yielded results on the internal structure of
cities that appear to recapitulate reality. In particular, the model has predicted
that the price per square foot of housing, land rent per acre, and structural and
population density are all decreasing functions of distance to the CBD, with
dwelling size an increasing function of distance. While these conclusions appear
broadly consistent with the results of casual empiricism, systematic empirical tests
of the model's predictions have focused mainly on the population density
variable. A wealth of evidence has accumulated confirming the negative asso-
ciation between density and distance predicted by the model.9

3. Comparative static analysis

While we have seen that the Muth-Mills model does a good job of predicting
observed regularities in the internal structures of cities, an equally important goal
of the model is to explain intercity differences in spatial structures. For example,
the model should be able to explain the building height differential between large
and small cities noted in the introduction.

Intercity analysis requires development of the two conditions that characterize
the overall equilibrium of the urban area. The first equilibrium condition requires
that housing producers outbid agricultural users for all the land used in housing
production. Letting x denote the distance to the urban-rural boundary, this
condition translates into the requirement that urban land rent equals the
agricultural rent rA at . Since r/lx<O, urban rent will exceed rA inside x, as
required, and fall short of r beyond x. Recalling that r depends on y, t, and u in
addition to x, the first equilibrium condition may be written'@

r(x, y, t, u)=rA. (18)

9 See, for example, Muth (1969). For an analysis of the conditions under which the commonly-fitted
negative exponential density function will be the correct specification, see Brueckner (1982).

'°Recall that while r depends on the capital cost parameter i, this variable is not of interest in the
present analysis.
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$

Figure 2.

Figure 2 presents a graphical representation of condition (18) (note that the level
of the r function will depend on y, t, and u). M

The second equilibrium condition requires that the urban population exactly
fit inside x. To formalize this condition, let 0 equal the number of radians of land
available for housing at each x, with <0<27 (the remaining land will be
consumed by the transportation network and topographical irregularities). Then,
note that the population of a narrow ring with inner radius x and width dx will
approximately equal OxD(x, y, t, u)dx, where the functional dependence of popu-
lation density has been made explicit. The condition that the urban population L
fit inside x may then be written

T OxD(x, t, y, u) dx = L. (19)

The interpretation of the urban equilibrium conditions depends on whether the
city is closed or open to migration. In the "closed-city" case, where migration

"The curvature of the land rent contour can be derived by using (15) to compute
2 r aS p ah2p

ax' ax axX2

Since this expression is positive by previous results, the land rent contour is convex, as shown in
Figure 2.

829



J.K. Brueckner

cannot occur, the population variable L is exogenous and the urban utility u is
determined along with x by balancing of the supply and demand for housing, as
expressed in conditions (18) and (19). These conditions constitute two simul-
taneous equations that determine equilibrium values for u and x as functions of
the parameters L, rA, y, and t. In the "open-city" case, costless migration ensures
that the urban residents are neither better off nor worse off than consumers in the
rest of the economy. In this case, the urban utility level is fixed exogenously, and
population L becomes endogenous, adjusting to whatever value is consistent with
the prevailing utility level. The boundary distance x remains endogenous, and rA,
y, and t remain as parameters. Note that in the open-city case, the system (18)-(19)
is recursive instead of fully simultaneous. Eq. (18) determines x directly in terms
of the parameters, and (19) then gives L.

With the urban equilibrium conditions established, the stage is now set for
comparative static analysis." The closed-city case is discussed first, with atten-
tion then turning to the open-city case.

3.1. The closed-city case

The goal of the analysis is to deduce the impacts of changes in the parameters L,
rA, y, and t on the spatial size of the city (x), housing prices (p), land rents (r),
dwelling sizes (q), and building heights (S). The first step in the analysis is total
differentiation of the equation system (18) and (19), which yields the comparative-
static derivatives au/8 and x:/8, q = L, rA, y, t. While this calculation shows the
impact of parameter changes on x, more work is required to derive the effects on
p, q, r, and S. Recalling that at a given x, each of these variables depends on y, t,
and u, the sources of change are clear. When y or t increases, there is both a direct
effect and an indirect effect operating through the induced change in u. When L or
rA increases, the indirect effect alone is felt since p, q, r, and S do not depend
directly on population and agricultural rent. Since the analysis outlined above is
quite complex, details are relegated to an appendix.

Before proceeding, it is important to realize that the discussion will focus on
the impact of parameter changes on the equilibrium of a single city. Once the
differences between the pre-change and post-change cities are known, the con-
clusions can be used to make intercity predictions (separate cities with parameter
levels corresponding to the pre- and post-change values can be compared).

'2A final point regarding the urban equilibrium concerns the disposition of the rent earned by
urban land. Since urban residents subsist on wage income alone, it is clear that the analysis implicitly
assumes that rent is paid to absentee landlords living outside the urban boundary. See Pines and
Sadka (1986) for comparative static analysis of a model where land is internally owned.
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3.1.1. The effects of an increase in L

It is shown in the appendix that and u are respectively increasing and
decreasing functions of L, or that

U->0, a<0. (20)

A population increase thus causes the city to expand spatially and leads to a
lower urban utility level. The population increase will also lead to changes in p, q,
r, and S at each location. Since y and t are fixed, the impact of the increase in L is
felt entirely through the induced change in u, as explained above. The impact on
p is given by

dp Op au
d-L uL >0, (21)

where the inequality follows from (20) and the fact that p/Ou is negative (see (9)).
Eq. (21) indicates that the price per square foot of housing rises at all locations as
a result of the population increase.

The total derivatives of q, S, and r with respect to L are given by expressions
analogous to (21), with p replaced by the appropriate variable. Since the sign of
Oq/au is positive by (9) and since r/Ou and as/au share the negative sign of ap/au
by (15) and (16), it follows using (20) that

dq dr dSdq<0, >0, >0. (22)dL ' dL dL

Thus, an increase in L leads to smaller dwellings, higher land rents, and higher
structural densities (taller buildings) at all locations. Since q falls and S rises, it
follows that population density rises everywhere (dD/dL> 0).

It is helpful to trace through the effects of the population increase using a
heuristic approach. When the city starts in equilibrium and population increases,
excess demand for housing is created at the old prices: the urban population no
longer fits inside the old . As a result, housing prices are bid up throughout the
city. On the consumption side of the market, this increase in prices leads to a
decline in dwelling sizes at all locations. On the production side, the price
increase causes land rents to be bid up everywhere, and higher land rents in turn
lead producers to substitute away from land, resulting in higher structural
densities. Since buildings are taller and dwellings smaller, population density rises
everywhere, so that more people fit inside any given x. Finally, the rise in the level
of the land rent function leads to an increase in the value of x that satisfies (18)
(Figure 3 shows the upward shift in the land rent contour (from r to r,) together
with the increase in x (from xa to xb)). The resulting spatial expansion of the city,
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Figure 3.

together with the increase in population densities, tends to eliminate the excess
demand for housing, restoring equilibrium.

By describing what appear to be instantaneous changes in the structure of the
city as a result of the population increase, the above discussion ignores the fact
that buildings are not easily or quickly replaceable. This, of course, is a reflection
of the assumption that housing capital is perfectly malleable. Realistically, one
would expect the adjustments described above to unfold over a long time period
as buildings are torn down and replaced. Thus, the comparative static results are
best viewed as predicting the long-run effect of a population increase. 3

Although the appropriate time horizon must be considered in predicting
changes in the spatial structure of a particular city, this issue does not arise when
the comparative static results are used to predict intercity differences at a given
point in time. The reason is that in a stationary or gradually changing world, the
spatial structures of different cities will reflect equilibrium (or approximate
equilibrium) outcomes, so that the comparative static results will give correct
predictions in intercity comparisons. In the case of population differences, we
would expect (holding r, y, and t constant) that larger cities would have bigger
spatial areas. Moreover, at any given distance from the center, the larger city will
have taller buildings and smaller dwellings, and thus a higher population density.

t3 A problem with this view is that the model is being interpreted in a dynamic sense even though
producer decision-making has been modeled in a static context.
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In addition, the price per square foot of housing and land rent per acre will be
higher at a given distance from the center in a larger city. These predictions
appear to be consistent with the observed features of cities in the real world.' 4

3.1.2. The effects of an increase in rA

The effects on the closed-city equilibrium of an increase in the agricultural rent rA
are similar to those of an increase in population. The appendix establishes that

aX <0, au <0, (23)

indicating that an increase in agricultural rent reduces the spatial size of the city
and lowers the urban utility level. Since rA is not a direct argument of p, q, r, and
S, the derivation of the impacts of the agricultural rent change on these variables
proceeds as in the case of a population increase, with each total derivative equal
to u/SrA times the partial derivative of the relevant variable with respect to u (for
example, dp/drA =(Opl/u)(au/lrA)). Using (9), (15), and (16) together with (23), the
signs of the total derivatives are

P >0, q <O0, 0 dS>0. (24)
dr A dr d rdrA dr A

Note that the directions of change in (24) are the same as in the case of a
population increase. In particular, the price per square foot of housing, land rent,
and structural density rise at each location, while dwelling sizes fall. Note that the
movements of q and S raise population density everywhere, so that dD/drA >0.

The intuitive explanation for the above results borrows from the explanation of
the impact of a population increase. Proceeding heuristically, the first-round
effect (holding u constant) of an increase in rA is spatial shrinkage of the city, with
land near the boundary returned to agricultural use (with u and hence r fixed, an
increase in rA from r' to r reduces x below its original value of xa, as can be seen
in Figure 3). This change, however, creates excess demand for housing, so that
further adjustments unfold as in the case of a population increase. Note that
while x expands from its first-round adjustment value (reaching xc in Figure 3 in
the case where the final land rent function corresponds to r,), the variable never
rises to its original level (since the city becomes denser, its population fits in a
smaller area).

These results can be used to predict differences between otherwise identical
cities facing different agricultural rents. For given values of L, y, and t, a city in a

4 For empirical confirmation of the comparative static predictions regarding the spatial sizes of
cities, see Brueckner and Fansler (1983).
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region of low agricultural rent (a desert, for instance) will have a larger area than
a city located amidst productive farmland. In addition, at a given distance from
the center the low-rent city will have shorter buildings and larger dwellings, and
thus a lower population density. Also, the price per square foot of housing and
land rent per acre will be lower in the low-rent city at a given distance from the
center. Real-world observation appears to confirm these predictions.

3.1.3. The effects of an increase in y

An increase in the urban income level raises the demand for housing, so that the
city grows spatially. In addition, the utility level of urban residents rises. These
results are established in the appendix, where it is shown that

OX au
>0, >0. (25)

ay ay

Deriving the impacts of a higher y on p, q, S, and r is more difficult than the
analogous earlier calculations since the direct effect of y must be considered along
with the indirect effect that operates through u. The total derivative of p with
respect to y is given by

dp _p au apdp = pu + (26)
dy u y y'

Using (25), (9), and (7), it is clear that the first term in (26) is negative while the
second term is positive, so that the sign of the expression is not immediately
apparent. However, calculations in the appendix show that

-P 0 as x > , where 0<x< x. (27)
dy < <

That is, at locations inside some <x, p falls as y increases, while p rises at
locations beyond )x. Thus, an increase in y causes a counterclockwise rotation of
the p contour. Moreover, since

dr Or u ar

dy u y y

=hap au +h ap
au y ay

=h dp (28)
dy'
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by (16), it follows that the land rent contour rotates counterclockwise in step with
the p contour (the point of rotation is the same ). Figure 3 illustrates this
outcome (r rotates from r to r2 and x increases from xa to xd). Since

dS -h' dp
dy ph" dy'

by (15), it follows (recalling h" <O) that the S contour rotates in the same fashion
as the p and r contours. Thus, an increase in y lowers the price per square foot of
housing, land rent, and structural density at central locations while increasing the
levels of these variables at more distant points. These conclusions, as well as the
results in (25), can be used as before to predict differences in the features of
otherwise identical cities with different values of y.

It is easy to establish that q rises in response to the increase in y at any location
where p falls. This follows because the new consumption bundle must lie on a
higher indifference curve [recall (25)] at a point where the MRS is lower (the
absolute slope of the budget line, p, has fallen by assumption). Such a point must
lie to the right of the original bundle in Figure 1 given that housing is a normal
good and indifference curves are convex. Thus, since p falls inside x, dwelling sizes
rise at central locations in response to the increase in income. Since S falls inside
x from above, it follows that population density also falls at central locations.

By referring to Figure 1, it is easy to see that at locations where p rises, q may
either rise or fall. Thus, at locations between and the old x, the change in q in
response to the increase in y is ambiguous. Since it may be shown that the value
of p at the new urban boundary is the same as at the old,' 5 it follows that the
new boundary value of q must be higher than the old boundary value. It is easy
to see, however, that this conclusion is not inconsistent with a decline in q at some
intermediate location.

To gain an intuitive understanding of the rotation of the p contour, consider
the change in locational incentives caused by an increase in income. When
income rises, desired housing consumption increases, and since housing is
cheaper at greater distances, consumers have an incentive to move to less central
locations. This desire to relocate drives up houses prices at distant locations and
depresses prices in the now less-attractive central part of the city. These changes
lead to sympathetic movements in r and S.

' 5To see this, note that r in (12) must be replaced by r when (11) and (12) are evaluated at x. The
two equations then serve to determine boundary values of p and S. Since x does not appear explicitly,
it follows that the boundary values of both these variables are independent of x. Note that this
argument implies that the boundary values of S and p will also be invariant to changes in Land t
(they will change with rA, however).
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3.1.4. The effects of an increase in t

When the commuting cost parameter t increases, commute trips of any given
length become more expensive, and the city shrinks spatially in response. The
urban utility level declines. These results are proved in the appendix, where it is
shown that

<0, -- <0. (30)

As in the case of an increase in income, the impacts of higher commuting cost on
p, q, r, and S are complex. The appendix establishes that

dp apau ap> <
dp =ap a +--0 as x<x*, where 0<x*<x. (31)
dt u t at < >

Thus, the housing price contour rotates in a clockwise direction, with p rising
inside some x* <x and falling beyond x*. As in the earlier discussion, the r and S
contours rotate in exactly the same fashion as the p contour (in this case,
clockwise). An increase in t therefore raises the price per square foot of housing,
land rent, and structural density at central locations while lowering the values of
these variables at more distant points. These impacts, of course, are just the
reverse of those generated by an increase in y. The rotation of the land rent
contour from r to r3 and the resulting decline of x from x. to e are shown in
Figure 3 (for simplicity, the Figure assumes x =).

Applying the same argument as before, it follows that q falls at any location
where p rises (recall that utility declines in the present case). Thus, dwelling sizes
decrease in the central part of the city, although they may rise beyond x*.
Recalling that S rises inside x*, it follows that central population densities rise.

An intuitive understanding of the rotation of the p contour comes from noting
that the increase in t makes close-in locations more attractive given the original
pattern of housing prices. The resulting desire of consumers to move toward the
CBD bids up central prices and reduces prices at more distant locations, causing
a clockwise rotation of the contour.

3.2. The open-city case

For the predictions of the closed-city model to be valid, urban populations must
be captive, ruling out utility-equalizing migration flows. When such flows occur,
the urban utility level is no longer determined internally, and the open-city model
is appropriate. The discussion now turns to a comparative static analysis of this
model.
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As noted above, the exogenous parameters in the open-city model are u, rA, y,
and t. Holding u fixed, the goal of the analysis is to derive the impact of changes
in the observable parameters r, y, and t on , L, p, q, r, and S (recall that
population is now endogenous). The analysis is considerably simpler than in the
closed-city case. First, since u is now a parameter, the impact of a changes in rA, y
or t on x follows immediately from (18). With the x impact thus determined, the
effect of a parameter change on L can be read off directly from (19) (the system
(18)-(19) is now recursive rather than simultaneous). In addition, the exogeneity
of u means that indirect effects on p, q, r, and S (which figured prominently in the
closed-city analysis) are absent. Direct effects are the sole sources of change.

An increase in the agricultural rent level has an especially simple impact on the
open-city equilibrium. Since y, t, and u are fixed, the land rent function is
unchanged as rA increases (both direct and indirect effects are absent in this case).
As a result, x must fall as rA increases, as can be seen in Figure 3. Since p, q, and S
are (like r) unchanged at a given x, it follows that the effect of the increase in rA is
simply to truncate the city at a smaller x, reducing its population but not altering
the structure of its remaining area. The model therefore predicts that an open city
in a high-rA region will be smaller spatially and have a lower population than an
open city in a low-rA region. At a given distance from the CBD, however, the
cities will be identical.

An increase in y leads to more extensive changes in the open-city equilibrium
since the increase in income alters p, q, r, and S at every location, with the
impacts (direct effects) given by the partial derivatives in (7), (15), and (16). The
signs of these derivatives indicate that the price per square foot of housing, land
rent, and structural density rise at all locations in response to the increase in y,
while dwelling sizes fall. The upward shift in r leads to an increase in x, and since
population density increases everywhere, L from (19) also increases. These results
indicate that in an open urban system, a high-income city will have a higher
population, a larger area, and will be denser and more expensive to live in than a
low-income city. Note that the model predicts the positive correlation between
income and city size noted in various empirical studies.16

The changes in the open-city equilibrium following from an increase in t are
just the reverse of the impacts of higher income. From (8), (15), and (16), p, r, and
S fall at all locations as t increases, while dwelling sizes increase everywhere. Since
r falls, x declines in Figure 3. Lower population densities at all locations together
with a smaller x lead to a smaller L by (19). Thus, a high-t city in an open system
will have cheaper housing, a smaller area and population, and will be less dense
than a low-t city.

To appreciate the connection between these comparative static results and

6Sef., for example, Hoch (1972).
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those for a closed city, it is helpful to decompose the open-city changes into two
parts. First, let the given parameter (rA, y, or t) increase holding L fixed, and
predict impacts using the closed-city analysis. Then, adjust population to cancel
the utility change generated by the parameter increase, again inferring impacts
using the closed-city model. The net impact of the two changes corresponds to
the open-city effect of the given parameter change. Consider first the case of an
increase in income. Holding L fixed, a higher y increases and causes counter-
clockwise rotations of the p, r, and S contours (recall Section 3.1.3). Since utility
rises and since aulaL<O, it follows that an increase in population is required to
restore the original utility level. The required increase in L raises x further and
shifts the rotated p, r, and S contours upward while shifting the q contour
downward. From above, the net changes relative to the starting point turn out to
be an upward shift in each of the p, q, and S contours, and a downward shift in
the q contour. Note that the changes holding L fixed could be interpreted as
short-run adjustments, with the remaining impacts unfolding after migrants have
begun to enter the city in response to the higher utility level.

While the decomposition of the effect of an increase in t parallels the above, an
increase in r, yields a somewhat different series of changes. Holding L fixed, a
higher rA lowers x, raises the p, r, and S contours, and lowers the q contour. Since
utility falls as a result of the higher rA, a decline in population is required to
restore the original utility level. The required decrease in L lowers the p, r, and S
contours and raises the q contour, restoring their original positions. The decline
in r drives x further below its original level. Again, the first-round impacts can be
viewed as occuring before migration begins, with the second-round impacts
capturing the effects of the outward migration flow induced by the decline in the
city's standard of living.

In concluding this section, it is interesting to consider the question of whether
cities in a national economy are best viewed according to the open- or closed-city
model. On the one hand, the costs of migration (both pecuniary and psychic) are
often high, so that utility differences between cities may persist over long periods.
On the other hand, migration flows must ultimately eliminate intercity differences
in standards of living, especially over a time horizon as long as one or two
generations. Casual empiricism suggests that the predictions of both the open-
and closed-city models are partly borne out in reality. For example, the real
world appears to exhibit the positive correlation between income and city
population predicted by the open-city model. Conversely, the low-density charac-
ter of desert cities is consistent with predictions of the closed-city model but at
variance with those of the open-city model. This kind of evidence suggests that
utility levels in certain cities may diverge appreciably from the national norm at
any point in time. Such differences, of course, are always in the process of being
eliminated as consumers migrate.
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4. Modifications of the model

Having gained an understanding of the properties of the Muth-Mills model, it is
important to remember that its portrayal of the urban economy is highly stylized.
While the good predictive performance of the model suggests that its simplifi-
cations are artfully chosen, capturing the essential features of real-world cities, it
is nevertheless instructive to list the ways in which the model is unrealistic and
note the attempts of various authors to add greater realism.

The assumption that the city is monocentric is perhaps the most obvious
source of difficulty. While the assumption will be reasonably accurate for many
urban areas, many cities have important secondary employment centers outside
the CBD. By demonstrating that land-use patterns around such centers follow
the predictions of the basic model, Muth (1969) showed that the lessons of the
analysis are largely unchanged in a polycentric setting. In a different vein, White
(1976) analyzed the forces leading to decentralization of employment by explor-
ing the incentives that might lead a CBD firm to seek a suburban location. In
more ambitious studies, Mills (1972a) and Fujita and Ogawa (1982) constructed
models where the location of all employment within the city is endogenous and
potentially decentralized.

The assumption that all urban residents earn the same income is also unre-
alistic. The effect of relaxing this assumption has been discussed by Mills (1972b)
and extensively analyzed by Muth (1969), who offers a complete treatment of the
effect of income differences on household location. In addition, Hartwick et al.
(1976) and Wheaton (1976) present comparative static analyses of the equilibrium
of a city with multiple income groups. The results of these studies show that
many of the key properties of the model are unaffected by income heterogeneity.

While the Muth-Mills approach essentially ignores the urban transportation
system by assuming an exogenous commuting cost function, the fact that urban
traffic congestion (and hence the cost of travel) is endogenous has been stressed in
a number of studies. Although the endogeneity of commuting costs has received
most attention in normative models of city structure [see, for example, Dixit
(1973)], early positive analyses recognizing the importance of investment in the
transportation network were provided by Mills (1967, 1972a).

Another unrealistic feature of the model is its treatment of the housing
commodity. As was noted in Section 2, the model's focus on a single housing
attribute (floor space) is inconsistent with the fact that real-world dwellings are
characterized by a vector of attributes. Although awareness of this fact gave birth
to the empirical hedonic price literature in the early 1970s, incorporation of
multiple housing attributes in urban spatial models has been more recent [see
Buttler (1981) and Brueckner (1983)]. Interestingly, this modification leaves most
of the important predictions of the model unchanged.
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Modification of the Muth-Mills assumption that housing capital is perfectly
malleable has been the goal of a growing new literature in urban economics. The
resulting models, which stress the importance of spatial variation in the age of
buildings, are considerably more complex than the basic malleable-capital frame-
work (see Miyao, Chapter 22 in this volume, for a survey). The models do,
however, generate the kind of spatial irregularities that are observed on a micro
level in real-world cities (erratic local building height patterns, for example) but
are not successfully explained by the Muth-Mills model.

Finally, a number of studies have introduced local public goods (which are
absent in the Muth-Mills framework) into urban spatial analysis. While most
studies assume that public consumption is spatially uniform, Schuler (1974) and
Yang and Fujita (1983) add a new spatial element to the analysis by focusing on
models where the public good level varies with location.

Appendix

This appendix derives the comparative static results cited in Section 3. While the
analysis largely parallels that of Wheaton (1974), the derivations do not rely on
Wheaton's assumption that the non-housing good is normal (more extensive
substitutions in several expressions made avoidance of the assumption possible).

The first step is computation of the partial derivatives of r with respect to x, y,
t, and u. Substituting for ap/a in (15) using (5) and footnote 6, it follows that

Or -th Or h Or -xh Or -h
--- <0, -=->0, -= -- <0, = - < O. (la)

ax q 3y q 0at q u qvl

Then, noting that Dh/q= -(arlax)/t, (19) may be rewritten as

rX ar

-J x -- dx=tL/O. (2a)

Integrating (2a) by parts then yields

- rAx + r dx = tL/O, (3a)

where (18) has been used. Letting denote any one of the parameters (L, r, , t),
total differentiation of (3a) gives

(a r ar u r L at arA)
l+& u __ dx=u- t+- L +x, (4a)

(note that the terms involving x/Oi, cancel and that since u is an endogenous
variable, the effect of 2 on the u argument of r must be taken into account). Since
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Ou/a; does not depend on x, this term may be brought outside the integral in (4a),
yielding

1at aL at a) ar A - ar

(5a)S-dx
Noting that aL/a equals one for i,=L and equals zero otherwise, and similarly
for at/d;, and recalling the results of (la), as well as ar/arA=arlaL=O, the
following inequalities emerge simply from inspection of (5a):

au au au au
-- <° <0, >0, >-<O. (6a)aL OrA ay at

Computation of the derivatives of x makes use of (5a). Differentiating (18)
yields

aF ax aFau aD rAOF-Ox+OF au+~~~~~~ + - OrA ~(7a)ax a -au ax a; '

where the bar over r indicates that the function is evaluated at x. Since /ax <0,
the sign of x/8a is the opposite of the sign of

rA aaF u aF
-a-, ~~~~- -as~~~~ ~(8a)ax au a ax2

Since arAaL=a?/aL=o and aF/au<O, and since aul/L<O from (6a), it follows
that (8a) is negative for ; =L, implying

ax
> 0. (9a)

OL

Setting A =rA, (8a) becomes 1-(8/jau)(au/arA), which, using (5a) with .,=r,
becomes

r ar ar

au dau

r d (10a)
-dx

The sign of (10a) is the opposite of that of its numerator, which, integrating by
parts, becomes

_f,"x d aF f d h Lx F z d ' dx] -x- JO x -q dx, (la)
xau dx au d\ 1 d '
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using (la). Now (h/q)/ax - D/Ox<0. Also, it may be shown that dvl/dx > 0 holds
as long as q is a normal good. These facts imply d(h/qvl)/dx < 0 and yield positive
signs for (10a) and (8a), giving

ax
-- <0. (12a)
OrA

The positive sign of dv,1 /dx = vuc/x + v1 2aq/,x =(v2 - v2 v/vl)Oq/ax is estab-
lished by noting that the term multiplying the positive expression aq/ax will itself
be positive when q is a normal good. Note that ac/ax= -(v 2/vl)q/ax since
utility is constant over x.

When ;i=y, (8a) becomes -((OF/Su)(au/Sy)+O?/Sy), which, substituting (5a),
has the sign of

aFf r-r a r- ar
U - _ d- - - dx. (13a)

ay 0 au 8 aJo ay
Gathering all terms under the same integral sign and substituting from (la), (13a)
becomes

) _ dx, (14a)
Jo qq vi vj

where the bar again indicates that the variable is evaluated at x. Since dv, /dx >0,
it follows that the integrand in (14a) is negative over the range of integration,
making (13a) and (8a) positive and yielding

->0. (15a)
ay

Computation of xjat is more difficult and proceeds in a reverse manner to the
above. Eq. (19) is differentiated directly and then u/St is eliminated using (7a).
Differentiating (19) with respect to t yields

__ ax r /a aJD au
xD-t + x t +u t dx=0. (16a)

Rearranging (7a) to solve for u/St and substituting in (16a) yields, after more
rearrangement,

axF_ ar O a a - `OD Or OD f
xD-- I xx I x- _ -_ _ _ dx. (17a)

DB du-Jo Xau x _ J0 k u t at aud

Using the definition of D,

aD h'OS h' q h 8a
-t =--- 2-. (18a)
at q at q2 at'
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Substituting for S/at and aq/at using (16) and footnote 6, (18a) becomes

a0 F_(h')2 h 8Vp ap (19a)at - Lphq +q t aPt'

with >0. To evaluate D/lau, as/au and q/au from (16) and footnote 6 are
substituted into an expression analogous to (18a). Since

aq/au = (aplau - (a MRSlc)(lv))r/,

the result is

aD rp h MRS r ap , (20a)
(20a)au U u q2 ac V au

with A- (h/q2)(OMRS/Oc)(r/vl)< 0 (see footnote 6). Since ap/au < 0, it follows that
aD/u is negative, which implies that the integral on the LHS of (17a) is positive,
making the entire term multiplying /xlSt negative. Next, substituting (19a) and
(20a) to evaluate the RHS of (17a), the expression reduces to

o xF t ____ +xA¥ dx=
0 0 L au at at au at] 

S:r-r i h X x aF xr -x- ) + xA dx. (21a)

The second term in the integrand of (21a) is positive while the first term is also
positive since x/v, >x/v, holds over the range of integration by virtue of
dv/dx>0. Thus the RHS of (17a) is positive, and it follows that

ax
< 0. (22a)

The final results to be derived are the effects of an increase in y or t on p.
Substituting in (26) using footnote 6 yields

dy + ), (23a)

where the - indicates that the variable is evaluated at some xk between 0 and x.
Substituting for u/Sy from (5a) and factoring out S-Sr/lu dx, (23a) has the sign
of

F OXar 1 rXOr I
-I I dx+ I -dxl (24a)

LJo, au aJoy y
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=-i -I-- I dx, (25a)

using (la). When x=x, so that r =it,, (25a) is positive given du1/dx>0.
Conversely, when =O, so that , =v', (25a) is negative. Furthermore, since (25a)
is increasing in x, it follows that the expression changes sign just once, establish-
ing that d/dy is negative for less than some and positive beyond .

Substituting in (31) using footnote 6 gives

dp 1 au
-= _ 5 + . (26a)

dt 4( A at).

Substituting for u/t using (5a), (26a) has the sign of

' xr 1 L 1 er
_" -Ordx +IL -_- I C-Ordx. (27a)

o au C 0 b Ju atd

Using (2a) to eliminate L/O and replacing r/lx by (tlx)(arlat) using (la), (27a)
reduces to

I - I dx, (28a)
making further substitutions from (la). For =O, (28a) is clearly positive.
Although (28a) is ambiguous in sign for x =x, the facts that the boundary value
of p is invariant with t (see footnote 12) while Ox/Dt<O together imply that
df/dt <0 (recall ap/ax <0). Thus (28a) must be negative for =x. The fact that its
derivative with respect to is negative then means that (28a) changes sign just
once between =O0 and x =x, implying that dp/dt is positive inside some x* and
negative beyond x*.
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