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I. Introduction

This paper reconsiders the identification and estimation of hedonic
models (Gorman 1980; Lancaster 1966, 1971) of consumer demand in
differentiated product markets. The application of hedonic models was
pioneered by Rosen (1974). Rosen’s approach has been widely used in
the literatures on housing, public economics, environmental economics,
and labor markets and somewhat less frequently in those on marketing
and industrial organization.1 Hedonic methods have been applied to
problems as diverse as determining the value of clean air, estimating
price indexes, and measuring the value of a good reputation in online
auctions.

Rosen’s approach to estimating a hedonic demand system consists of
two stages. In the first stage, the prices of goods are regressed on the
goods’ characteristics. The coefficients in this regression are often in-
terpreted as implicit prices or as the consumer’s marginal willingness
to pay for each characteristic. This type of hedonic pricing regression,
which also originated much earlier with Court (1939) and Griliches
(1961), remains widely used. Rosen also proposed a second stage that
involved regressing the marginal prices of each characteristic at the
bundles actually purchased by consumers onto the characteristics of the
good and consumer demographic variables. This second stage was in-
tended to recover a demand function for each characteristic. However,
it was later discovered (Brown and Rosen 1982; Bartik 1987; Epple 1987)
that the second-stage regression had a simultaneity problem because
consumers with a high preference for a certain characteristic would
naturally purchase bundles that contained large amounts of this char-
acteristic. This simultaneity problem causes inconsistent estimates in the
second stage. Epple suggests that this problem can be solved if data are
available on many markets in which tastes can be assumed to be the
same. However, data of this kind have proved difficult to find, and as
a result, Rosen’s second stage is not as widely used today.

This paper revisits this literature with the hope of reviving the use of
hedonic models in estimating demand systems. We make several con-
tributions to both stages of the estimation, substantially generalizing the
first-stage estimation and taking an alternative approach to the second
stage that avoids the criticisms above and that we think is more appealing
in practice.

In the first stage, Rosen assumed that the market being studied had
a continuum of products and perfect competition. These assumptions
may be appropriate in some markets, such as housing, but they are
unreasonable in many others. In industrial organization applications,

1 At present, Rosen (1974) has over 1,250 citations in the Social Science Citation Index.
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for example, imperfect (oligopolistic) competition is often specifically
a topic of interest. It is also rare for oligopolistic markets to contain
more than a few hundred products, making the continuous product
space assumption unreasonable. Rosen also assumed that all product
characteristics are perfectly observed. The industrial organization and
marketing literatures have found that unobserved product attributes are
important both in explaining the data and in causing endogeneity in
prices. One way this can be seen is that it is common for the perfect
observability assumption to lead to some products being strictly domi-
nated. For example, it is common to see two products in a market in
which one of the products is “better,” meaning that it has at least as
much random-access memory, central processing unit speed, hard drive,
and so forth, and the better product also has a lower price, yet the
dominated (inferior) product still has some demand. In such cases it
seems likely that there is something about the dominated product that
we do not observe that is attractive to some consumers. Moreover, under
the assumption that all characteristics are perfectly observed, there is
no set of parameters under which the hedonic model can rationalize
the observed demands. In our data on the demand for computers,
despite the fact that we have 18 observed characteristics, a staggering
357 of the 695 products are dominated in this manner.

We relax all three of these assumptions (perfect competition, contin-
uum of products, and perfect observability of characteristics). First, we
show that if demand is given by the hedonic model, then there always
exists a function mapping characteristics to prices, regardless of the
form of competition and even if there are a small number of products.
This discipline comes from the demand side of the model. The existence
of the price function justifies running the first-stage hedonic price re-
gressions in a much wider set of applications. In addition, we show that
if there is one product characteristic that is not observed and this prod-
uct characteristic is preferred by every consumer, then the price function
must be increasing in the unobserved product characteristic. The fact
that the price function is increasing in the unobserved product char-
acteristic will allow us to recover it during the first-stage estimation.

We also generalize Rosen’s first stage by considering the identification
and estimation of a price function with a priori unknown general form,
nonseparable in the unobserved product characteristics. Generalizing
the first stage to allow for nonseparability requires some additional as-
sumptions for identification, and we consider three cases that we think
represent the situations that are most likely to be encountered in ap-
plications. In the first case, the unobserved product characteristics are
independent of the observed product characteristics. This first case,
which we expect to be the most useful in applications, is a slightly
stronger version of the (mean) independence assumption commonly
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used in various empirical literatures (industrial organization, marketing,
housing, etc.). In the second case, consumers choose both a “model”
and an “options package.” This second case represents a nonparametric
analogue to fixed effects in a linear model. Many product markets, such
as automobiles and computers, have this feature. The last case is a
nonseparable, nonparametric instrumental variables approach similar
to that of Imbens and Newey (2003).

Like Rosen, we also consider a second stage in which the goal is to
recover consumers’ preferences so that we can compute a demand sys-
tem, welfare, and other economic objects of interest. However, we take
an alternative approach, and our results are somewhat more positive
than those in the recent hedonics literature. If there are many products
such that the choice set is continuous, then a consumer’s product choice
must satisfy a set of first-order conditions that require the consumer’s
marginal rate of substitution between each continuous product char-
acteristic and the composite commodity to equal the implicit (or mar-
ginal) price of that product characteristic at the chosen bundle. Clearly,
if the consumer is observed only once, a feature of most data sets, then
it is not possible to learn the consumer’s entire weak preference relation
from observing this single choice. Rosen tried to solve this problem by
imposing homogeneity across individuals. We instead take a semipara-
metric approach inspired by the recent empirical literatures in industrial
organization and marketing (Berry, Levinsohn, and Pakes [1995], Rossi,
McCulloch, and Allenby [1996], Nevo [2001], Petrin [2002], and many
others). In order to identify consumers’ preferences, we impose struc-
ture on the utility function by assuming that it takes a known parametric
form. However, we place no restrictions on the aggregate distribution
of preferences across consumers. If the parametric form of the utility
function is known, then the first-order conditions determining the con-
sumer’s optimum can be used to recover household-level random co-
efficients, household by household. By aggregating household-level ran-
dom coefficients, we obtain the population distribution of random
coefficients nonparametrically.

However, as mentioned above, we think that it is also important to
consider what happens in applications in which there are a small num-
ber of products (such that the product space is discrete) since that is
the case in many applications. In that case, an individual consumer’s
random coefficients typically are not identified from the revealed pref-
erence conditions even if the parametric form of utility is known. In-
stead, the revealed preference conditions imply that the individual’s
taste coefficients lie in a set. This set tends to be smaller when there
are more products in the market, eventually converging to a singleton
if all the characteristics are continuous. In the spirit of pioneering work
by Manski and Pepper (2000), Manski and Tamer (2002), and Haile
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and Tamer (2003), we show how these sets for each individual can be
used to construct bounds on the population distribution of random
coefficients. The procedure is shown to converge to the population
distribution of taste coefficients as the number of products becomes
large. We also show how to construct bounds for other economic objects
such as the demand function and consumer welfare calculations.

Note that the fact that we are assuming a parametric form for the
utility function is what allows us to obtain identification of the utility
function parameters in a single market. There is no way to obtain higher-
order approximations to utility without either observing more choices
for each consumer (under different prices) or making additional ho-
mogeneity assumptions, in which case the criticisms of Brown and Rosen
(1982), Bartik (1987), and Epple (1987) would still apply.2 Additionally,
note that our approach accounts for the endogeneity of prices because
we recover the unobserved product characteristics structurally in the
first stage, through the independence assumption (and alternatives). In
that sense our approach is stylistically similar to the control function
approach of Petrin and Train (2004).

While this paper is directed primarily at the hedonics literature, the
approach of the paper also has much in common with demand models
used in the recent empirical literatures in industrial organization and
marketing, beginning with Berry (1994) and Berry et al. (1995) and
including Rossi et al. (1996), Nevo (2001), Petrin (2002), and many
others. In particular, that literature has emphasized the importance of
including unobserved product characteristics in the demand model. The
primary difference between the hedonic model in this paper and the
Berry et al.–style models is that the hedonic model does not have an
independently and identically distributed random error term in the
utility function. One consequence of this is that in practice the two
models might lead to different results, though we leave a full investi-
gation of that possibility to future research (see also Berry and Pakes
[2001], Petrin [2002], and Ackerberg and Rysman [forthcoming] for
further discussion of these issues). Berry and Pakes also provide an
alternative method to ours for estimating pure hedonic discrete-choice
models. Finally, Bajari and Kahn (2005) apply our methods to estimating
housing demand and evaluating racial segregation in cities.

In Section VI, we apply our methods to the problem of estimating
the demand for personal computers using data that contain 695 prod-
ucts and 19 characteristics. We found that, with these data, the first-
stage estimates were surprisingly precise, suggesting that the first-stage

2 Ekeland, Heckman, and Nesheim (2004) provide a solution to the identification prob-
lem outlined by Bartik (1987) and Epple (1987). However, their approach allows for only
a single-dimensional characteristic that must be observed.
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data requirement may not be as high as expected for a nonparametric
system. We also investigate the extent to which discreteness of the prod-
uct space is important for identification of preferences in the second
stage. We find that in our data, discreteness of the product space would
not be very important in identifying preferences if all the characteristics
were continuous (e.g., CPU, RAM, hard drive). On the other hand, we
find that the discrete characteristics (digital video disk drive, modem,
etc.) are economically important but serve to considerably widen the
bounds on both preference parameters and the demand curve. How-
ever, while the discrete characteristics do lead to relatively wide bounds
on the demand curve, we find that this does not always translate into
wide bounds in welfare calculations. For example, when we compute
bounds on the compensating variation required if each consumer’s first-
choice product were removed from the choice set, we find that the
average upper bound is $213 and the median upper bound is $59, both
numbers that seem reasonable in this context.

In our opinion, the primary disadvantage of the approach presented
here is its data requirement. The first-stage estimation is likely to require
significantly more data than other alternatives and would place limits
on the applicability of the approach in markets with small numbers of
products or large numbers of characteristics (without additional as-
sumptions). Another potential disadvantage is that it requires a stronger
independence assumption than is commonly used. However, we also
relax this requirement somewhat by allowing the error term to be non-
separable. Thus the model is easily capable of generating features such
as heteroskedasticity that are often found in empirical work. Finally, the
method allows for only a single-dimensional, vertically differentiated
unobserved characteristic.3

The rest of the paper proceeds as follows. Section II introduces the
model and notation and proves that if demand is given by the hedonic
model, then there exists an equilibrium price function. Section III shows
identification of the price function and unobserved product character-
istics (first stage). Section IV shows identification of preferences (second
stage). Section V presents econometric estimators consistent with the
arguments of Sections III and IV. Finally, Section VI applies the esti-
mators to estimating the demand for personal computers.

II. The Model

In our model, a product is a finite-dimensional vector of char-j � J
acteristics, , where is a K-dimensional vector of(x , y) x p (x , … , x )j j j j1 jK

3 Goettler and Shachar (2001) relax both of these assumptions in the Berry et al. frame-
work. Benkard and Bajari (2005) use techniques similar to those of this paper to recover
a multidimensional unobserved characteristic in the context of price indexes.
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characteristics observed by both the consumer and the econometrician,
and is a scalar that represents a characteristic of the product that isyj

observed only by the consumer. The unobserved characteristic reflects
the fact that there are some characteristics, such as the quality of the
good, that are often not observed by the econometrician. We shall as-
sume that each characteristic . However, characteristics may bex � �jk

continuous, such as CPU speed or RAM, or discrete, such as whether
or not there is a modem. For our results it is necessary to collapse the
unobserved characteristics into a single index.4 The set X p ∪ (x ,j�J j

represents all products that are available to consumers inK�1y) P Rj

the market.
Let denote the price of product j in market . The elementsp t � Tjt

of T can be thought of either as a time series for a single market or as
a cross section of markets, or as a panel. Consumers are utility maxi-
mizers who select a product to consume along with an amountj � J
of the composite commodity, . Each consumer, i, has incomec � R y� i

to spend each period. The key feature that defines the hedonic model
is that consumers’ utility functions are defined over characteristics in-
stead of goods. Consumers’ utility functions are given by u (x , y ,i j j

. The price of the composite commodity is normalizedc) : X # R r R�

to one. Formally, the consumer’s maximization problem is

max u (x , y , c) subject to p � c ≤ y . (1)i j j jt i
( j,c)

Below we shall consider utility functions that have known parametric
form

u (x , y , c) p u(x , y , c; b).i j j j j i

For example, one commonly used functional form is the quasi-linear

u(x , y , c; b) p log (x ) 7 b � log (y)b � c,j j i j i,x j i,y

where represents individual i’s vector of taste coefficients.b p (b , b )i i,x i,y

Note that the main difference between the hedonic model and random
coefficients versions of standard discrete-choice models is that the he-
donic model does not incorporate an error term that is specific to both
the choice and the individual (commonly denoted ).eij

A. The Price Function

In this subsection we investigate the relationship between prices and
characteristics in equilibrium if demand is given by the hedonic model

4 Benkard and Bajari (2005) allow for a higher-dimensional unobservable but find that
a single index approximates the higher-dimensional case well.
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specified above. Rosen (1974) assumes that there is perfect competition
and a continuum of products. These assumptions justify the existence
of a price function relating characteristics to prices for all possible bun-
dles, also justifying the first step of his estimation procedure in which
this price function is estimated. Our goal is to broaden the application
of hedonic models to cases in which there may be imperfect competition
and a finite number of products, so we shall relax these two assumptions.
It turns out that under weak conditions a price function still exists.

Specifically, we now show that in any equilibrium the hedonic model
given above implies that prices in each market must have the following
properties: (1) there is one price for each bundle of characteristics, (2)
the price surface is increasing in the unobserved characteristic, and (3)
the price surface satisfies a Lipschitz condition. These properties are
important because they make it possible both to estimate the price
surface and to use the price surface to recover the unobserved
characteristics.

To show that the properties listed above must hold, we rely only on
consumer maximization, the fact that prices are taken as given by con-
sumers, and some simple conditions on consumers’ utility functions.
Most important, because it is the demand side of the model that is
restricting prices, we require no supply-side assumptions.

Assumption 1.

a. is continuously differentiable in c and strictly increasingu (x , y , c)i j j

in c, with for some and all .�u (x , y , c)/�c 1 e e 1 0 c � (0, y ]i j j i

b. is Lipschitz continuous in .u (x , y)i j j

c. is strictly increasing in .u yi j

The first two conditions are quite weak. Condition c implies that there
is no satiation in the unobserved product characteristic. This is not
guaranteed to hold in all applications, but we do feel that the assumption
is usually justifiable in practice. In practice, the unobserved character-
istic in the model represents a composite of all unobserved features of
the product that we typically associate with hard-to-measure features
such as “quality,” “style,” or “service.” These are characteristics that we
can comfortably say that the vast majority of individuals would always
prefer more of (if more were free). In cases in which condition c does
not hold, the model would instead be an approximation to the true
model.5

Theorem 1. Suppose that assumption 1 holds for every individual

5 Note also that in any model incorporating unobserved characteristics, some assumption
such as condition c of assumption 1 is required regardless of the approach used. For
example, assumption 1 is equivalent to the monotonicity assumption of Berry (1994).
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in a market, t. Then, for any two products j and with positive demand′j
in market t,

1. if and , then ;x p x y p y p p p′ ′ ′j j j j jt j t

2. if and , then ;x p x y 1 y p 1 p′ ′ ′j j j j jt j t

3. for some .Fp � p F ≤ M(Fx � x F � Fy � y F) M ! �′ ′ ′jt j t j j j j

Proof. See the Appendix.
We denote the equilibrium price function for market t as . Itp(x , y)t j j

is a map from the set of product characteristics to prices that satisfies
for all , and we assume throughout the rest of thep p p(x , y) j � Jjt t j j

paper that properties 1–3 of theorem 1 hold. Because property 3 holds
for all pairs of products, in the limit the price function must be Lipschitz
continuous.

Note that the price function in each market is an equilibrium function
that is dependent on market primitives. It does not tell what the price
of a good would be if that good were not already available in the market.
If a new good were added, in general all the prices of all the goods
would change to a new equilibrium, and thus the whole price function
would change as well. The price function would also change if any other
market primitives were to change, such as consumer preferences or
marginal production costs, or if a good already in the market were to
be produced by another multiproduct firm. This is the primary reason
for the fact that we have to treat the price function as being possibly
different in every market (hence the t subscript). What the price func-
tion in a particular market does tell us is the relationship between char-
acteristics and prices as perceived by a consumer in that market. This
information is helpful in estimating the consumer’s preferences.

We write the price function nonseparably because we have very little
information about its form a priori except properties 1–3. Its form de-
pends on the primitives of the model such as preferences, marginal
costs, and the nature of competition. For example, even a standard
single-product firm’s inverse elasticity markup formula with a linear
marginal cost function would often imply a nonseparable price function.
Thus we feel that it would not be appropriate to proceed by making an
arbitrary assumption such as additive separability even though such an
assumption would make the estimation substantially simpler.

The importance of the theorem can be seen by the fact that there
need not be an equilibrium price surface in all demand-supply systems.
For example, if demand were given by a logit model (or any standard
discrete-choice econometric model), then it would be possible for two
different products with the same characteristics to have different prices.
This could happen if two firms produced products with identical char-
acteristics but the firms had different costs of production. It could also
happen if two multiproduct firms owned different sets of complemen-
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tary products. In standard discrete-choice econometric models of de-
mand, two products with identical characteristics but different prices
are both guaranteed to have positive demand, so the demand side places
less discipline on prices. Properties 1–3 are guaranteed to hold only in
the hedonic model.

Note that, because the theorem is based on demand-side arguments
only, it is general to many types of equilibria. An advantage of this is
that our estimates of preferences below are robust to a variety of supply-
side assumptions, including even models of dynamic pricing. Of course,
there are also disadvantages to not fully specifying the supply side of
the model. A correctly specified supply model would add efficiency to
the estimation. Additionally, a model of supply would be required for
evaluating counterfactual policies that involve new pricing equilibria.

III. Identification of the Price Function and the Unobserved
Characteristics

In this section we consider three potential approaches for obtaining
identification of the price function and unobserved characteristics. We
expect the first method, which uses independence, to be the most useful
in practice. The independence assumption we use here is similar to,
but slightly stronger than, the independence assumption that is widely
used in the empirical literatures in industrial organization and mar-
keting. The second method uses a nonseparable analogue to fixed ef-
fects. The third method is useful when independence is questioned, but
there are instruments available for the endogenous characteristics. We
shall assume throughout that prices are observed without error. How-
ever, with some additional assumptions, identification can still be ob-
tained if prices are observed with error.

In a slight abuse of notation, throughout this section we shall denote
the joint distribution of the vector of characteristics and prices in market
t, , as , with density .(p , x , y) F(p , x, y) f(p , x, y)jt j j t t

A. Identification Using Independence

The main assumption of this section is that the observed characteristics
x are independent of the unobserved characteristic, y.

Assumption 2. y is independent of x.
Assumption 2 is a strengthening of the mean independence assump-

tion commonly used in the empirical literature in industrial organiza-
tion. However, allowing for nonseparability makes the implications of
the independence assumption less restrictive. In models in which the
errors enter linearly, independence rules out heteroskedastic unob-
servables, which are often thought to be important in applied work.
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Nonseparability allows the underlying independent error to interact
with the observed data in ways that replicate models of heteroskedas-
ticity. If independence holds, then the support of the unobserved prod-
uct characteristics does not depend on the observed characteristics so
that , where is the support of x and is theKp : A # E r R A P R E P Rt

support of y.
Since the unobserved product attribute has no inherent units, it is

possible to identify it only up to a monotonic transformation. Thus,
without loss of generality, we assume that a normalization has been made
to y such that the marginal distribution of y is . Technically, thisU[0, 1]
amounts to normalizing y using its distribution function.6

Our identification proof, which is constructive, is similar to that in
Matzkin (2003). We define identification as in that paper, relative to
the normalization above.

Theorem 2. Suppose that assumptions 1 and 2 hold. If many prod-
ucts are observed in a single market, then is identified. In each{y }j
market t in which many products are observed, the price function ispt

identified.
Proof. We first show how to construct the unobserved product char-

acteristics using the conditional distribution of prices in a single market
t. The proof assumes that many products are observed in market t such
that is known:F(p , x, y)t

F (p ) p Pr [p(x, y) ≤ p Fx p x ]p Fxpx jt t jt jt j

�1p Pr [y ≤ p (x, p )Fx p x ]t jt j

�1p Pr [y ≤ p (x , p )]t j jt

�1p p (x , p )t j jt

p y .j

The second line of the proof holds by property 3 of theorem 1, the
third line holds by independence, and the fourth line holds because of
the normalization.U[0, 1]

To construct the price function for market t, we need only invert the
above relationship:

�1p(x , e ) p F (e ). (2)t 0 0 p Fxpx 0t 0

6 We thank an anonymous referee for pointing out that a drawback of this normalization
is that it requires that y have a continuous distribution, an additional restriction over the
assumptions in the paper. However, this restriction, while convenient, is not necessary for
the identification proof. An alternative normalization that does not require that y have a
continuous distribution is to normalize y such that for some value¯F(y) p F(pFx px)

(see also Matzkin 2003).x̄ � A
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This is possible for all markets t in which many products are observed
such that is known. QEDF(p , x, y)t

Since identification of the unobserved product characteristics is pos-
sible from data on a single market, identification is obtained even if the
unobserved product characteristics for each product change over time,
as is commonly assumed in the empirical literature.

B. Identification Using “Options Packages”

Because the characteristics of products are jointly chosen by the firm,
we may worry that the independence assumption above is violated in
some applications. One alternative that avoids this assumption is to use
“options packages.” In some markets, consumers simultaneously choose
a model and an options package for that model. For instance, a car
buyer’s problem could be represented as choosing a model (Camry,
Taurus, RAV4, etc.) and a package of options associated with the model
(horsepower, air conditioning, power steering, etc.). Purchases of com-
puters might also be well represented as the joint choice of a model
(Dell Dimension 8100, Gateway Profile 2, Compaq Presario 5000 Series,
etc.) and an options package (RAM, processor speed/type, hard drive,
etc.). Suppose that the unobserved characteristics correspond to a(y)j
model and the observed characteristics correspond to an options(x )j
package. In that case, we show that the price data across options pack-
ages for each model can be used to identify the unobserved character-
istics of the different models.

Let z denote a model and Z denote the set of all models. The set of
models induces a partition of J. The map associates productsp : J r Z
(j) with models (z). The inverse image of z under p is the set of products
that are model z, where each product has a possibly different options
package x. The model z is observable, and x and z have joint distribution

.F : A # Z r Rx,z

The first assumption in this subsection says that y is shared by products
that are the same model.

Assumption 3. For all , , if , then .j j � J p( j ) p p( j ) y p y1 2 1 2 j j1 2

In order to identify the product unobservable, we also need there to
be a “baseline” or standard options package that is available for all
models z. We formalize this requirement using the following assumption.

Assumption 4. There exists an such that, for all ,x̄ � A z � Z
.¯f(xFz) 1 0

Because of the lack of implicit units for y, we again can identify y

and the price function only up to a normalization. In this case we
normalize y such that is .F U[0, 1]yFxpx

Theorem 2. Suppose that assumptions 1, 3, and 4 hold. If many
products are observed in a single market, then is identified. In each{y }j
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market t in which many products are observed, the price function ispt

identified.
Proof. For each product j, let be a product such thatj* p( j) p

and . Such a product exists for every model by as-¯p( j*) x p x p( j)j*

sumption 4. Then, similarly to the previous section,

y p F (p ).j p Fxpx j*tt

This equation identifies .{y }j
The price function in each market t is given by the prices of non-

baseline packages. For any point ,(x , e ) � A # E0 0

p(x , e ) p p for k � J (3)t 0 0 kt

such that and . QEDy p e x p xk 0 k 0

Again in this case, identification of the unobserved product charac-
teristics is obtained in a single cross section. Note also that since many
products are observed in each market that have the same value for the
unobservable, the model is overidentified and is therefore testable.

C. Identification Using Instruments

In the event that the unobserved product characteristic is not indepen-
dent of all the observed characteristics, a second alternative would be
to use nonseparable instrumental variables techniques (e.g., Chesher
[2003], Imbens and Newey [2003], Chernozhukov, Imbens, and Newey
[2004], and Chernozhukov and Hansen [2005]; our approach most
closely relates to that in Imbens and Newey). For example, Bayer, Mc-
Millan, and Rueben (2004) use the fixed characteristics (e.g., housing
stock characteristics) of housing in surrounding neighborhoods as in-
struments for the endogenous characteristics (e.g., racial makeup) of a
given neighborhood.

Suppose that one of the observed characteristics is endogenous in
the sense that it may be correlated with (or otherwise depends on) the
unobserved characteristic. Without loss of generality, we assume that
this is the first characteristic, . We also suppose that some instruments,x 1

z, are available such that7

x p h(x , z, h).1 �1

This instrumenting equation is analogous to a reduced form for the
characteristic . Similarly to linear instrumental variables approaches,x 1

the instruments must be jointly independent of the unobserved char-
acteristics, y, and the error term in the instrumenting equation, h.

7 We allow to possibly depend on the other observed characteristics, but this is notx1

required for identification.
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Assumption 5. are jointly independent of .(y, h) (x , z)�1

Thus the endogeneity of results from a correlation between y andx 1

h. We also require monotonicity of the instrumenting equation in the
error term.

Assumption 6. is strictly increasing.h(x , z, 7)�1

Assumptions 5 and 6 make the instrumenting equation analogous to
the price equation in subsection A. By the results of that subsection,
the function and the error h are identified. Furthermore, if h ish(7)
normalized by its distribution function such that it is , then weU[0, 1]
can retrieve h using the relationship .h p F(x Fx , z)1 �1

Once h is known, it is straightforward to show that the price function
is identified. To do this we rely on an observation by Imbens and Newey
(2003) that and y are independent conditional on h. This can bex 1

seen as follows. Since (h, y) are jointly independent of , y is(x , z)�1

independent of conditional on h. Thus y is independent of(x , z)�1

conditional on h.h(x , z, h) p x�1 1

Theorem 4. Suppose that assumptions 1, 5, and 6 hold. If many
products are observed in a single market t, then is identified. In{y }j
each market t in which many products are observed, the price function

is identified.pt

Proof. The error term h and are identified from data on a singleh(7)
market by theorem 2. For a single market t,

Pr (p ≤ p Fx p x , h) p Pr [p(x, y) ≤ p Fx p x , h]jt j t jt j

�1p Pr [y ≤ p (x, p )Fx p x , h]t jt j

�1p Pr [y ≤ p (x , p )Fh],t j jt

where the last equality follows by the independence result in the text
above. Integrating both sides with respect to h (which has unit density
given the normalization) gives

�1Pr (p ≤ p Fx p x , h)dh p Pr [y ≤ p (x , p )]� jt j t j jt

�1p p (x , p )t j jt

p y . (4)j

Since h is identified, the expression on the left-hand side is known. This
shows identification of . The function is obtained for any market ty pj t

by inverting the left-hand-side expression. QED
Note that again the unobserved product characteristics are identified

in a single cross section.
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IV. Identification of Preferences

In this section we consider the identification of consumer preferences,
the demand function, and consumer surplus. We begin by outlining the
simplest case: the choice set is continuous. This case is similar to that
of Rosen (1974) and would apply best to markets such as housing that
have very rich product spaces. Many applications in the recent literature
in industrial organization have involved markets in which choices are
more limited, such as autos and packaged goods. Therefore, we also
consider identification in that case below. Throughout, we assume that
only a small number of observations are available per individual since
this is most often the case in applications.

A. Continuous Choice Set

When the choice set is continuous, by standard arguments, at each
bundle chosen by a consumer, the marginal rate of substitution between
characteristics must be equal to the slope of the consumer’s budget set
at that point. Since the consumer’s budget set is known completely from
the function , observation of a consumer’s chosen bundle isp(x, y)t

sufficient to learn the consumer’s marginal rate of substitution at that
bundle. However, this information provides only local information about
preferences at each chosen bundle; so if only a small number of choices
are observed per consumer, identification of the consumer’s weak pref-
erence relation is not possible. Instead, following recent convention in
the empirical literatures in industrial organization and marketing, we
proceed using parametric restrictions to the consumer’s indifference
curves.

In the empirical literature it is common to specify the utility function
as being either linear or log-linear in the characteristics, for example,

…u p b log (x ) � � b log (x ) � b log (y) � c. (5)ij i,1 j,1 i,K j,K i,y j

In this equation, the utility of household i for product j depends on
household-specific preference parameters, . Ifb p (b , … , b , b )i i,1 i,K i,y

there is an interior maximum, then the first-order conditions for utility
maximization are

b �pi,k tp for k p 1, … , K (6)
x �xj,k j,k

and

b �pi,y tp . (7)
y �yj j
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These first-order conditions can be solved simply for the unknown pref-
erence parameters of the individual,

�pt
b p x for k p 1, … , K (8)i,k j,k

�xj,k

and

�pt
b p y . (9)i,y j

�yj

If the price function, , and unobserved characteristics are known,p {y }t j

then in this example household i’s preference parameters, b p (b ,i i,1

, can be recovered even if only a single choice of the house-… , b , b )i,K i,y

hold, , is observed. By aggregating the decisions of all the house-(x , y)j j

holds in market t, one can learn the population distribution of taste
coefficients in market t, .G(b)t

Of course, as more choices are observed, it is possible to estimate
more complex functional forms for utility. In general, we characterize
an agent by a B-dimensional parameter vector . Since the pre-Bb � Ri

vious section has shown that the unobservables, {yj}, are identified by
the price function, we proceed as though y is known and write the utility
function as

u (x, c) p u(x, y � p(x); b), (10)i i i

where the dependence of utility on y is dropped to simplify notation.
Agents choose the element that maximizes utility. If both u andx � X

are differentiable, then the first-order necessary conditions arep(x)

�
[u(x, y � p(x); b)] p 0 for k p 1, … , K. (11)i i

�xk

Let denote the optimal choice of x conditional on b. The first-x(b)
order conditions can be implicitly differentiated to yield

′ �1¯ ¯x (b) p �(D u) D u, (12)x,x x,bi

where

ū(x; b) p u(x, y � p(x); b). (13)i i

Theorem 5. Suppose that , where B is an open convexBb � B P Ri

subset and . If is locally negative definite or positive definite,K ′x � R x (b)
then is locally identified. If and is globally positive definite′b K p B x (b)i

or negative definite, then is one-to-one.x(b)
Proof. The first part of the theorem follows from the local version

of the inverse function theorem. The second part follows from the global
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inverse function theorem since if (12) is everywhere positive or negative
definite, then is one-to-one so that the preferences are globallyx(b)
identified (see Gale and Nikaidô 1965). QED

Theorem 5 places tight restrictions on the types of utility functions
that can be identified using the choice data. Conditional on knowing
the price surface, p, we can identify at most K random coefficients per
choice observation. While this may seem like a negative result, we do
not view it that way. Even just a first-order approximation to the utility
function may be good enough for many applications. If the choice set
is rich, many welfare experiments (e.g., evaluating the effect of a price
change) would involve only local changes to utility. Additionally, if more
than one choice per household is available, the first-order conditions
can be used to provide higher-order approximations to the utility
function.

B. Discrete Product Space

In practice, there are at least three reasons why the continuous choice
model might not provide a good approximation to choice behavior.
First, the number of products in the choice set may not be sufficiently
large that the choice set is approximately continuous. Second, many
product characteristics are fundamentally discrete (e.g., “power steer-
ing,” “leather seats”). Third, some consumers may choose products at
the boundaries (e.g., the fastest computer).

In place of the marginal conditions in (11), when the product space
is discrete, consumer maximization implies a set of inequality con-
straints. If consumer i chooses product , thenj � {1, … , J }

u(x , y , y � p ; b) ≥ u(x , y , y � p ; b) for all k ( j. (14)j j i j i k k i j i

Therefore, it must be that , whereb � Ai i

A p {b : b satisfies (14)}. (15)i i i

If the choice set is finite, the sets will typically not be singletons,Ai

implying that the parameters bi are not point-identified. However, that
does not mean that the data are noninformative. If the choice set is
rich, the sets may be small. Furthermore, it is easy to show that if allAi

the characteristics are continuous and the choice set is compact, then
as the number of products increases, the sets converge to the indi-Ai

vidual taste coefficients bi.
In applications in which the sets are large enough that the lack ofAi

point identification matters practically, we suggest two alternative ap-
proaches. The first is to proceed in the spirit of the recent literature
on set-identified models (Manski and Tamer 2002; Haile and Tamer
2003) and construct bounds on the preference distributions. The Ai
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sets represent bounds on the preference parameters for each consumer.
Together, they can be used to construct bounds on the distribution of
individual preference parameters in the population.

Suppose that there are M consumers in the market. Then the aggre-
gate distribution of preference parameters is defined as

M1
G(b) p 1{b ≤ b},�t iM ip1

where denotes an indicator function that is one if individual1{b ≤ b}i

i’s preference parameter is less than (in the vector sense) the vector b.
Bounds on can be constructed using the sets as follows:8G(b) At i

M1
G(b) ≤ G(b) { sup 1{b ≤ b} (16)�t t M ip1 b�Ai

and
M1

G(b) ≥ G(b) { inf 1{b ≤ b}. (17)�t t M ip1b�Ai

The intuition of the upper bound is that if there is any vector b in the
set such that , then it is possible that consumer i’s preferenceA b ≤ bi

parameter is less than b. The upper bound is chosen so as to encompass
all such possibilities (with the lower bound chosen similarly).

An alternative way to address the lack of point identification would
be to use a parametric approximation to the preference distribution.
While each individual’s preference parameters are not point-identified
from his or her choices, putting together the information contained in
all individuals’ choices should still provide a lot of information about
the aggregate preference distribution. Thus, depending on how flexibly
the aggregate preference distribution is modeled and how rich the data
are, the parameters of the preference distribution as a whole are still
likely to be point-identified (see Bajari and Kahn [2005] for an ex-
ample).

C. Nonpurchasers and Outside Goods

In our model, individuals who choose not to purchase any product are
handled similarly to those that do purchase. The decision not to pur-
chase any product is the same as the consumer spending all her income
on the composite commodity c. That is, it is as though she purchases a
bundle that provides zero units of every characteristic and carries a zero
price. In either the continuous or discrete product space cases, this

8 Note the slightly confusing feature of the bounds that a lower (upper) bound for the
distribution function corresponds to an upper (lower) bound for the distribution itself.
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would imply a set of inequalities for nonpurchasers of the form

u(0, 0, y ; b) ≥ u(x , y , y � p ; b) for all k. (18)i i k k i k i

These inequalities could then be used similarly to those above in (14)
to locate nonpurchasers’ preference parameters. Note that (18) pro-
vides only inequalities and therefore provides only set identification for
nonpurchasers’ preference parameters even if the choice set is con-
tinuous.

D. Demand and Welfare

Once consumers’ preference parameters have been recovered, it is
straightforward to compute the demand system. Demand for product j
as a function of the prices of all the goods is given by

M

q (p , … , p ) p 1{u ≥ u for all k ( j }.�j 1 J ij ik
ip1

In the event that it is possible to recover only bounds on individual
consumers’ preference parameters, demand cannot be computed ex-
actly. However, the preference parameter bounds can be used to com-
pute bounds on demand:

M

¯q (p , … , p ) ≤q { sup 1{u(x , y , y � p ; b)�j 1 J j j j i j
ip1 b�Ai

≥ u(x , y , y � p ; b) for all k ( j } (19)k k i k

and

M

q (p , … , p ) ≤ q { inf 1{u(x , y , y � p ; b)�j 1 J j j j i j
ip1b�Ai

≥ u(x , y , y � p ; b) for all k ( j }. (20)k k i k

Note that demand is determined by overall willingness to pay for a
product and not the particular values of any one preference parameter.
Thus it is possible for wide bounds on the preference parameters to
imply narrow bounds on demand (and also vice versa).

It is also straightforward to do welfare calculations and to compute
bounds on consumer welfare. For example, suppose that we want to
compute the welfare effects of a change in prices or the choice set for
a consumer with income y and preference parameters b. Let C {1

denote the consumer’s initial choice set and the initialJ2{(x , y , p )}j j j jp1

prices and denote the new choice set and prices.J2C { {(x , y , p )}2 j j j jp1
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Utility received by the consumer from the initial choice set is

u* p max u(x , y , y � p ; b).1 j j j
j�C1

In order to make the consumer equally well off when facing the choice
set , the consumer needs to be compensated by an amount W suchC2

that

max u(x , y , y � p � W; b) p u*.j j j 1
j�C2

If the consumer’s preference parameters are only set-identified, then
we can compute bounds on this compensating variation, W, by taking
the sup and the inf of W as calculated above for .b � Ai

V. Estimation

In all the cases considered above the identified objects have empirical
counterparts that are straightforward to calculate and use for estimation.
We assume that the econometrician observes prices and characteristics
for products across markets. We also assumej p 1, … , J t p 1, … , T
that the choices of a sample of N consumers are observed. We allow
that the choice data may be aggregate data in the sense that no infor-
mation is available matching consumers’ demographics to purchases.
In that case the choice data would include only the total market demand
for each product.

A. First-Stage Estimation

If the choice set is discrete, the first stage consists only of estimating
the value of the unobservables. If the choice set is continuous, it is also
necessary to know the price function derivatives. If there is measurement
error in prices, then before the first-stage estimation it is necessary to
do some smoothing to remove the measurement error.9

1. Independence Case

In this subsection we assume that x and y are independent. As in
equation (2), in this case all that is required for estimation of both y

and the price function is an estimator for the conditional distribution
of prices given characteristics, . For example, a kernel esti-F̂ (e )p Fxpx 0t 0

mator (such as those outlined in Matzkin [2003]) or a series estimator

9 A previous draft of this paper contained estimators for the measurement error case.
Please contact the authors for details.
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(such as those outlined in Imbens and Newey [2003]) could be used.
In applying these estimators to our data on personal computers, we
found that a local linear kernel estimator (Fan and Gijbels 1996)
worked best.

The unobserved characteristics are obtained from the estimator
directly,

ˆ ˆy p F (p ), (21)jt p Fxpx jtt j

whereas the price function is obtained by inverting the estimator.
While Matzkin (2003) does not explicitly consider estimation of the

unobservable, the asymptotic properties of the estimator in (21) are
analogous to those of the estimator considered in theorem 4 of that
paper.

2. Options Packages Case

As in the independence case, all that is required here is an estimator
of the distribution of prices conditional on characteristics, .F̂ (e )p Fxpx 0t 0

However, in the options packages case, this estimator is evaluated only
at when estimating y,¯x p x

ˆ ˆy p F (p ), (22)jt p Fxpx j*tt

where is the product that is the same model as j with options packagej*
. If such a package is not actually observed for all products, it is¯x px

first necessary to “predict” by smoothing the prices of products thatpj*t

are the same model as j and that have characteristics close to .̄x

3. Instrumental Variables Case

In the instrumental variables case, it is first necessary to estimate the
instrumenting equation. The error in the instrumenting equation, h, is
estimated using the distribution of conditional on and z:x x1 �1

ˆĥ p F (x ).jt x Fx ,z 1j1 �1

This estimator is analogous to the estimation of y in the independence
case above.

Next, it is necessary to estimate the distribution of prices conditional
on x and h:

F̂ . (23)p Fxpx ,hpht j jt
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This conditional distribution then has to be integrated over h as in (4)
to obtain an estimator of y:

ˆ ˆy p F (p )dh.jt � p Fxpx ,h jtt j

B. Estimation of Preferences, Continuous Product Space

Here we consider estimating the preference parameters when there is
only one choice observation per consumer and a simple functional form
for utility. When multiple observations per individual are available,
other, more flexible, specifications can be estimated similarly.

To illustrate the approach, suppose that the consumer’s utility takes
the form in equation (5). Then the first-order conditions imply that
equations (8) and (9) must hold. This suggests the following estimator
for :bi

ˆ�pt
b̂ p x for k p 1, … , K (24)i,k j,k

�xj,k

and

ˆ�ptˆ ˆb p y , (25)i,y j
�yj

where represents the (estimated) bundle chosen by individual ii iˆ(x , y )j j

and represents an estimator for the derivative of the price func-ˆ�p /�xt j,k

tion at the chosen bundle. One way to estimate the price function
derivatives is to use the derivatives of a price function estimator. The
price function can be estimated analogously to (21) above (except using
[2]) and using either a kernel or series-based approach. Matzkin (2003)
also provides a direct estimator for the derivatives of a nonseparable
function.

The asymptotic properties of the taste coefficient estimators depend
only on the sample sizes for the first stage. Because of this, it is possible
to obtain accurate estimates of the entire vector of taste coefficients for
each individual using only a single choice observation. Using the esti-
mated taste coefficients for a sample of individuals along with their
observed demographics, one is then able to construct a density estimate
of the joint distribution of taste coefficients and demographics in the
population.
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C. Estimation of Preferences, Discrete Product Space

Estimation is even more straightforward if the product space is discrete.
The sets can be estimated for each consumer by plugging the con-Ai

sumer’s observed choice and the estimated values of y for each product
into the inequalities (14) and then solving for the set of b’s that satisfy
them. Operationally this can be done in several ways. The easiest way,
and the method we use in the application in the next section, is to use
simulation.10 Moreover, since the functional forms that we consider are
linear in the parameters, the set of inequalities is a linear system, which
is a very well studied problem. Motzkin et al. (1953) provide an efficient
solution method for such systems, and code for implementing their
algorithm is widely available on the Internet. Pakes et al. (2005) also
provide a method for solving such systems using linear programming.
Another appealing feature of linear systems is that the sets are wellAi

behaved (they are convex polyhedrons).
Alternatively, it may often be desirable to estimate the distribution of

preferences parametrically. In that case, for each value of the parameter
we need to compute the probabilities attached to the sets under theAi

distribution function. These probabilities can be used to construct a
likelihood function or market shares for a method of moments esti-
mator. Again, simulation would typically be the easiest way to compute
these probabilities. However, we note that this approach often yields an
objective function that is not well behaved and that may be difficult to
maximize except in smaller-dimensional problems. To solve this prob-
lem, in the NBER working paper version of this paper (Benkard and
Bajari 2004, 21–25), we provided a computationally simple Gibbs sam-
pling estimator that provides a direct estimate of the aggregate pref-
erence distribution. We refer readers to that paper for more details.

VI. Application to Computer Demand

In this section we apply our proposed estimators to the demand for
desktop personal computers. Our data come from the PC Data Retail
Hardware Monthly Report and include quantity sold, average sales price,
and a long list of machine characteristics for desktop computers. Please
see Benkard and Bajari (2005) for a more detailed discussion of these
data.

The raw data set contained 29 months of data, but we initially con-
centrate only on the data for the last period, December 1999, covering
695 machines. We chose to use data for a single period both to keep
the estimation simple and also to test how well our methods work for

10 Please see the NBER working paper version of this paper (Benkard and Bajari 2004,
21–25) for details on how this simulation is performed.



1262 journal of political economy

TABLE 1
Summary Statistics

Variable Mean
Standard
Deviation Minimum Maximum

OLS
Coefficient

CPU benchmark 1,354.5 362.3 516 2,544 .836
RAM (megabytes) 74.0 35.1 16 256 3.010
Hard drive (megabytes) 9,276.8 4,850.3 2,100 40,000 .008
MMX .64 .48 0 1 �56.971
SCSI .01 .08 0 1 310.747
CD-ROM .67 .47 0 1 26.478
DVD .14 .35 0 1 32.213
NIC .36 .48 0 1 9.481
Monitor? .31 .46 0 1 29.625
Monitor size .75 3.27 0 15 22.822
ZIP .05 .22 0 1 20.440
Desktop .17 .37 0 1 25.611
Refurbished .09 .28 0 1 �144.314
No modem .55 .50 0 1 145.169
Win NT 4.0 .02 .14 0 1 �106.374
Win NT .17 .37 0 1 22.567
Win 98 .58 .49 0 1 �59.590
Win 95* .16 .37 0 1 �42.058
Constant �590.2

2R .79
Observations 695

* Win 3.1 is omitted.

this case. The data set reportedly covers approximately 75 percent of
U.S. retail computer sales. The raw data contained a large number of
characteristics, including dummies for each individual processor type.
We eliminated the processor dummies in favor of a CPU benchmark
variable.11 The final data set contained 19 characteristics, including five
operating system dummies (Win 3.1, NT 4.0, NT, Win 98, and Win 95)
plus CPU benchmark, multimedia extensions, RAM, hard drive capacity,
small-computer system interface, CD-ROM, DVD, modem, modem
speed, network interface card, monitor dummy, monitor size (if monitor
supplied), ZIP drive, desktop (vs. tower), and refurbished. Summary
statistics for these data are given in table 1. To show that accounting
for unobserved characteristics is very important in this application, un-
der the assumption that all characteristics are perfectly observed, 357
of the 695 products are dominated, meaning that there is some other
product that has strictly better values of the observed characteristics and
a lower price. Hence, a hedonic model that did not allow for unobserved
characteristics would not be able to rationalize positive demand for more
than half of the products observed in the data.

11 The CPU benchmark was obtained from http://www.cpuscorecard.com. A regression
of CPU benchmark on chip speed interacted with chip dummies yielded an of 0.999.2R
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A. First-Stage Results: Unobserved Product Characteristics

Because it would be difficult to use nonparametric techniques on a 19-
dimensional system, in the application we concentrate on the three most
important continuous characteristics: CPU benchmark, RAM, and hard
drive capacity. However, we also found that the results were not as clean
if the remaining 16 characteristics were simply omitted. Therefore, for
the purposes of the first-stage regressions, we made the assumption that
the price function is additively separable in the remaining character-
istics. Thus the first-stage estimates are obtained using price data after
the linear effect of the other 16 characteristics has been removed (or-
dinary least squares [OLS] coefficients listed in table 1). While this
assumption was largely made for convenience in the estimation, we
believe that additive separability is likely to hold for many of the re-
maining characteristics because many of them represent such things as
peripheral devices that can easily be bought and installed separately.
Arbitrage between the personal computer and peripheral markets
should place a limit on deviations of the price function from additive
separability in these characteristics.

Our first-stage estimates were obtained using a local linear kernel
estimator (Fan and Gijbels 1996) corresponding to equation (21), with
a normal kernel. Equation (21) was derived using the normal-U[0, 1]
ization and thus results in estimates of y that are limited to the unit
interval. Bandwidths were chosen by eye to be large enough that small
wiggles in the distribution function were eliminated. This results in a
bandwidth that is likely to be oversmoothing the distribution function
somewhat relative to the mean square error minimizing bandwidth.
Note, however, that because we are treating the product space as finite,
we need only the first-stage estimates of y in order to estimate the
demand system. We do not use the estimates of the price function
directly.

An important issue with respect to our approach is how precisely it
is possible to estimate the y’s for each product. Table 2 shows the dis-
tribution of standard errors for the estimated y’s using both an asymp-
totic approximation (from Fan and Gijbels [1996]) and also a bootstrap
method. The asymptotic standard errors average 0.01, with 95 percent
of the estimated y’s having standard errors less than 0.018. The bootstrap
standard errors were generally very similar but slightly larger in mag-
nitude. The table also includes a third column that adds in the esti-
mation error from the 16 OLS coefficients. Because some of these co-
efficients are not estimated well (because of the small numbers of
machines with certain characteristics), these standard errors are some-
what larger, averaging 0.08.

In summary, we found that, with very few exceptions, it was possible
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TABLE 2
Distribution of Standard Errors for Estimates of y (Np695)

Quantile
Asymptotic

(1)

Bootstrap
(1,000 Samples)

(2)

Bootstrap
(OLS Coefficients)

(1,000 Samples)
(3)

Minimum .002 .002 .004
.30 .007 .007 .073
.50 .009 .009 .081
.95 .018 .022 .105
.99 .052 .091 .119
Maximum .104 .121 .153
Average .010 .012 .080

to estimate the unobserved product characteristics quite precisely. We
believe that this result reflects several features of our model and data.
One important feature of the model is the fact that in our model y

corresponds to a distribution function (or a quantile) and is therefore
much easier to estimate than, for example, the corresponding density.
Another reason for the precision of the results is that in our data the
characteristics space is quite densely filled so that, with the exception
of a few outlying products, every product has close neighbors in char-
acteristics space.

We also estimated the bias in the y estimates and found it to be small;
but more important, we found that the rank ordering of the y estimates
was nearly identical whether or not the estimated bias term was included.
Hence, we left the estimated bias out of our final first-stage estimates.

B. Second-Stage Results: Preferences and Demand Curves

In estimation of the preference parameters and the demand system,
high-dimensional systems are easily handled. Therefore, we evaluate two
different versions of the demand model. The first (model 1) uses only
the continuous characteristics (CPU, hard drive, RAM, and y) as in the
first-stage estimation above. Using this model, we can evaluate the extent
to which the discreteness of the product space affects identification of
preferences and demand even when all the characteristics are contin-
uous. In the second model (model 2) we use all 19 characteristics,
including all the discrete characteristics. In both models we use the
quasi-linear functional form for utility (as in eq. [5]), linear in the logs
of the continuous characteristics and linear in the remaining charac-
teristics, including expenditure on other goods (price). The unobserved
characteristics obtained from the first stage were normalized such that
budget sets were always convex. We also tried several alternative nor-
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TABLE 3
Characteristics of Four Representative Products Available in December 1999

Product
Number Brand/Model

CPU
(Benchmark) RAM

Hard
Drive Price Sales

353 E-Machines e-
Tower 366i2

Celeron/366MHZ
(890)

32MB 4.3G $388 1,912

439 HP Pavillion
8550c

Celeron/500MHZ
MMX (1398)

96MB 17.0G $1,012 3,001

168 Sony Vaio PCV-
L600

Pentium III/
500MHZ MMX
(1650)

128MB 10.8G $1,830 22

412 IBM Aptiva 595 Athlon/600MHZ
(2108)

128MB 20.4G $1,614 1,964

malizations and found that the effects of the choice of normalization
on the results were small.

We begin by investigating the identification of the preference param-
eters. We focus on the preference parameters for CPU and RAM for
consumers who bought four particular products chosen so as to rep-
resent different areas of the characteristics space (see table 3 for a
description of the products). Figures 1 and 2 show simulated random
draws from the estimated identified sets for the two different models.
Note that since the utility function is linear in the parameters, the
identified sets are convex polyhedrons. Apparent deviations from that
are due to random noise in the simulation draws.12

If both the product space and characteristics space were continuous,
then the preference parameters would be point-identified (the identi-
fied sets would be singletons). In model 1, set identification comes from
discreteness of the product space. Since there are 695 products, one
might think that the identified sets would always be small. Figure 1
shows that this is usually the case but not always. In particular, product
168 has relatively wide bounds on the preference for RAM, whereas
product 412 has relatively wide bounds on both preference parameters.
Presumably these wider bounds are due to a lack of close substitutes
for these products. The figure does not show this, but there are also a
few products with open-ended (including infinity) identified sets in
which the product is the best in any single dimension (e.g., fastest CPU
or most RAM). Table 4 categorizes the distribution of the preference
bounds by how tight the bounds are for each parameter. For model 1
the vast majority of products allow quite tight estimation of the pref-
erence parameters. This implies that the distribution of preference pa-

12 Additionally, while the simulation draws are chosen such that they are uniform over
the entire identified set, there is no reason that they must still be uniform when projected
into a two-dimensional space.
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Fig. 1.—Preference parameter identified sets (model 1, continuous characteristics only)
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Fig. 2.—Preference parameter identified sets (model 2, all characteristics)
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TABLE 4
Distribution of Preference Parameter Bounds (Continuous Characteristics)

A. All Products

% “Small” % “Medium” % “Large” % “Very Large” % “Huge”

Model 1 (Continuous Characteristics)

bCPU 50 30 10 8 2
bRAM 50 30 10 7 3
bHD 50 30 10 8 2
by 50 30 10 8 2

Model 2 (All Characteristics)

bCPU 0 7 17 62 13
bRAM 6 20 54 11 9
bHD 1 14 23 47 15
by 2 9 24 51 14

B. Four Representative Products

Product CPU RAM
Hard
Drive y

Model 1

353 Small Small Small Medium
439 Medium Medium Large Large
168 Medium Very large Medium Large
412 Very large Very large Large Medium

Model 2

353 Large Small Large Very large
439 Very large Very large Huge Very large
168 Huge Huge Huge Huge
412 Very large Very large Very large Very large

C. Definitions

Small Medium Large Very Large Huge

CPU !176 !352 !642 !2,500 12,500
RAM !134 !252 !1,201 !2,000 12,000
Hard drive !63 !137 !160 !2,250 12,250
y !274 !739 !1,292 !8,000 18,000

rameters is also very well identified. About 2 percent, or 10 products,
have “huge” or open-ended bounds that are not very informative.

Allowing for the remaining discrete characteristics generally widens
the bounds considerably. Table 4 shows that the CPU, hard drive, and
y coefficients now have “very large” bounds for the majority of products,
and 10–15 percent of products have “huge” or fairly uninformative
bounds. Only the RAM coefficient continues to be identified relatively
well. Figure 2 graphs the bounds for the four products referenced above.
Product 168 is an example in which the bounds are particularly wide.
The reason turns out to be that product 168 has a set of discrete char-
acteristics that is relatively unique, rationalizing purchase of product
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Fig. 3.—Bounds on the distribution function: taste for CPU

168 for a wide range of preferences for CPU and RAM. Finally, note
that we are demanding a lot of the data to identify individual preference
parameters. Even with these wider bounds, the data are still likely to be
quite informative about the distribution of preference parameters as a
whole such that it is likely that it could still be estimated quite flexibly.

Putting together the bounds on individual preference parameters
allows us to construct bounds on the distribution of preferences in the
population. Figure 3 shows the bounds for the distribution of the CPU
taste coefficient (results for the other coefficients are similar), where
in the figure the dotted lines represent the bounds from model 1 and
solid lines represent the bounds from model 2. The graph shows that
in model 1 the taste distributions are quite well identified. This result
suggests that in these data, discreteness of the product space (the fact
that not every point in characteristics space is available) is not very
important for identification. The fact that there are a large number of
products means that consumers are always quite close to their optimum,
which allows precise identification of their preference parameters. An
implication of this is that we would have obtained similar results had
we ignored the discreteness altogether in model 1 and instead used the
first-order conditions for the consumer optimum to infer each con-
sumer’s taste coefficients. On the other hand, the bounds are consid-
erably wider for model 2, likely because of both the large number of
characteristics in model 2 and the many discrete characteristics. In
model 2, discreteness clearly matters for identification.

Since the demand curve represents marginal willingness to pay at
each quantity, wider bounds on the preference parameters are likely to
lead to wider bounds on the demand curve. This intuition is borne out
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in figure 4. In the figure, dotted lines represent the bounds on demand
computed using model 1, whereas the solid lines represent the bounds
computed using model 2. Note that the models are not nested, so there
is no reason for the bounds to coincide or nest. Model 1 generally leads
to fairly tight bounds on the demand curve and very elastic demand,
perhaps unreasonably so. Model 2 leads to wider bounds but more
reasonable “elasticities.” (We use the term loosely here to refer to the
general slope of demand.) This result is intuitive. In model 1, the prod-
uct space is only four-dimensional and the characteristics are continu-
ous. Therefore, products appear to be very closely related to each other,
resulting in more elastic demand curves. In model 2 the product space
is 19-dimensional, and products are, on average, more differentiated.
For model 2, implied “elasticities” are approximately in the range of
about five to 100 for most products. This is quite high, but perhaps not
unreasonable given the very detailed definition of a product here. Such
high elasticities would imply very competitive pricing if the market con-
sisted of single-product firms; but in our data several firms have as many
as 50–100 products each, so that is not necessarily the case here. These
results suggest that, while including the discrete characteristics leads to
less precise identification of the model, they seem to be economically
important.

Next we investigate the implications of the preference parameter
bounds for welfare calculations. First we compute bounds on the welfare
loss to individuals if they were to face a different choice set consisting
of only the products and prevailing prices available in the first data
period (August 1997; see table 5). This experiment leads to losses of
11–16 percent in model 1 and 9–42 percent in model 2. This welfare
calculation is similar to those undertaken in constructing price indexes.
The welfare bounds imply bounds on the price index (August 1997 p
100) of 54–73 for model 1 and 23–60 for model 2. These bounds are
fairly wide, but that is not out of the ordinary in this context.

Next we computed bounds on the welfare loss to each individual if
his preferred product were removed from the choice set. This is a cal-
culation similar to those performed by Trajtenberg (1989) and Petrin
(2002). Table 6 shows the distribution of the bounds for both models.
In model 1, consumers lose very little if their favorite product is re-
moved, with the average maximum loss across products being $15 (this
figure excludes the handful of products for which the upper bound is
infinite). In model 2, this rises to an average maximum loss of $213,
though the median maximum loss is only $59. In our opinion the num-
bers from model 2 are quite reasonable. In a market in which there are
so many similar products available, it is often possible for consumers to
switch to a nearly identical product. In this second example, even though
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TABLE 5
Distribution of Bounds on Welfare Loss from Facing August 1997 Choice Set

(%)

Percentile Average
(Excluding

�’s).05 .10 .25 .5 .75 .9 .95

Model 1

Lower bound 7 9 10 11 12 13 14 11
Upper bound 10 11 12 13 15 19 26 16

Model 2

Lower bound �7 �2 4 11 15 17 19 9
Upper bound 21 23 25 31 43 67 94 42

TABLE 6
Distribution of Bounds on Welfare Loss from Removing Each Product ($)

Percentile Average
(Excluding

�’s).05 .10 .25 .5 .75 .9 .95

Model 1

Lower bound 0 0 0 0 0 0 0 0
Upper bound 0 0 1 3 9 26 64 15

Model 2

Lower bound 0 0 0 0 0 0 0 0
Upper bound 6 13 27 59 177 526 851 213

the preference parameter bounds are quite wide, the welfare bounds
end up being quite useful.

VII. Conclusions

This paper has investigated the identification and estimation of hedonic
discrete-choice models of differentiated products. Specifically, we
showed how to generalize Rosen’s (1974) approach in several ways: (1)
we allow for imperfect competition, (2) we allow for unobserved product
characteristics, (3) we generalize the first-stage estimation to be non-
parametric and nonseparable, and (4) we take an alternative approach
to the second stage that avoids the recent criticisms of Rosen’s second
stage and allows for a discrete product space and discrete characteristics.
Our hope is that these generalizations will make it much easier to apply
hedonic demand models in empirical work in a wider set of applications
in the future.

In application of the model to computer demand, allowing for un-
observed characteristics was shown to be important because it allowed
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rationalization of demand using standard models of utility. Under the
assumption that all product characteristics are perfectly observable, as
in Rosen (1974), many products that were observed to have positive
demand in the data would have been dominated.

We also found that, while the preference parameters for the contin-
uous characteristics were identified quite well in the absence of the
discrete characteristics, the presence of the discrete characteristics loos-
ened this identification somewhat. This lack of identification led to wide
bounds in some cases (demand, price indexes), but still led to useful
bounds on the welfare loss to individuals if their favorite product was
removed from the choice set. In cases in which the bounds are wide,
it would be possible to make assumptions about the parametric form
of the aggregate distribution of preferences in order to get more precise
estimates. However, the fact that the bounds were wide shows that results
obtained in this way might be sensitive to these additional distributional
assumptions.

Finally, while the main disadvantage of our estimation approach is
likely to be the first-stage data requirement, this problem did not show
up in our data, which are fairly rich and contain a large number of
products. However, the first-stage estimates are likely to be somewhat
less precise in markets with fewer products.

Appendix

Proof of Theorem 1

Part 1: Suppose that for some market t in which both j and have positive′p 1 p j′jt j t

demand. Then since is strictly increasing in c,u u (x , y , y � p ) ! u (x , y ,′ ′i i j j i jt i j j

for all individuals i. This implies that demand for j is zero in market t,y � p )′i j t

which is a contradiction.
Part 2: Suppose that for some market t in which both j and have′p ≤ p j′jt j t

positive demand. Then since is strictly increasing in c and strictly increasingui

in y, for all individuals. This implies thatu (x , y , y � p ) 1 u (x , y , y � p )′ ′ ′i j j i jt i j j i j t

demand for is zero in market t, which is a contradiction.′j
Part 3: Consider any two products j and . If j and have the same charac-′ ′j j

teristics, then the result holds by part 1 above. Suppose that j and have different′j
characteristics in at least one dimension and assume without loss of generality
that . Since is Lipschitz continuous in , we have thatp 1 p u (x , y)′jt j t i j j

Fu (x , y , y � p ) � u (x , y , y � p )F ≤ M (Fx � x F � Fy � y F). (A1)′ ′ ′ ′i j j i jt i j j i jt 1 j j j j

By a mean value expansion, for all individuals,

′ ′�u (x , y , y � p*)j j jti iu (x , y , y � p ) p u (x , y , y � p ) � (p � p ) , (A2)′ ′ ′ ′ ′ ′i j j i j t i j j i jt jt j t
�c
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where and varies for each i. Plugging (A2) into (A1) givesp* � [p , p ]′jt jt j t

′ ′�u (x ,y , y � p*)j j jti i[u (x ,y , y � p ) � u (x ,y , y � p )] � (p � p ) ≤′ ′ ′ ′i j j i jt i j j i j t jt j tF F�c

M (Fx � x F � Fy � y F). (A3)′ ′1 j j j j

The second term in the absolute value on the left-hand side is positive. Since
demand for j is positive, there must be some individuals for whom the first term
is also positive. For those individuals, we can ignore the absolute value sign, and
we only strengthen the inequality by also ignoring the first term:

′ ′�u (x ,y , y � p*)j j jti i(p � p ) ≤ M (Fx � x F � Fy � y F)′ ′ ′jt j t 1 j j j j
�c

′for i that prefer j to j ,

′ ′�u (x ,y , y � p*)j j jti ip � p ≤ M (Fx � x F � Fy � y F)′ ′ ′Zjt j t j j j j[ ]�c
′for i that prefer j to j .

M1≤ (Fx � x F � Fy � y F)′ ′j j j j
e

p M (Fx � x F � Fy � y F). (A4)′ ′2 j j j j

Expression (A4) uses the fact that both products have positive demand to place
a limit on how much their prices can vary. The closer the products are in
characteristics space, the less their prices can vary without sending demand for
the higher-priced product to zero.
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