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PRELIMINARY AND INCOMPLETE

Abstract

In this paper, we develop a quantitative general equilibrium model of a city that

incorporates the many economic interactions that occur over the space of the city,

including commuting, trade, and productive interactions. We show that despite the

many spatial linkages, in the absence of externalities the competitive equilibrium is

efficient; conversely, in the presence of spillovers, there exists opportunities for a city

planner to increase the welfare of the city inhabitants by restricting the use of land

(“zoning”). We provide sufficient conditions for the optimal zoning policy that depend

solely on observables and several key model parameters. Finally, we illustrate the

flexibility of the model by applying it to study the observed zoning policy of the city

of Chicago. Preliminary results suggest that the welfare of Chicago residents would

increase if more area was allocated to residential usage in the central business district

and more area was allocated to businesses in the outlying neighborhoods.

∗We thank Dave Donaldson, Davin Chor, Esteban Rossi-Hansberg, Matthew Turner, Yang Yao and
Xiaobo Zhang. All errors are our own.
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1 Introduction

As of 2014, 54% of people worldwide live in cities. This is an increase from 34% in 1960,

and urban population is expected to increase by more than 1% per year in the upcoming

decades. This unprecedented concentration is indicative of the large agglomeration economies

that take place in shorter distances and lead firms and individuals to cluster in cities. While

local governments have a large array of potential policy tools at their disposal (e.g. zoning

policies, subsidies, infrastructure projects, etc.), little is known about how a city can best take

advantage of these agglomeration economies in order to improve the welfare of its citizens.

In this paper, we develop a quantitative general equilibrium model of a city that incor-

porates the spatial linkages present in modern cities and the many ways individuals interact

with each other across space. Our model allows us to examine the general equilibrium effects

of different policies on agents welfare and to quantify their impact. As in trade and economic

geography models, we model the movement of goods from firms to consumers to be subject

to bilateral trade costs. As in urban models, we also assume there is a cost for individuals

to move around the city. This cost of moving throughout the city has important ramifica-

tions for the many economic choices that individuals living in a city make, including where

to live, where to work, and with whom to interact (which affects an agent’s productivity).

These decisions determine the distribution of wages, productivity, output, and land prices

throughout the city and ultimately the welfare of those living in the city.

We first prove that in the absence of productivity externalities, the competitive equilib-

rium is efficient, so that there is no need for any intervention on the part of the city planner.

While this result is not particularly surprising given the standard first-welfare theorem, it

is reassuring that efficiency is robust to the many spatial linkages present in the model.

Conversely, when there does exist productivity externalities, a city planner can improve the

welfare of inhabitants by imposing restrictions on land use by zoning.

We then present a parameterized “quantitative” version of the model. Like Ahlfeldt,

Redding, Sturm, and Wolf (2012), we assume that individuals have idiosyncratic Frechet

distributed preferences which give a convenient “gravity” form for commuting flows. As in

Anderson (1979) and Allen and Arkolakis (2014) we assume that each location produces

a differentiated product. We further assume that firms produce the good by combining

land and labor in a Cobb-Douglas fashion, and as in Helpman (1998) and Redding (2015),

individuals have Cobb-Douglas preferences over housing and the traded good.

We allow agents to optimally allocate their time across a number of activities. Individuals

can spend time working and commuting (to earn income to purchase goods), in leisure (from

which they get utility directly), or in interacting with others in the city (from which they
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generate ideas and increase their own productivity). It is this interaction, which has been

emphasized previously by Charlot and Duranton (2004), Glaeser (1999), and Davis and

Dingel (2012) (amongst others) but has yet to be incorporated into a quantitative framework,

that generates productivity externalities and opens up the possibility for interventions by

the city planner to be welfare improving.

The model incorporates the main links that trade, geography and urban economists

identify: flows of trade, flows of commuting, and spatial spillovers of knowledge. Despite

its richness, the structure remains suprisingly tractable. To characterize the solution of the

problem we consider the concept of a zoning equilibrium where the use of land for residen-

tial and commercial purposes is specified by a city planner. In this equilibrium good, labor

and rental markets in the model clear and the model aggregates to a system of equations.

Exploiting results from Allen, Arkolakis, and Li (2015) we can provide a general character-

ization of existence and uniqueness in the model.1 In addition, we show that if trade costs

are assumed to be zero, the model extends the standard equilibrium equations arising from

spatial models to the case of commuting. In particular, the number of workers in a location

and effective wages are not affected only by location fundamentals, such as productivity and

land, but also from a multilateral commuting accessibility term that determines the accessi-

bility of a production location from high amenity, easy to access residential locations, were

commuters can live. In addition, under certain geographies, such as the circle, and under

symmetric fundamentals the model allows for an explicit solution of the population density.

Given this structure, we derive the elasticity of the welfare of the city inhabitants to a

change in the zoning in any location within the city, thereby providing a necessary condition

for the optimal zoning of a city. Conveniently, the elasticity depend only on the observed

economic activity of the city (e.g. commuting flows) and the structural parameters governing

the strength of the general equilibrium forces in the model, and can be simultaneously

determined for all locations by a single matrix inversion. Even if the necessary condition is

not satisfied, its sign indicates how a location should be re-zoned and its magnitude indicates

the gains in welfare from doing so.

Finally, we illustrate how the model can be brought to real world using data from the

city of Chicago. Combining data on commuting flows, bilateral travel times, zoning, and the

location, height and size of 820,944 buildings in the city, we show how to identify the unob-

served distribution of productivities and amenities throughout the city. By the theoretical

results above, we estimate that there are substantial gains from re-zoning in Chicago: in

1Monte, Redding, and Rossi-Hansberg (2015) also consider a model of commuting with labor mobility and
trade, although they do not allow for the possibility of productivity spillovers or solve for agent’s equilibrium
time use. They too provide conditions for existence and uniqueness of the equilibrium with fixed land use,
but their conditions and their approach to proving uniqueness are somewhat different.
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particular, the model implies that welfare could be improved if the central business district

re-zoned to more residential units and the residential areas in neighborhoods outside the

center of Chicago re-zoned to allow more commercial units.

Our approach merges the standard general equilibrium analysis of welfare used in trade

and geography models (see, for example, Arkolakis, Costinot, and Rodŕıguez-Clare (2012)

and Allen and Arkolakis (2014)) to understand the impact of local policies on welfare in

an urban setting. There are two distinct advantages to our approach: First, because we

can provide a sharp characterization of existence and uniqueness we can analyze the impact

of local policies by providing explicit ways to compute changes of the equilibrium for large

or small changes of fundamentals (e.g. changes in land use, zoning).2 Second, welfare is

endogenously determined as the eigenvalue of the equilibrium system in contrast to standard

urban settings where there is a fixed reservation utility (see for example Lucas and Rossi-

Hansberg (2003), Ahlfeldt, Redding, Sturm, and Wolf (2012)). That last feature of our theory

allows us to use standard mathematical operator theory (see e.g. Polyanin and Manzhirov

(2008), Allen, Arkolakis, and Li (2015)) to characterize the changes in welfare as function of

changes in policy fundamentals.

Our model constitutes a bridge between standard geography models starting with the

seminal work of Krugman (1991) (see, for example, Helpman (1998), Redding and Sturm

(2008), Allen and Arkolakis (2014), Redding (2015), Ramondo, Rodŕıguez-Clare, and Saboŕıo-

Rodŕıguez (2012), Caliendo, Parro, Rossi-Hansberg, and Sarte (2014)) where location of

people and production is endogenous and separated by trade costs and urban models where

residential and working locations are separated by commuting costs (see Fujita and Ogawa

(1982), Lucas and Rossi-Hansberg (2003), Ahlfeldt, Redding, Sturm, and Wolf (2012), and

Ioannides (2013) for a comprehensive review). Our work is also related to a large urban

literature in urban economics that analyzes optimal spatial policy use in the presence of ex-

ternalities, reviewed in Glaeser and Gottlieb (2008). Closer to our approach, Turner, Haugh-

wout, and van der Klaauw (2014) evaluate the effect of land use regulation on the value of

land use and on welfare. The authors exploit cross-border changes in development, prices,

and regulation in regions near municipal borders together with detailed data on the land use

and regulations. We complement this work by offering a general equilibrium framework to

predict optimal land use.

The remainder of the paper is organized as follows: in the next section, we present the

theoretical framework, including both the general model and the quantitative version. In

Section 3, we illustrate how the model can be applied empirically by considering the city of

2Multiplicity of equilibria is a prevarsive issue in spatial models of economic geography and urban eco-
nomics. See for example Fujita, Krugman, and Venables (1999) and Fujita and Thisse (2013).
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Chicago. Section 4 concludes.

2 Theoretical framework

This section describes our theoretical framework. We assume a standard perfectly compet-

itive goods market with firms that use land and labor to produce goods. The premise of

the general model is similar to the canonical Alonso-Mills-Muth model (Alonso et al. (1964),

Mills (1967), Muth (1969) see Ioannides (2013) ch. 5 for a description) and in particular we

assume individuals have general preferences over good consumption and housing and their

income is determined by their working time minus commuting. We extend that framework

to allow a choice of leisure and of time spent for productive interactions with other agents,

which increase the agent’s productivity.

2.1 The general setup

We consider a city consisting of a set of locations S = {1, 2, ..., N} that we denote with

subscripts. Locations in the city are separated by two types of costs: trade costs and travel

costs.3 In particular to ship a good from i ∈ S to j ∈ S, quantity τij ≥ 1 must be shipped

in order for one unit to arrive (i.e. τij is the iceberg trade cost); similarly, it costs tij units

of time to travel from i ∈ S to j ∈ S.

In each location, there are buildings for residential and commercial use, whose supply is

denoted by HR
j : S → R and HF

j : S → R, j ∈ S, respectively. We consider a general firm

technology (e.g. it could be constant or decreasing returns to scale) and make no particular

assumptions on the utility function of the consumers. The goods markets are assumed to be

perfectly competitive.

We use ∆ to denote the set of all firms. The set of goods produced is denoted by Θ and

different firms, δ ∈ ∆, and we denote the goods produced by a firm δ with ϑ (δ) ∈ Θ. Each

firm produces in one location, which we denote as K (δ) ∈ S. We also denote the set of firms

in location j ∈ S as ∆j = {δ|K (δ) = j}, and without the risk of confusion, we also denote

the set of firms producing good θ ∈ Θ as ∆θ = {δ|ϑ (δ) = θ}. The production function of

firm δ is denoted as yδ = fδ (l, h) where l and h are the effective workers and buildings the

firm employees by paying local wage wK(δ) : S → R++ and rent rFK(δ) : S → R++ respectively.

3While these two costs are likely to be closely related (and we will assume as much when we get to the
empirical portion of the paper), for generality we will allow them to potentially differ.
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Firms maximize profit, i.e. solve

max
l,h

πδ = pδfδ (l, h)− wK(δ)l − rFK(δ)h, (1)

where l and h are the labor and land allocations of the firm. Goods can be transported from

location i ∈ S to j ∈ S by incurring iceberg costs τij ≥ 1.

Agents are denoted by ω ∈ Ω, where Ω is the set of all people, and L̄ ≡ ‖Ω‖ is the

measure of this set. The agents may live and work in different locations. They use residential

buildings and purchase consumption goods were they live. The time endowment for agent

ω is denoted by e (ω) : Ω → R+, which can be used to commute to work, for productive

interactions, to work and to enjoy leisure, and the time allocation devoted to each of these

activities is denoted as ec (ω), eA (ω), ew (ω) and el (ω), respectively. An agent choosing to

live in i ∈ S and work in j ∈ S will have to devote an amount of time equal to the travel time

between i and j, tij, i.e. ec (ω) = tij. The agent receives wage income and rental income. The

agent’s productivity (i.e. efficiency units of labor) is Aω
(
eA (ω) , i, j

)
. The wage income is

the product of the wage in location j (measured in efficiency units of labor) and the time the

agent spends working, wjAωe
w (ω). The agent also receives rental income from ownership of

residential and commercial buildings and profits from firm ownership. Denote {sδ (ω)}δ∈∆

as the share of stocks of agent ω in firm δ and
{
sRk (ω) , sFk (ω)

}
k∈S the corresponding shares

on residential and commercial buildings in each location k.

We represent the utility of agent ω who lives in i ∈ S and works in j ∈ S by

uω
(
el (ω) , {gθ (ω)}θ∈Θ , h

R
i (ω) , i, j

)
(2)

where {gθ (ω)}θ∈Θ are the final amount goods ω consumed and hRi (ω) is the amount of

housing (measured in units of area) that agent ω consumes.4 Notice that the quantity of

good θ ∈ Θ that agent ω consumes is:

gθ (ω) =
∑
δ∈∆θ

qδ (ω)

τK(δ)i

, (3)

where τK(δ)i is the trade cost of transporting goods from location K (δ) to i and qδ (ω) are

the amount of goods bought from firm δ. Notice that the utility can also be directly affected

by the location of residence and work, e.g. some places may be more attractive than others.

In what follows, we assume the utility function is strictly increasing in leisure el (ω) , the

quantity of each good consumed {gθ (ω)}θ∈Θ , and the quantity of housing hRi (ω).

4In the appendix, we allow agents to consume housing in multiple locations.
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Agents maximize their utility by choosing where to live, where to work, how to allocate

their time across the different activities, and how much to consume, solving:

max
{qδ(ω)},hRi (ω),{eA(ω),ew(ω),el(ω)},i,j

uω
(
el (ω) , {gθ (ω)}θ∈Θ , h

R
i (ω) , i, j

)
subject to their budget constraint:∑

δ∈∆

pδqδ (ω) + rRi h
R
i (ω) ≤

∑
δ∈∆

sδ (ω) πδ +
∑
i∈S

rRi s
R
i (ω) +

∑
i∈S

rFi s
F
i (ω) + wjAωe

w (ω) , (4)

and their time constraint:

ec (ω) + eA (ω) + ew (ω) + el (ω) ≤ e (ω) , (5)

where Aω = Aω
(
eA (ω) , i, j

)
is the effective units of labor agent ω provides and gθ (ω) as in

equation 3.

We denote agent ω’s final decision of where to live and work we as functions I (ω)

and J (ω). Also denote ΩI
i = {ω|I (ω) = i} the set of people living in location i and

ΩJ
j = {ω|J (ω) = j} the set of agents working in location j. We finally define LEj =´
ω∈ΩJj

Aωe
w (ω) dω as the effective labor in location j. Given this setup we discuss the equi-

librium in this general model and its efficiency properties.

2.2 Equilibrium in the general model

We now define the equilibrium of this model. For the shake of clarity, we separate the

equilibrium conditions into several groups. The first set of equilibrium conditions is that the

labor, goods, residential and commercial house markets all clear:

ˆ
ω∈ΩJj

Aωe
w (ω) dω =

∑
δ∈∆j

l (δ) (6)

ˆ
ω∈Ω

qδ (ω) dω = fδ (l (δ) , h (δ)) (7)

ˆ
ω∈Ω

hRi (ω) dω = HR
j (8)

∑
δ∈∆j

h (δ) = HF
j (9)

In the first time of equilibrium we consider, we assume the residential and commercial
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areas in each location are given exogenously. This will prove helpful below in characterizing

an equilibrium where the city planner allocates area to different uses through zoning.

Definition 1. Given agent’s endowment
{
e (ω) , {sδ (ω)}δ∈∆ ,

{
sRi (ω) , sFi (ω)

}
i∈S

}
, firms

production function fδ (l, h) for all δ ∈ ∆ and building supply
{
HR
i , H

F
i

}
i∈S, the vector of

consumer choices
{
{qδ (ω)}δ∈∆ ,

{
hRi (ω)

}
i∈S ,

{
eA (ω) , ew (ω) , el (ω)

}
, I (ω) , J (ω)

}
, {l (δ) , h (δ)}

together with the price variables
{{
rRi , r

F
i , wi

}
i∈S , {pδ}δ∈∆

}
constitutes a spatial equilib-

rium with zoning, equilibrium F1, if (i) equations (6)-(9) are satisfied; (ii) agents and

firms maximize the utility and profit as above.

We now consider an alternative equilibrium, where the market determines the allocation

of the residential and commercial buildings by ensuring the commercial and residential rents

equalize. The use of the buildings are allowed to be freely changed. The house follows

HR
j +HF

j = Hj. Thus, in equilibrium, the utility (profit) maximization implies rFj = rRj .

Definition 2. The above spatial equilibrium with zoning, equilibrium F1, together

with rFj = rRj and HR
j +HF

j = Hj constitutes a spatial equilibrium without zoning F2.

Given these definitions, we now state a theorem that provides sufficient conditions for

the spatial equilibrium without zoning to be efficient, F2:

Theorem 1. In the spatial equilibrium F2 , if tij (ω) and Aω
(
eA (ω) , i, j

)
only depends on

ω’s individual choice
(
eA (ω) , i, j

)
(i.e. there is no congestion in commuting and no spillover

in production), then if an equilibrium exists, it is efficient.

Proof. The main idea of the proof is to setup an equivalent economy where we can apply the

first fundamental theorem of welfare economics. Details can be found in the appendix.

The proposition is similar to the result of Konishi (2008) that focuses on an environment

with public goods provision (Tiebout equilibrium). Instead, our approach is intentionally

tilted to classic urban setups such as extensions of the celebrated von Thunen framework

or the more recent approach of Ahlfeldt, Redding, Sturm, and Wolf (2012) and we do not

need to impose specific functional form assumptions. In particular, we relax the assumption

of a numeraire good, costless trade (we consider a trade environment with an arbitrary

number of goods and trade costs) and constant returns to scale with one factor (we consider

a general production function with capital and labor and profits that are distributed back

to individuals).
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2.3 Parametric specification

Whereas the application of the first welfare theorem of economics is straightforward, the

characterization of the properties of the equilibrium of this general model is challenging

because of the aggregation of agents’ decisions.5 In order to make progress on this front we

proceed with a parameterized version of the model and characterize the existence, uniqueness,

and comparative statics of a spatial equilibrium in that setup. This parameterized version

of the model also proves to be straightforward to bring to the data, as we illustrate in the

next section. We will describe the production and agent decisions in turn.

2.3.1 Production

We now assume that all firms in a location produce the same differentiated variety of a good

as in Anderson (1979). The production function is assumed to be Cobb-Douglas on land,

HF
i , and effective units of labor, LEi , in location i,

Yi =
(
LEi
)α (

HF
i

)1−α
, (10)

with α being the share of labor and where

LEi =

ˆ
ω∈Ωi

A (ω) ew (ω) dω. (11)

Firm optimization (see equation (1)) yields the following expression for wage per efficiency

unit of labor:

wi = αpi
(
LEi
)α−1 (

HF
i

)1−α
, (12)

and for rent per unit of commercial area:

rFi = (1− α) pi
(
LEi
)α (

HF
i

)−α
, (13)

where α ∈ (0, 1] and pi is the price of the good in location i, which from perfect competition

is equal to marginal cost:

pi =
wαi
(
rFi
)1−α

αα (1− α)1−α ,

5This result, also known as the Sonnenschein-Mantel-Debreu theorem, is summarized by stating that
the aggregate excess demand function resulting from the aggregation of individual agent decisions may not
be well behaved. Thus establishing existence, uniqueness, identification, and comparative statics might be
particularly hard. See Rizvi et al. (2006).
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and the price of the good to the final destination simply incorporates the iceberg trade cost:

pij = piτij. (14)

2.3.2 Agent’s problem

As a specific case of the general problem, we now parametrize the agent’s utility function.

Consider an agent ω who lives in location i ∈ S and works in location j ∈ S. We assume the

agent ω’s utility is a Cobb-Douglas function composed of five parts: the (exogenous) amenity

ui where the agent lives; the quantity of time the agent allocates to leisure, el (ω); a CES

aggregator of the quantity of goods the agent consumes, Qi (ω); the quantity of housing the

agent consumes, hRi (ω); and an idiosyncratic preference shock υij (ω) over where she lives

and where she works:

uij (ω) = ūi × el (ω)βl ×Qi (ω)β × hRi (ω)1−β × υij (ω) ,

where:

Qi (ω) =

(∑
k

qki (ω)
σ−1
σ

)σ/(σ−1)

, (15)

and σ > 1 is the elasticity of substitution and β ∈ (0, 1] is the share of consumption of

tradable goods.6

Furthermore, we follow Eaton and Kortum (2002) and Ahlfeldt, Redding, Sturm, and

Wolf (2012) by assuming that the idiosyncratic preference, υij (ω) follows a Frechet distri-

bution with shape parameter θ, i.e. Pr [υij (ω) ≤ u] ∼ e−u
−θ

. We also assume υij (ω) is

independent across commuting pairs, i.e. υij (ω) ⊥ υmn (ω) for any (i, j) 6= (m,n).7

As in the general model, the agent maximizes her utility subject to both a budget con-

straint and a time constraint. To specify the budget constraint, we assume there exists a

capital pool that accumulates all the rents of commercial and residential building. Then the

capital pool redistributes all rent income to agents proportional to their wage income. Due

to our Cobb-Douglas production and utility function, in order to exhaust all rent income,

the ratio of capital income and wage income turns out to be 1
αβ
− 1.8 The budget constraint

6While the model attains a non-trivial solution even for σ ∈ (0, 1), we focus on the case where σ > 1 so
that the elasticity of trade flows to trade costs is negative.

7See also Redding (2015) and Allen and Arkolakis (2014) for application of this modeling assumption to
economic geography models where agents do not commute.

8This assumption is made primarily for tractability as it will allow to easily characterize the general equi-
librium of the model. Oftentimes firms redistribute part of their profits to their workers, which could explain
why commercial rental income is distributed in such a way. Also, past inheritance and other considerations
may result to residential income being oftentimes proportional to actual wage income. It worth pointing out
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then becomes: ∑
k

τkipki (ω) qki (ω) + rRi h
R
i (ω) ≤ 1

αβ
wjA (ω) ew,

where A (ω) is agent ω’s (endogenous) productivity, which we now discuss.

The time constraint is identical to the general model given by (5) with e (ω) = 1, but

we now explicitly specify how an agent increases her productivity by interacting with other

persons in the city (e.g. by meeting with other people in different locations in the city,

which can be regarded as establishing more connections with business partners, learn new

techniques, improving human capital through education, etc). In particular, we assume that

agent ω who works in location j has the following productivity:

A (ω) = Āj

[∑
k

((
LEk
)η
lAk (ω)µ

) ε−1
ε

] ε
ε−1

, (16)

where lAk (ω) is how much the agent chooses to interact with persons working in location

k, µ > 0 is a parameter governing the productivity of each unit of time spent interacting,

η > 0 is a parameter governing the extent to which the number of persons (measured in

efficiency units) working in a location, LEk , affects the agent ω’s productivity, the parameter

ε, ε > 0 and ε 6= 1, governs the substitutability of interactions across space, and Āj is the

(exogenous) productivity of location j. Our micro-foundation presented in equation (16)

shares a common intuition with the recent literature on ideas and growth (see Lucas (2009)

and Alvarez, Buera, and Lucas Jr (2013)), and the recent urban literature (see Charlot

and Duranton (2004), Glaeser (1999), and Davis and Dingel (2012)) who propose these

interactions may serve as a means of transmission of human capital.9 The time constraint

for time spent on improving productivity, given that each trip to location k from agent ω’s

location of work j requires travel time tjk is given by:∑
k

tjkl
A
k (ω) ≤ eA (ω) , (17)

where we assume for simplicity that agents travel from their place of work to interact with

that in our context this configuration is the only one that will result to an equilibrium where Walras law
holds and there no net transfers outside of the system. Alternative configurations that may support effi-
cient allocations can be constructed by assuming that the profits are distributed to individuals that cannot
choose their residence and commuting location (see also Monte, Redding, and Rossi-Hansberg (2015) and
Fajgelbaum, Morales, Serrato, and Zidar (2015)). We choose the current configuration to avoid taking an
explicit stance on the preference of those additional agents in the model and because of the income effects
the allocation of these agents may have across different locations.

9The literature on human capital spillovers is large. See, for example, Moretti (2004a,b), Combes, Du-
ranton, Gobillon, and Roux (2010) and Ioannides (2013) chapters 5 and 6 for a review.
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others.

Solving the agent’s problem In the Appendix, we solve the agent’s problem: we first

maximize the agent’s consumption part of the utility function Qi (ω)β × hRi (ω)1−β, given

working time and productivity A (ω); second, we maximize agent’s productivity A (ω) given

time used in interactions; third, we maximize agent’s utility by allocating the time into

leisure, working and interactions, with the commuting mode as given; finally we maximize

agent’s utility by choosing the best commuting mode.

Optimal time use From the first three stages we obtain the following equilibrium equa-

tions for an agent living in location i and working in location j. The fraction of time spent

in leisure is:

elij =
βl (1− tij)
1 + βl + µ

, (18)

the fraction of time spent interacting is:

eAij =
µ (1− tij)
1 + βl + µ

, (19)

and the fraction of time spent in working is:

ewij =
1− tij

1 + βl + µ
. (20)

Given the optimal time use of an agent, she will allocate her time interacting across locations

in such a way to make her endogenous productivity to be:

Aij = Aj
(
eAij
)µ
, (21)

where:

Aj = Āj

[∑
k

(
t−µjk ×

(
LEk
)η) ε−1

ε−µ(ε−1)

] ε−µ(ε−1)
ε−1

(22)

is the composite productivity of her workplace in location j and we explicitly restrict ε 6=
µ (ε− 1).

As in Lucas and Rossi-Hansberg (2003) and Rossi-Hansberg (2005), the endogenous in-

teraction of agents with others implies that that there are external benefits to producers from

production done nearby. Our microfoundation implies a spillover function across locations

that incorporates as subcases two different specifications in the literature: if µ = 1
ε−1

, η = 1,

and commuting times increase exponentially with distance, our formulation matches that
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of Rossi-Hansberg (2005); conversely if travel times are infinite, then the spillovers are the

local spillovers assumed in Allen and Arkolakis (2014).10 The lateral case is isomorphic to

entry externalities present in model with variety entry (see Krugman (1991)) so that our

specification generalizes both these previous specifications.

Commuting choice Having characterized the equilibrium allocation of an agent’s time

conditional on her place of residence and work, we now determine her equilibrium commuting

choice. The (indirect) utility function of living in location i and working in location j is:

uij (ω) = cūiυij (ω)
wjAj

dijP
β
i (rRi )

1−β (23)

where Pi is the CES price index and dij =
(

1−tij
1+βl+µ

)−(1+µ+βl)

is a proportional utility cost

that is an explicit function of time required to travel and c is a constant which will not play

a role in the subsequent decision and will be ignored henceforth.

In the final stage of the optimization each agent ω will choose the commuting mode which

brings the highest utility given equation (23), and the Frechet distribution, so that the share

of people commuting from i to j is:

πij =
1

U θ

(
ūiAjwj

dijP
β
i (rRi )

1−β

)θ

, (24)

where

U θ =
∑
ik

(
ūiAkwk

dikP
β
i (rRi )

1−β

)θ

,

is the expected utility. We can then determine the number of persons living in i and working

in j by multiplying the probability πij by the measure of agents residing in the city:

Lij = L̄πij. (25)

Having determined the equilibrium behavior of each agent individually, we now determine

the equilibrium economic variables.

10Of course, if travel times are infinite, there would be no commuting in this model. In order to allow for
commuting and have productivity spillovers be entirely local, we could alternatively assume that the travel
time between locations for interactions was infinite, while the travel time between locations for commuting
was finite.
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2.3.3 Aggregation and equilibrium

To determine the general equilibrium of the model we combine the gravity equations, that

determine the flows of goods and labor across space, given factor prices, and determine factor

prices, given the market clearing and accounting equations for trade and commuting.

First, given CES preferences over goods, total bilateral sales from location i to location

j for the tradable good is given by the familiar gravity equation:

Xij =
p1−σ
ij

P 1−σ
j

βEj, (26)

with pij given by

pij =
wiτij

α (LEi )
α−1

(HF
i )

1−α ,

where we have used equations (14) and (13). We also define the efficiency units of labor

coming from in i ∈ S used in the production in location j ∈ S as LEij, then the total flows of

effective units of labor across space is given by

LEij = ewijAijLij, (27)

where the individual components in the right hand side are given by equations (20), (21),

and (25).

Second, to close the model we consider the equations that define the equilibrium in the

goods market and the labor commuting across space and can be used to solve for all the

prices, given the gravity equations. The production income in location i can be calculated

by summing the sales across destinations:

Yi =
∑
j

Xij. (28)

Consumers budget balances, which dictates Ei =
∑

j Xji. It is straightforward to show that

this equation is equivalent to the price index,

P 1−σ
i =

N∑
k=1

p1−σ
ki , (29)

The income generated from commuters, has to add up to their total spending. Thus, from

the agent’s budget constraint, total spending can be written as:

13



Ei =
∑
j

1

αβ
wjL

E
ij. (30)

Finally, the total effective labor in location i can be calculated by summing the effective

labor commuting flow across all origins:

LEi =
∑
j

LEji. (31)

To complete the description of the model we need to include the equation that determines

productivity as a function of spatial spillovers, equation (22).

We can now define the equilibrium. Just as in the general model, we first consider a

notion of equilibrium where the allocation of land is pre-specified because of regulation (e.g.

zoning). This notion will allow us to study the planning problem of choosing the land

allocation under the presence of various production externalities.

Definition 3. An equilibrium with zoning (equilibrium F1), in which variables rRi , wi, Pi,

LEi , Ai for all i and U are endogenously determined, is characterized by equations (28)-(11),

(22), and the aggregate labor clearing condition:

L̄ =
∑
i,j

Lij, (32)

and where Lij, L
E
ij, and Xij are given by equations (25), (27), (26), respectively.

Notice that given these equilibrium solutions we can determine the rent for commercial

buildings, rFi , using equation (13), the number of residents LRi using LRi =
∑

j Lij. In

addition, like in the general model, an equilibrium without zoning can be straightforwardly

extended by pooling the residential and commercial land building into a unified rental market.

Definition 4. An equilibrium without zoning (equilibrium F2), in which variables rRi , wi, Pi,

LEi , Ai, H
F
j , H

R
i , for all i and U are endogenously determined, is characterized by equilibrium

F1 and the rental market conditions

HF
j +HR

j = Hj, (33)

rRj = rFj . (34)

The above completes the derivation of the main elements of the model. We next proceed

to the model characterization.
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2.4 Equilibrium properties

In this subsection, we characterize the efficiency, existence and uniqueness of the model

equilibrium. The first result is a corollary of Theorem 1.

Corollary 1. If η = 0, the above equilibrium F2 is efficient.

Proof. This result is a a direct application of Theorem 1. See the Theory Appendix for

details.

Recall that if η = 0 that the number of people working in a location has no effect on

the productivity of an agent who interacts with people in that location. Hence, Corollary 1

implies that in the absence of interaction spillovers, a city planner cannot improve efficiency.

By applying theorem 1 of Allen, Arkolakis, and Li (2015), we can prove the following

theorem.

Theorem 2. Consider the above competitive equilibrium with zoning F1,

i) An equilibrium always exists.

ii) The equilibrium is (up-to-scale) unique if β ≤ θ+1
θ

σ−1
σ

and η = 0.

iii) Assume no trade costs, i.e. τij = 1 for all i, j. Then the equilibrium is unique if

|η| ≤ σ+αθ+σθ−ασθ
2σ(θ+1)

.

Proof. Details are in the appendix.

The theorem illustrates that the characterization of the properties of the equilibrium

of urban models with spatial externalities can be generalized beyond particular examples.

Theories that feature technological spillovers across space (see for example Fujita and Ogawa

(1982), Lucas and Rossi-Hansberg (2003), Rossi-Hansberg (2005), Fujita and Thisse (2013)

chapter 6) usually assume a particular geography (e.g. line or circle) and structure for

trade costs or impose a restriction on the diffusion matrix KA
ij , and also typically assumed

particular values for the spillover elasticity, η = 0 or η = 1.

In contrast, Theorem 2 proves that an equilibrium always exists for any η and for any

matrix governing technological diffusion across space.11 An interesting implication of Theo-

rem 2 is that, when there is no additional restriction on the geography –such as zero trade

costs– uniqueness can only be guaranteed when η = 0, i.e. any spatial productivity spillovers,

11Our work is also related to Monte, Redding, and Rossi-Hansberg (2015) who also consider a model of
trade and commuting. In their case there are no production externalities, η = 0. While there are differences
in our approaches, our conditions for uniqueness are in principle the same for positive trade costs whereas we
also establish conditions for uniqueness in the absence of trade costs if η 6= 0. Monte, Redding, and Rossi-
Hansberg (2015) establish existence for the same parameter restrictions as for uniqueness while Theorem 2
establishes existence for any parameter configuration.
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regardless of their strength, may result in multiple equilibria. However, since Corollary 1

implies that the only situation in which zoning may improve efficiency is when η 6= 0, this

means that determining the optimal city planning in the presence of spillovers may neces-

sarily have to contend with possible multiplicities of equilibria. Of course part iii) of the

theorem gives us some hope that low η may be enough to guarantee uniqueness. In what

follows, we derive a necessary condition for optimality that relies on data from the observed

equilibria (which may be one of the many) and we plan to analyze the full city planner

problem in the future.

2.5 Analytical Characterization

In order to analyze the main forces at work in our model, we proceed with two analytical

examples. In the both these examples we set the trade costs to zero, i.e. ˙τij = 1, in order

to focus on the urban features of the model, i.e. the commuting costs, and the spatial

productivity spillovers.

No trade cost In the first example, we consider the general case with no trade costs.

The model in that case retains the spatial features of standard gravity trade models, i.e.

there are positive trade flows, albeit the price index is the same across locations. We choose

to normalize it to 1, i.e. Pi = 1. It turns out that this assumption drastically simplifies

the analysis. As a result we can use the first order conditions from the firm and equation

(7), combined with equation (11) to write local effective wages, wiAi, and employment, LEi ,

as log linear functions of local productivity and land for commercial purposes, and a term

multilateral commuting accessibility term that is a sufficient statistic for the accessibility of

a location i to high amenity, low rental price residential locations. In particular, we have:

γ1 lnLEi = θσ lnAi + θσ̃ lnHF
i + σ ln

∑
j

ūθjd
−θ
ji

(
rRj
)−θ(1−β)

+ CL

and

γ1 ln (wiAi) = σ lnAi + σ̃ lnHF
i − (σ̃ + 1) ln

∑
j

ūθjd
−θ
ji

(
rRj
)−θ(1−β)

+ Cw,

where Cw, CL are scalars determined by the wage normalization and the aggregate labor

clearing constraint, σ̃ = (1− α) (σ − 1), and γ1 = θ (σ̃ + 1) + σ, with σ̃, γ1 > 0.

These expressions extend the standard equilibrium equations arising from spatial models

(see for example, Kline and Moretti (2014) for an application of the Roback (1982) model,

and Allen and Arkolakis (2014), Bartelme (2015), for an application of the gravity model in

economic geography) to the case of commuting. A number of comments are in order. First,
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notice that the effects of productivity and commercial land on employment are positive for

both employment and effective wages. Second, higher heterogeneity (lower θ) decreases the

elasticity of labor and increases the elasticitiy of effective wages to to these variations in

productivity and commercial land supply. Naturally more heterogeneity means that people

are less willing to substitute locations with variations in their returns, but also that returns

should vary more substantially with fundamentals in equilibrium. Finally, notice that the

commuting accessibility term affects employment and local effective wages with a different

sign. Higher accessibility implies more employment for a location but also lower effective

wages in equilibrium as workers are more willing to work in a location with easy commut-

ing access to residential locations that have high amenity quality (high ūj) or inexpensive

residences (low rRj ).

To understand the role of the spatial spillover in productivity, we assume further that

β = 1 while maintaining the assumption of no trade costs. It turns out the equilibrium can

be represented by one equation (derivations in the appendix.)

li = λ̃
∑
j

K̃A
ij (lj)

η
σ1

where li =
(
LEi
)σ1ε̃, σ1 = −αθσ+θσ+σ+αθ

σ(1+θ)
, λ̃ =

(
λβ

θ
σE

θ
σ

) 1
1+θ

, and K̃A
ij = Āit

−µε̃
ij

(∑
kK

LE
ik

(
HF
k

) θ(α−1)
σ

)− 1
1+θ

is exogenous under F1 (in which KLE
ij = αθewjie

A
jiū

θ
j

(
HF
i

)(1−α)θ
d−θji ).

li = λ̃
∑
j

K̃A
ij (lj)

η
σ1 (35)

K̃A
ij is exogenous under F1. Besides, one can easily show that uniqueness holds here as long

as |η| ≤ σ+αθ+σθ−ασθ
σ(1+θ)

which in fact is less restrictive than the one in theorem (2) due to our

additional assumptions.

The following are two examples where we can analytically solve the above equation (35).

As the examples are in continuous space, all the summation above become integral.12

City in the circle: Let S be the circle in [−π, π]. Let’s further assume: i) Āi, H
F
i , ūi

are the same for all i; ii) commuting cost is a function of distance. iii) tij =
∣∣cos

(
i−j
2

)∣∣−2
µε̃ .

Then K̃A
ij becomes C cos2

(
x−s

2

)
(C is a constant). We can show that the solution of li is the

form of li = Y +
√
Y 2 + C1 sin (i+ C2). Y and C1 < 0 are constants and can be solved by

substituting the solution back to equation (35). In particular, when
∣∣ η
σ̃

∣∣ ≤ 1, Y 2 + C1 = 0.

12Note that formally our analysis does not apply to a continuum of regions because of the discrete choice
problem. However, you can think of the examples below as limits as the number of regions tends to a large
number.
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And C2 can be any constant which is a result of the symmetry of circle. In other words the

solution is the symmetric solution if we stay in the region where equilibrium is unique. In

contrast, when η
σ̃
> 1 simulations indicate the existence of a multiple equilibria were more

concentration can happen in any point on the line (Y 2 + C1 > 0)

City in the infinite line: Let S be the circle in [−∞,∞]. Also let’s further assume:

i) Āi, H
F
i , ūi are the same for all i; ii) commuting cost is a function of distance i.e. dij =

f (|i− j|); iii) tij = exp
(
τ (i− j)2) where τ is used to capture the unit. Then K̃A

ij becomes

C exp
(
−µε̃τ (i− j)2) (C is a constant). Then we can show that when η > σ̃ the solution of li

is the form of li = C1 exp
(
−µε̃τ η−σ̃

σ̃
(x+ C2)2)Y . C1 > 0 is a constant and can be solved by

substituting the solution back to equation (35). And C2 can be any constant which is a result

of the symmetry of infinite line. When η ≤ σ̃ ≤ 1, the agglomeration force is smaller than

dispersion force. Population is evenly distributed in the infinite line. There is no specific

function to represent the solution.

2.6 City Planner

In Theorem 1 we showed that in the absence of any externalities the equilibrium of the

general model is efficient. In the presence of production externalities, however, even in the

parametrized model the competitive equilibrium is not necessarily efficient. In that case there

is room for policy intervention, for example land-use reallocation through zoning. For that

purpose we now characterize the zoning problem, where a central planner can decide on the

allocation of land for residential and commercial use. To do this, we consider a hypothetical

planner that changes
{
HF
i , H

R
i

}
(taking as given the total land available, Hi = HF

i +HR
i ) to

achieve a higher social welfare U . To proceed we follow Dekle, Eaton, and Kortum (2008)’s

’hat’ algebra, we can rewrite the equilibrium conditions (55)-(59) in changes ,

Û−θ
∑
j

πwij

(
ŵjÂj

)1+θ

P̂−θβi

(
r̂Ri
)−θ(1−β)

= ĤR
i r̂

R
i (36)

Û−θ
∑
j

πLijŵ
θ
j Â

1+θ
j P̂−θβi

(
r̂Ri
)−θ(1−β)

= L̂Ei (37)

∑
j

πYijĤ
R
j r̂

R
j p̂

1−σ
i P̂ σ−1

j = p̂i

(
L̂Ei

)α (
ĤF
i

)1−α
(38)

∑
j

πEij p̂
1−σ
j = P̂ 1−σ

i (39)
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∑
j

πAij

(
L̂Ej

)ηε̃
= Âε̃i (40)

and also the change form of labor normalization condition 32

∑
i,j

πij

(
ŵjÂj

)θ
P̂−θβi

(
r̂Ri
)−θ(1−β)

= Û θ (41)

where ŵj = p̂i

(
L̂Ei

)α−1 (
ĤR
i

)1−α
and we additionally define the following share matrices:

πwij =
1
αβ
wjAije

w
ijLij

Ei
is the income share in location i by people commuting to j; πLij =

Aije
w
ijLij

Lei

the effective labor share in location i from j; πYij =
πEijβEj

Yi
is the sales share of goods produced

in location i from j;πEij =
(τjipj)

1−σ

Pσ−1
i

is the spending share of goods in location i to goods

produced in j; πAij =
Āε̃i t
−µε̃
ij (LEj )

ηε̃

Aε̃i
=

t−µε̃ij (LEj )
ηε̃∑

k t
−µε̃
ik (LEk )

ηε̃ is the productivity spillover from location

j; πij is the labor share in location i from j as in equation 14.

The characterization of the “optimal city structure” raises a number of challenges. First,

the large dimensionality of the parameter space – the fraction of land allocated residential

and commercial in each location, [0, 1]N – prevents a brute force optimization procedure from

being feasible. Second, there are a large number of unobservable factors that determine the

equilibrium (e.g. the productivity in each location), so it is not clear that observable data is

sufficient to characterize the necessary conditions for the planning problem. Finally, given

the results above, we know there may exist multiple equilibria which the planner would have

to contend. The following proposition illustrates that what seems at first glance a Herculian

task is actually feasible in our setup;

Proposition 1. Consider the system of equations in changes, (36)-(41). Assume that the

planner can control zoning i.e
{
HF
i , H

R
i

}
, under the constraint HF

i + HR
i = Hi in each

location i. Then

(i) (Global comparative statics) Given shares
{
πw, πL, πY , πE, πA

}
, there exists a unique

solution of the changes in social welfare Û , and changes r̂Ri , p̂i, P̂i, Âi, L̂
e
i if β ≤ θ+1

θ
σ−1
σ

and

η = 0.

(ii) (Local comparative statics) Even if η 6= 0, the elasticities of city welfare with respect

to an increase in the endowment of residential and commercial area, respectively, around the
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observed equilibrium are:

∂ lnU

∂ lnHRi

=
(
M+B

)
5N+1,i

∂ lnU

∂ lnHFi

=
(
M+B

)
5N+1,N+i

,

where:

M+ =



− (1 + θ (1− β)) I (1 + θ)πw −θβI (1 + θ)πw − (1 + θ) (1− α)πw −θ~1
−θ (1− β)πL θI −θβπL (1 + θ) I − [1 + θ (1− α)] I −θ~1

πY −σI (σ − 1) πY 0 −αI
−→
0

0 (1− σ) πE − (1− σ) I 0 0
−→
0

0 0 0 −ε̃I ηε̃πA −→
0

−θ (1− β)~πr θ~πc −θβI~πr θπ̃c −θ (1− α)~πc −θ~1



+

B =



I − (1 + θ) (1− α) πw

0 −θ (1− α) I

−πY (1− α) I

0 0

0 0

0 −θ (1− α)~πc


where the superscript + denotes the Moore Penrose pseudoinverse of the matrix and both ~πr

and ~πc are row vectors (~πr)i =
∑

j
Lij
L̄

(~πc)i =
∑

j
Lji
L̄

.

(iii) (Optimal city structure) A necessary condition of the optimal city zoning plan is,

for all i ∈ S HR
i (M+B)5N+1,N+i = HF

i (M+B)5N+1,i .

Proof. Part (i) follows immediately from Theorem 2, as the mathematical structure of the

equilibrium in changes is the same as the mathematical structure of the equilibrium in levels

(with the exogenous kernels replaced with data). Part (ii) is a direct implication of the

implicit function theorem to the vector function constructed by “stacking” equations (36)-

(41) and differentiating (the log of) utility with respect to (the log of) HFi and HRi. Part

(iii) then follows directly from part (ii), as at the optimal zoning level, it cannot be the case

that reallocating land from residential to commercial purposes can either increase or decrease

the utility of the city, i.e. ∂ lnU
∂ lnHFi

1
HFi

= ∂ lnU
∂ lnHRi

1
HRi

.

The first part of the proposition establishes a sufficient set of data that we need in order

to consider the equilibrium of the model in changes, as in Dekle, Eaton, and Kortum (2008).

It also establishes that the sufficient condition for the global comparative static to be well
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defined is the same as the sufficient condition for the equilibrium to be unique, i.e. η = 0.

The second part of the proposition allows us to simultaneously calculate how a change in

either the endowment of residential or commercial area in any location affects the welfare of

the city. It holds even in the presence of spillovers by considering a local shock around the

observed equilibrium and depends only on observed data and the set of scalars determining

the strength of general equilibrium forces, The third part of the proposition (which follows

immediately from the second part and the first order conditions of the social planner) provides

necessary conditions that hold at the optimal city zoning plan.

2.7 Examples

TBD

In the next section, we illustrate how we can use this theoretical framework and the

results of Proposition 1 to examine the optimal city structure of Chicago.

3 Optimal City Structure: Chicago

In this section, we apply the theoretical framework above to study the optimal structure of

the city of Chicago. We first discuss the parameter estimation and use detailed data for the

city of Chicago to explore beneficial alternative zoning policies.

3.1 Identification and Estimation

Suppose for all i ∈ S we observe the model parameters βl, µ, β and α, residential square

footage
{
HR
i

}
, commercial square footage

{
HF
i

}
, for all bilateral pairs, i, j ∈ S we observe

bilateral commuting flows (with error)
{
Loij
}

and the travel time between the two locations

{tij}. We would like to recover the unobserved model parameter θ and the (composite)

productivity {Ai} and amenity {ui} in each location. We describe how we recover the model

parameter θ, the unobserved endogenous incomes and expenditures, and the productivities

and amenities.

Estimation of preference heterogeneity θ To identify the preference heterogeneity

parameter, we rely on equation (25), which implies the number of workers living in location

i and commuting to location j is:

Lij = (1 + βl + µ)θ(1+µ+βl) L̄

U θ
(e− tij)θ(1+µ+βl)

(
ūiAjwj

P β
i (rRi )

1−β

)θ

. (42)
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Recalling that we observe bilateral commuting flows with error (which we assume is classical),

we can take logs of this expression, yielding:

lnLoij = ρ ln (e− tij) + γi + δj + εij, (43)

where ρ ≡ θ (1 + µ+ βl), γi ≡ θ ln
(
P β
i r

1−β
Ri

)
, and δj ≡ θ ln (Ajwj). As long as the mea-

surement error is uncorrelated with the bilateral travel times, we can recover ρ from (43),

which given knowledge of µ and βl allows us to recover θ. Intuitively, the more heterogeneous

individuals’ preferences are (the lower the θ), the less responsive commuting patterns are to

observed travel time.

Estimation of income and expenditure. Given estimates of θ, we can then recover the

wage per unit labor (note that this the wage per efficiency unit multiplied by the productivity)

from the destination fixed effect:

˜Ajwj = exp
δ̃j

θ̃
,

where the tildes denote an estimate and we pin down the scale by normalizing the wage in

one location, i.e. w1 = 1
A1

so that δ1 = 0.

Combining equations (20), (21), (27) with (30), we can then recover an estimate of

expenditure in each location using observed travel time, estimated wages (per unit labor),

and the predicted commuting flows from regression (43):

Ẽi =
1

αβ

(
µ

1 + βl + µ

)µ∑
j

(e− tij)1+µ L̃ij ˜Ajwj. (44)

Similarly, we can use the assumption that the production function is Cobb-Douglas to recover

the value of output in each location:

Ỹj =
1

αµ

(
µ

1 + βl + µ

)1+µ

˜wjAj
∑
i

(e− tij)1+µ L̃ij, (45)

and, with both observed expenditure and recovered output, we can immediately recover

the residential and commercial rental rates in each location using the Cobb-Douglas utility

function of the residents and the Cobb-Douglas production function of firms, respectively:

r̃Ri = (1− β)
Ẽi
HF
i

r̃Fi = (1− α)
Ỹi
HF
i

.

22



In what follows, we omit the hat notation for clarity, but the reader should keep in mind

that income, expenditure, and rents are all estimated from the structure of the model.

Estimation of productivities and amenities Having recovered the model parameters,

output, and the rental rates, we can now recover the amenities and productivities. From

equation (42), the number of workers both living and working in location i is:

Lii = (1 + βl + µ)θ(1+µ+βl) L̄

U θ
e−θ(1+µ+βl)

(
ūiAiwi

P β
i (rRi )

1−β

)θ

, (46)

so that we can write the amenity of living in location i as:

ū
1−σ
β

i = (1 + βl + µ)(
σ−1
β )(1+µ+βl)

(
U

L̄
1
θ

) 1−σ
β

e(
1−σ
β )(1+µ+βl)

(
rRi
)( 1−σ

β )1−β
(Aiwi)

σ−1
β L

1−σ
θβ

ii P 1−σ
i ⇐⇒

ū
1−σ
β

i = λ
∑
j

KjiA
(σ−1)α
j , (47)

where the second line used the fact that the price index can be written as

P 1−σ
i =

∑
j

τ 1−σ
ji

(
wαj
(
rFj
)1−α

αα (1− α)1−α

)1−σ

,

λ is an endogenous constant,13 and

Kji ≡ τ 1−σ
ji

(
Aiwi

L
1
θ
ii (rRi )

1−β

)σ−1
β (

(Ajwj)
α (rFj )1−α

)1−σ
,

is a kernel that depends only on observables.

Equation (47) is one of two equations that allows us to identify productivities and ameni-

ties. The other comes from the production side. In equilibrium, total income in a location is

equal to total sales, i.e. Yi =
∑

j Xij. From equation (26), we can write this relationship as:

Yi = β
(
αα (1− α)1−α)σ−1∑

j

τ 1−σ
ij

((
wiAi
Ai

)α (
rFi
)1−α

)1−σ

EjP
σ−1
j . (48)

13In particular, λ ≡ (1 + βl + µ)(
σ−1
β )(1+µ+βl)

(
αα (1− α)

1−α
)σ−1 (

U

L̄
1
θ

) 1−σ
β

e(
1−σ
β )(1+µ+βl).
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From equation (46), we have that the price index can be written as:

Pi = (1 + βl + µ)
(1+µ+βl)

β
L̄

1
βθ

U
1
β

e−
1+µ+βl

β

(
ūiAiwi

(rRi )
1−β

) 1
β

L
− 1
βθ

ii . (49)

Combining equations (48) and (49) yields:

YiA
α(1−σ)
i = λβ

∑
j

Kijū
σ−1
β

j Ej. (50)

where λ and Kij are defined above.

Equations (47) and (50) can be solved simultaneously to yield the unique (to scale)

distribution of composite productivities and amenities. We formalize this statement in the

following proposition:

Proposition 2. Consider an equilibrium with zoning. For any given commuting flows Lij,

expenditure Ei, income Yi, residential stock HR, commercial stock HF , bilateral commuting

costs tij, trade costs τij, and scalar model parameters, there exists a unique (to-scale) set of

productivities, A, and amenities, u, satisfying equations (47) and (50).

Proof. Equations (47) and (50) can be rewritten as:

xi = λ
∑
j

Kjiy
−1
j

yi = λ
∑
j

β
Ej
Yi
Kijx

−1
i ,

where xi ≡ ū
1−σ
β

i and yi ≡ A
α(1−σ)
i and the kernels Kji and β

Ej
Yi
Kij are observed. Note that

the sufficient condition for existence and uniqueness of a (to-scale) solution given by Allen,

Arkolakis, and Li (2015) – that the spectral radius of the matrix of the absolute value of

exponents is less than or equal to one – is satisfied here, as the absolute value of the matrix

of exponents is

(
0 1

1 0

)
, which has spectral radius of one.

3.2 Data

In this section, we briefly describe the data used in the empirical application below.

Transportation infrastructure Data on the location of the “Metra” commuter rail lines

and stops, the “El” subway lines and stops, bus lines and stops, and roads are available in
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GIS format from Chicago (2015). Figure 1 depicts the transportation infrastructure.

With this data, we constructed a public transportation and a private transportation

“speed image”, where each map pixel was assigned a relative speed across which it could

be traversed based on the infrastructure available at the pixel.14 We then applied the Fast

Marching Method algorithm (see Sethian (1999)) to calculate the time it would take to

travel between any of the 2,298 census blocks groups in Cook County, IL, yielding 5.28

million bilateral travel times.

To determine the absolute travel time speed, for 500 randomly chosen bilateral pairs

within the city limits of Chicago, we query Google Maps for the travel times, project their

estimated travel times on our own, and scale our estimated travel times accordingly. Table

1 presents the results of such a procedure. There are two things to note: first, our estimated

travel times are strongly correlated with the Google Maps estimates, with an R-squared of

0.86 for travel by car and 0.8 for travel by public transportation; second, conditional on our

estimated travel times, straight line distance offers very little additional predictive power

(raising the R-squared to 0.87 and 0.81, respectively).

Finally, we calculate the total travel time between any two locations by assuming that

each individual chooses the mode which offers them the shortest commute time up to an

extreme value idiosyncratic error so that

tij = −1

λ
ln
(

0.5×
(

exp
(
−λtcar

ij

)
+ exp

(
−λtpublic

ij

)))
,

where we choose λ = 0.115 so that 12% of workers choose to travel to work using public

transportation, which is the consistent with the American Community Survey (see McKenzie

and Rapino (2011)).

Zoning and buildings Chicago (2015) also provide information on the location, number

of stories, and footprint for each of the 820,944 buildings in Chicago, from which we can

construct the (approximate) square footage of each building. The left panel of Figure 2

presents a map of the buildings. We then combine this data with how each building is zoned

(see the right panel of Figure 2) and aggregate up to Census block to determine the total

square feet of residential and commercial space in each Census block.15 Figure 3 depicts the

14In particular, we normalized the speed of travel via water and through buildings to one. Relative to
this speed, we assumed for private transportation, one could walk three more quickly, drive through surface
streets 25 times more quickly, drive on expressways 40 times more quickly, and drive on interstates 50 times
more quickly. For public transportation, we assumed that buses and subways traveled 30 times more quickly
and the commuter rail traveled 45 times more quickly. To add greater verisimilitude, we assumed that all
three had to slow down when traveling through a stop, and we forced passengers to enter the network at a
stop by constructing high travel cost “walls” surrounding the lines at non-stop locations.

15In reality, in Chicago there are twelve different zone types, and within zone type there are often many
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distribution of area allocated to residential and commercial use in Chicago.

Commuting Flows The 2010 Longitudinal Employer-Household Dynamics Origin-Destination

Employment Statistics (LODES) dataset from Census (2010) reports the bilateral flow of

commuters from residence to workplace at the U.S. Census block level. The LODES dataset

is constructed from unemployment insurance filings of businesses and cover approximately

95% of workers (see e.g. Graham, Kutzbach, and McKenzie (2014)). We aggregate to the

Census block group level and only include Census block groups with both residents and

workers (and positive area allocated to both residential and commercial uses), leaving 2,036

locations throughout Chicago.

One difficulty with using the LODES data set is that because there are roughly twice

the number of cells in the bilateral commuting matrix than the number of people living in

Chicago, so many elements of the bilateral commuting matrix contains either a small number

of persons or no persons at all. As a result, we treat the observed commuting matrix as one

measured with error (see above).

3.3 Estimation results

Calibrated parameters We first calibrate a number of parameters using information

that we directly observe in the data. To calibrate µ, βl we use equations (18) to (20) that

represent the share of time, net of time spent in commuting, allocated to leisure, interactions

to improve productivity, and working. Dividing equations (18) and (20) by equation (19) we

directly obtain βl and µ. Thus, if we could obtain estimates of these times and commuting

times we can directly calibrate those parameters. We construct estimates for these times

using Census (2011) and BLS (2013) and using those we obtain βl = 7.33 and µ = 4.12. We

provide details in the appendix B.

For the parameter α we do not have a good sense of its value and we set it for the time

being to 0.75. We plan to consider detailed data on the share of the costs of commercial

building use in the future. For β we use the average fraction of observed expenditure on rent

from American Community Survey (MPC, 2011) for Chicago (38%), yielding β = 0.62. We

also calibrate the elasticity of trade, σ, to the value estimated by Eaton and Kortum (2002),

following Allen and Arkolakis (2014). We set ε = 1 so that productivity aggregates across

locations in a Cobb-Douglas matter and choose η = 0.02 to match the estimates of Charlot

different particular codes, so the mapping to the residential/commercial binary is necessarily imprecise.
However, since we do have the number of stories of each building, we can incorporate such subtleties as Zone
2 (“Neighborhood commercial with dwelling units above ground”) by allocating the first floor to commercial
and all higher floors to residential.
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and Duranton (2004) for the extent of communication externalities in cities.

Estimation of preference heterogeneity θ Estimation of equation (43) yields a coeffi-

cient of 8.73 (with a t-statistic 125), which, given the calibrated values of βl and µ above,

imply a θ = 0.71. This low value of θ indicates substantial heterogeneity in preferences across

locations, which will imply there will be limited responsiveness of individuals changing where

they live or where they work to changes in the structure of city.

Income and expenditure Figure 4 depicts the distribution of income and expenditure

across Chicago calculated by applying equations (44) and (45) to the regression in equation

(43). As is evident, income and expenditure is strongly positively correlated, with residents

and firms located in the central business district have the highest expenditure and income,

respectively.

We should emphasize that the income and expenditure depicted in Figure 4 (and used in

the counterfactual analysis) are inferred from travel times and commuting patterns. While

it is difficult to directly observe firm level income at such a fine level of geographic detail,

we can compare our estimates of variation in expenditure of residents to reported per capita

income at the Census block group level from (MPC, 2011). We find that the estimates

are positively correlated with a correlation of 0.32 (0.2 correlation between estimated log

expenditure and observed log per capita income).

Composite productivities and amenities Given estimates of income and expenditure,

we can finally apply the result of Proposition 2 to identify the (total) productivity and

amenity of every location in Chicago. Figure 5 depicts the resulting spatial distribution.

While both the productivity and amenity of the central business district is estimated to be

high, the productivities and amenities elsewhere are negatively correlated. For example, the

amenity value of living along the coast of Lake Michigan is estimated to be high, but the

productivity of businesses located along the coast generally tend to be low.

3.4 Optimal zoning in Chicago

Given the estimates from the previous section, we finally examine how small changes in the

zoning of Chicago would affect the welfare of residents and what this implies for the optimal

city structure.

We first examine what the effect would be on city wide welfare if there was a slight

increase in the residential or commercial area of a particular location in the city. While

conventional techniques would allow us to analyze an increase in a particular location (by
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recalculating the equilibrium distribution of economic activity after a small change to the

endowment of area in a location), we instead rely on the results of Proposition 1 to do this

for all locations simultaneously.

Figure 6 illustrates the distribution of welfare elasticities across the city. Not surprisingly,

the welfare effects of expanding the endowment of both commercial and residential area have

the largest positive effects on welfare near the center of the city, where the commuting and

interacting costs are relatively low.

Once we have calculated both the welfare elasticity to expanding both the commercial

and residential areas, we can compare the elasticities to infer what the optimal zoning policy

is. That is, if ∂ lnU
∂ lnHRi

1
HRi

> ∂ lnU
∂ lnHFi

1
HFi

, then re-zoning some of the commercial area in a

location to residential be welfare improving. Figure 7 illustrates, for every Census block

group in Chicago, whether the welfare of the city would increase if more of the area was re-

zoned residential or commercial. As is evident, the model suggests that it would be welfare

improving if Chicago re-zoned commercial areas throughout the central business district as

residential, whereas it would be welfare improving if Chicago re-zoned much of the residential

areas outside the business district to allow for more commercial use.

Two caveats are in order for this exercise. First, the re-zoning exercise considered is for a

small (infinitesimal) change; while all general equilibrium effects are accounted for (to a first

order), higher order general equilibrium effects may be important for large changes. Second,

as is evident from the functional form of the M+ matrix in Proposition 1, the counterfactual

results depend importantly on the values of the structural parameters chosen. In particular,

altering the strength of productivity spillovers η and the substitutability of interacting across

space ε play an important role in determining the optimal structure of the city. Indeed, as

Theorem 1 makes clear, in the absence of spillovers, there ought not be any zoning at all.

4 Conclusion

TBD
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Arkolakis, C., A. Costinot, and A. Rodŕıguez-Clare (2012): “New Trade Models,

Same Old Gains?,” American Economic Review, 102(1), 94–130.

Bartelme, D. (2015): “Trade Costs and Economic Geography: Evidence from the US,”

mimeo, University of Michigan.

BLS (2013): “American Time Use Survey,” Bureau of Labor Statistics,

http://www.bls.gov/tus.

Caliendo, L., F. Parro, E. Rossi-Hansberg, and P.-D. Sarte (2014): “The impact of

regional and sectoral productivity changes on the US economy,”Discussion paper, National

Bureau of Economic Research.

Census, U. (2010): “LEHD Origin-Destination Employment Statistics (LODES),”

http://lehd.ces.census.gov/data/.

Census, U. (2011): “Commuting in the United States: 2009. American Communit Survey

Reports,” US Department of Commerce, U.S. Census Bureau, www.census.gov/acs.

Charlot, S., and G. Duranton (2004): “Communication externalities in cities,” Journal

of Urban Economics, 56(3), 581–613.

Chicago, C. o. (2015): “Data Portal,” https://data.cityofchicago.org/.

29



Combes, P.-P., G. Duranton, L. Gobillon, and S. Roux (2010): “Estimating agglom-

eration economies with history, geology, and worker effects,” in Agglomeration Economics,

pp. 15–66. University of Chicago Press.

Davis, D. R., and J. I. Dingel (2012): “A spatial knowledge economy,” Discussion paper,

National Bureau of Economic Research.

Dekle, R., J. Eaton, and S. Kortum (2008): “Global Rebalancing with Gravity: Mea-

suring the Burden of Adjustment,” IMF Staff Papers, 55(3), 511–540.

Eaton, J., and S. Kortum (2002): “Technology, Geography and Trade,” Econometrica,

70(5), 1741–1779.

Fajgelbaum, P. D., E. Morales, J. C. S. Serrato, and O. Zidar (2015): “State

Taxes and Spatial Misallocations,” Manuscript, Princeton University.

Fujita, M., P. Krugman, and A. J. Venables (1999): The Spatial Economy: Cities,

Regions, and International Trade. MIT Press, Boston, Massachussetts.

Fujita, M., and H. Ogawa (1982): “Multiple equilibria and structural transition of non-

monocentric urban configurations,” Regional science and urban economics, 12(2), 161–196.

Fujita, M., and J.-F. Thisse (2013): Economics of agglomeration: cities, industrial

location, and globalization. Cambridge university press.

Glaeser, E. L. (1999): “Learning in cities,” Journal of Urban Economics, 46(3), 254–277.

Glaeser, E. L., and J. D. Gottlieb (2008): “The economics of place-making policies,”

Brooking Papers of Economics Activity.

Graham, M. R., M. J. Kutzbach, and B. McKenzie (2014): “Design Comparison Of

Lodes And Acs Commuting Data Products,” Discussion paper.

Helpman, E. (1998): “The Size of Regions,” Topics in Public Economics. Theoretical and

Applied Analysis, pp. 33–54.

Hogben, L. (2006): Handbook of linear algebra. CRC Press.

Ioannides, Y. M. (2013): From Neighborhoods to Nations: The Economics of Social In-

teractions. Princeton University Press.

30



Kline, P., and E. Moretti (2014): “Local economic development, agglomeration

economies and the big push: 100 years of evidence from the tennessee valley authority,”

Quarterly Journal of Economics, 129, 275–331.

Konishi, H. (2008): “Tiebout’s tale in spatial economies: Entrepreneurship, self-selection,

and efficiency,” Regional Science and Urban Economics, 38(5), 461–477.

Krugman, P. (1991): “Increasing Returns and Economic Geography,” The Journal of Po-

litical Economy, 99(3), 483–499.

Lucas, R. E. (2009): “Ideas and growth,” Economica, 76(301), 1–19.

Lucas, R. E., and E. Rossi-Hansberg (2003): “On the Internal Structure of Cities,”

Econometrica, 70(4), 1445–1476.

McKenzie, B., and M. Rapino (2011): Commuting in the united states: 2009. US De-

partment of Commerce, Economics and Statistics Administration, US Census Bureau.

Mills, E. S. (1967): “An aggregative model of resource allocation in a metropolitan area,”

The American Economic Review, pp. 197–210.

Monte, F., S. Redding, and E. Rossi-Hansberg (2015): “Migration, Commuting, and

Local Employment Elasticities,” Manuscript, Princeton University.

Moretti, E. (2004a): “Human capital externalities in cities,” Handbook of regional and

urban economics, 4, 2243–2291.

(2004b): “Workers’ education, spillovers, and productivity: evidence from plant-

level production functions,” American Economic Review, pp. 656–690.

MPC (2011): “National Historical Information System: Version 2.0,” Minnesota Population

Center, http://www.nhgis.org.

Muth, R. (1969): “Cities and housing: The spatial patterns of urban residential land use,”

University of Chicago, Chicago.

Polyanin, A., and A. Manzhirov (2008): Handbook of Integral Equations. Chapman &

Hall/CRC.
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Figure 1: Transportation infrastructure in Chicago
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Notes : This figure shows the transportation infrastructure in Chicago that we use to calculate
bilateral travel times. The infrastructure includes the “Metra” commuter rail (in blue, with
stops indicated by blue circles), the “El” subway (in green, with stops indicated by green
circles), the public bus routes (in purple, with stops indicated by purple circles), the interstate
highways (in yellow), the expressways (in red), and the surface streets (in blue).
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Figure 2: Zoning and buildings in Chicago

Notes : The left panel depicts the location, shape, and number of stories of all 820,944
buildings in Chicago (taller buildings are indicated in red and purple, shorter buildings
in yellow). We recommend you zoom in to see the true level of detail. The right panel
depicts the current zoning in Chicago. Together, we can construct the total square footage
of residential and commercial space in Chicago.
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Figure 3: Density of commercial and residential areas in Chicago

Notes : The left panel depicts the observed floor space devoted to commercial uses (HF
i ) and

the right panel depicts the observed floor space (HR
i ) devoted to residential uses. The colors

indicate the decile of the Census block group (normalized by area of the block group), with
red (blue) indicated a higher (lower) decile.

Figure 4: Income and expenditure in Chicago

Notes : The left panel depicts the distribution of income of firms across Chicago (Yi) and
the right panel depicts the distribution of expenditure of residents across Chicago (Ei). The
colors indicate the decile of the Census block group, with red (blue) indicated a higher (lower)
decile.
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Figure 5: Estimated composite productivities and amenities in Chicago

Notes : The left panel depicts the estimated composite productivity of each Census block
group and the right panel depicts the estimated composite amenity of each Census block
group. The colors indicate the decile of the Census block group, with red (blue) indicated a
higher (lower) decile.
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Figure 6: Estimated elasticity of welfare to increasing commercial and residential space in
Chicago

Notes : The left panel depicts the estimated elasticity of city-wide welfare to an increase
in the commercial space available in each Census block group. The right panel depicts the
estimated elasticity of city-wide welfare to an increase in the residential space available in
each Census block group. The colors in both figures indicate the decile of the elasticity, with
red indicating a greater elasticity and blue indicating a lower elasticity.
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Figure 7: The welfare effects of re-zoning in Chicago

Notes : This figure indicates the direction in which each Census block groups in Chicago
ought to be rezoned in order to increase city-wide welfare. Red block groups are those for
which more space should be reallocated to residential purposes and blue block groups are
those for which more space should be reallocated for commercial purposes.
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Appendix to “Optimal City Structure”

Treb Allen, Costas Arkolakis, Xiangliang Li

A Theory Appendix

A.1 Proof of Theorem 1

Proof. We design an equivalent setting to apply the first fundamental theorem of welfare

economics. In the new setting, we modify the agent’s endowments, behaviors and utility,

but the agents will make exactly the same decision as the setting of the main context.

Agent’s endowment of the firms and buildings is the same with the setting of the main

context. However, their time endowment is different. They have time endowment eij (ω) =

e (ω) − tij for each commuting pair (i, j), which can be used to increase productivity, work

and enjoy leisure, correspondingly the time used are denoted as eAij (ω), ewij (ω) and elij (ω).

According to condition (ii) of the theorem, we can define the largest effective labor eeij (ω, t) =

max
eAij+e

w
ij≤t

Aω
(
eAij (ω) , i, j

)
ewij as a function of the total time t used in productivity improving

and work; the effective labor endowment ẽij (ω) = max
t≤eij(ω)

eeij (ω, t). Furthermore, we denote

the modified effective leisure as elij, and the corresponding real leisure as lreal
(
ω, elij

)
=

max
{
t|ẽij (ω)− elij − eeij (ω, eij (ω)− t) ≥ 0

}
Besides, their utility function is different. Denote

{
{gθk (ω)}θ∈Θ,k∈S ,

{
hRk (ω)

}
k∈S ,

{
elij
}
i,j∈S

}
as consumption and leisure plan z (ω), where {gθk (ω)}θ∈Θ is the goods consumed in k. And

define uω
(
elij (ω) , {gθi (ω)}θ∈Θ , h

R
i (ω) , i, j

)
= −∞ if hRi (ω) = 0 or for all θ ∈ Θ gθi (ω) = 0.

For any z (ω), his/her utility is

U (ω) =
∏

(k,l)6=(Imax(z(ω)),Jmax(z(ω)))

1lreal(elmn)≥emn(ω)max
i,j

uω
(
lreal

(
ω, elij

)
, {gθi (ω)}θ∈Θ , h

R
i (ω) , i, j

)
where (Imax (z (ω)) , Jmax (z (ω))) = argmax

i,j
uω
(
lreal

(
elij
)
, {gθi (ω)}θ∈Θ , h

R
i (ω) , i, j

)
, gθi (ω) =∑

δ∈∆θ
qδi(ω)
dk(δ)i

is the goods he get at location i in which qδi (ω) satisfies the constraint
∑

i∈S qδi (ω) ≤
qδ (ω).

Our modified agent make the decision based on

max
{qδ(ω)}δ∈∆,i∈S ,{hRi (ω)}

i∈S
,elij

U (ω)
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s.t.
∑
δ∈∆

pδqδ (ω) +
∑
i∈S

rRi h
R
i (ω) +

∑
m,n∈S

wne
l
mn ≤

≤
∑
δ∈∆

sδ (ω) πδ +
∑
i∈S

rRi
[
sRi (ω) + sFi (ω)

]
+
∑
m,n∈S

wnẽmn (ω)

where qδi (ω) is how much goods bought from firm δ are transported to location i. We can

verify that the modified agents behaves exactly the same as the original agents.

Firms and the market clearing conditions are also the same with the setting of the main

context. .

Define the allocation {{xω} , {yδ}} of the system. Both xω and yδ contain three cells: the

first cell are the goods quantity and firm share; the second cell are the building; the third share

is effective time(labor). Specifically, xω =
{
{(qδ (ω) , 0)}δ∈∆ ,

{
hRi (ω)

}
i∈S ,

{
elmn (ω)

}
m,n∈S

}
and yδ = {{(0, 0) , .., (0, 0) , (Yδ,−1) , (0, 0) , .., (0, 0)} , {0, ..., 0,−h (δ) , 0} , {0, ..., 0}}. Also

the endowment of the society is e =
{
{0, 0}δ∈∆ , {Hi}i∈S ,

{∑
k∈S
´
ω∈Ω

eekl (ω) dω
}}

,notice in

condition (ii) the assumption of tij (ω) makes sure that the last cell of e is a constant. Finally,

the corresponding price is p =
{
{(pδ, πδ)}δ∈∆ ,

{
rRi
}
i∈S , {wk}k∈S

}
.

In condition (i), the assumption of local non-satiation of original utility preferences implies

local non-satiation of modified utility. Thus first fundamental theorem of welfare economics

applies.

A.2 Derivation of Agent’s optimal choices

Step 1: Agent’s consumption over goods and housing

Given working time ew and productivity A (ω), the first, agent’s sub-problem is

max
{qk}k∈S ,hR

Qi (ω)β
(
hRi (ω)

)1−β
=

(∑
k

qki (ω)
σ−1
σ

) βσ
σ−1 (

hRi (ω)
)1−β

subject to

∑
k

τkipki (ω) qki (ω) + rRi h
R
i (ω) ≤ 1

αβ
wjA (ω) ew,
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where the ratio 1/αβ arises because of capital income. After some algebra, we get obtain

maxQβ
i

(
hRi
)1−β

=
wje

wA (ω)

αβP β
i (rRi )

1−β (51)

where Pi is the corresponding CES price index which is defined in (29).

Step 2: Agent allocation over interaction with others

Given time spend in interactions eA, the agent’s sub-problem is

max
{lAk (ω)}

k∈S

A (ω) = Āj

[∑
k

((
LEk
)η
lAk (ω)µ

) ε−1
ε

] ε
ε−1

subject to

∑
k

tjkl
A
k (ω) ≤ eA,

which is equivalent with maximizing

max
{lAk (ω)}

k∈S

[∑
k

((
LEk
) η
µ lAk (ω)

)µ(ε−1)
ε

] ε
µ(ε−1)

,

subject to the constraint.

Setting up the Lagrange function, we obtain the first order condition[∑
k

((
LEk
) η
µ lAk (ω)

)µ(ε−1)
ε

] ε
µ(ε−1)

−1 (
LEk
) η(ε−1)

ε

[
lAk (ω)

]µ(ε−1)
ε
−1

= λtjk.

After some algebra, we get

A (ω) = Aj
(
eA
)µ
, (52)

where we define

Aj = Āj

[∑
k

((
LEk
)η
t−µjh
) ε−1
ε−µ(ε−1)

] ε−µ(ε−1)
ε−1

. (53)

Step 3: Agent allocating time among el, eA, ew

Now we substitute the solutions for the expressions of Qi (ω)β
(
hRi (ω)

)1−β
and A (ω) ,

equations (51) and (53), in the utility function u (ω) = ūiυij (ω) lβlQi (ω)β
(
hRi (ω)

)1−β
, the

A3



problem becomes

max
el,eA,ew

ūiυij (ω)wjAj

αβP β
i (rRi )

1−β

(
el
)βl ew (eA)µ

subject to (taking the commuting choice, tij, as given) equation (5). From this optimization

we obtain fraction of time spend in leisure elij =
βl(1−tij)
1+βl+µ

, fraction of time spend in work-

ing, ewij =
1−tij

1+βl+µ
, and fraction of time spending in interacting, eAij =

µ(1−tij)
1+βl+µ

, and agent’s

productivity Aij = µµAj

(
e−tij

1+βl+µ

)µ
.

Substituting these solutions to the optimization above we have,

u (ω) = cūiυij (ω)
wjAj

dijP
β
i (rRi )

1−β (54)

where dij =
(

1−tij
1+βl+µ

)−(1+µ+βl)

and c is a constant which does not matter for our solution

and we ignore it henceforth. Using this last expression, and aggregating across agents with

the Frechet distribution we obtain expression (24) in the main text, which completes the

derivations.

A.3 Proof of Corollary 1

Proof. Suppose the solution of F2 is
{
rRi , pi, Pi, L

E
i , AiH

F
j , H

R
i , U

}
. Then we know all the de-

cisions of agent ω: commuting choice(I (ω) , J (ω)), productivity A (ω), working time ew (ω).

Thus, agent ω’s total income is E (ω) = 1
αβ
wJ(ω)A (ω) ew (ω). Now we design an initial cap-

ital allocation plan: allocate the amount of h (ω) = (1−β)E(ω)

rR
I(ω)

building in location I (ω) to

agent ω (exactly the total footage agent lives in) and also allocate the amount of β(1−α)E(ω)

rF
J(ω)

building in location J (ω) to agent ω . It is easy to be verify that all the buildings are exactly

allocated to all the agents. If η = 0, under this capital allocation plan the parametric model

is a special case of the above general model. Denote the equilibrium under this setting is

F̃2. Obviously,
{
rRi , pi, Pi, L

E
i , AiH

F
j , H

R
i , U

}
is also the solution of F̃2. From Theorem 1, we

know that this solution is efficient.

A.4 Proof of Theorem 2

Before the formal proof, we transform the equilibrium a little bit and make some notations.

We write equilibrium F1 (equations (28)-(11)) as the following set of equations.

(
rRi
)(1−β)θ+1

P βθ
i = λ

∑
j

KrR
ij p

θ+1
j

(
LEj
)(α−1)(θ+1)

Aθ+1
j (55)
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(
LEi
)1+θ(1−α)

p−θi A−1−θ
i = λ

∑
j

KLE
ij P

−βθ
j

(
rRj
)−(1−β)θ

, (56)

pσi
(
LEi
)α

=
∑
j

Kp
ijr

R
j P

σ−1
j , (57)

P 1−σ
i =

∑
j

KP
ijp

1−σ
j , (58)

Aε̃i =
∑
j

KA
ij

(
LEj
)ηε̃

(59)

and

1 =
∑
i,j

λ

(
ūiAj

(
αpjL

α−1
Ej H

1−α
Fj

)
dijP

β
i (rRi )

1−β

)θ

(60)

where ε̃ = ε−1
ε−µ(ε−1)

, λ = L̄
Uθ

, KrR
ij = 1−β

αβ
α1+θewije

A
ij

(
HR
i

)−1
ūθi
(
HF
j

)(1−α)(1+θ)
d−θij , KLE

ij =

αθewjie
A
jiū

θ
j

(
HF
i

)(1−α)θ
d−θji , Kp

ij = β
1−β

(
HF
i

)α−1
HR
j τ

1−σ
ij , KP

ij = τ 1−σ
ji and KA

ij = Āit
−µε̃
ij . Notice

that for the convenience of proving, we use pi instead of wi unlike the context, and they can

easily be transformed from one to the other by wi = αpi
(
LEi
)α−1 (

HF
i

)1−α
.

We define the corresponding coefficient matrix

Γ =


(1− β) θ + 1 0 0 βθ 0

0 1 + θ (1− α) −θ 0 −1− θ
0 α σ 0 0

0 0 0 1− σ 0

0 0 0 0 ε̃



B =


0 (α− 1) (θ + 1) θ + 1 0 θ + 1

(β − 1) θ 0 0 −βθ 0

1 0 0 σ − 1 0

0 0 1− σ 0 0

0 ηε̃ 0 0 0

 ,

Proof. Now we mainly use theorem 1 of Allen, Arkolakis, and Li (2015) to prove this theorem.

Part i):

The existence proof proceeds in two steps. First, as ε̃ is non-zero, it is obvious that Γ

is invertible, then according to Theorem 1 of Allen, Arkolakis, and Li (2015) there exists a

solution for the following system.
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(
rRi
)(1−β)θ+1

P βθ
i = λ1

∑
j

KrR
ij p

θ+1
j

(
LEj
)(α−1)(θ+1)

Aθ+1
j

(
LEi
)1+θ(1−α)

p−θi A−1−θ
i = λ2

∑
j

KLE
ij P

−βθ
j

(
rRj
)−(1−β)θ

,

pσi
(
LEi
)α

= λ3

∑
j

Kp
ijr

R
j P

σ−1
j ,

P 1−σ
i = λ4

∑
j

KP
ijp

1−σ
j ,

Aε̃i = λ5

∑
j

KA
ij

(
LEj
)ηε̃

where λk(k = 1, ..., 5) can be any constants (eigenvalues) as long as they together with rRi ,

pi, Pi, L
E
i , Ai can make the above four equations hold.

Second, we show that we can obtain the solutions of equations 55 to 60 from the solution

of above equations by scaling up rRi , pi, Pi, L
E
i , Ai. Thus, the existence of F1 is established.

The details of transformation and scaling are as follows.

We make the following transformations


lnx1,i

lnx2,i

lnx3,i

lnx4,i

lnx5,i

 = Γ


ln rRi

lnLEi

ln pi

lnPi

lnAi

 i.e. x1,i =
(
rRi
)(1−β)θ+1

P βθ
i ,

x2,i =
(
LEi
)1+θ(1−α)

p−θi A−1−θ
i , x3,i = pσi

(
LEi
)α

, x4,i = P 1−σ
i and x5,i = Aε̃i . Then we have

pθ+1
j

(
LEj
)(α−1)(θ+1)

Aθ+1
j

P−βθj

(
rRj
)−(1−β)θ

rRj P
σ−1
j

p1−σ
j(
LEi
)ηε̃

 = exp

BΓ−1


lnx1,j

lnx2,j

lnx3,j

lnx4,j

lnx5,j



.

Particularly, we have a solution of


x1

x2

x3

x4

x5

 that is a fixed point of operator T =


T1

T2

T3

T4

T5


(fixed point is guaranteed according to Theorem 1 of Allen, Arkolakis, and Li (2015))

which is defined as follows.: Tk : R5N
++ → RN

++ k = 1, 2, 3, 4, 5 such that (T1 (x))i =
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∑
j K

rR
ij x

m11
1,j x

m12
2,j x

m13
3,j x

m14
4,j x

m15
5,j∑

i

∑
j K

rR
ij x

m11
1,j x

m12
2,j x

m13
3,j x

m14
4,j x

m15
5,j

and (T2 (x))i =
∑
j K

LE
ij x

m21
1,j x

m22
2,j x

m23
3,j x

m24
4,j x

m25
5,j∑

i

∑
j K

LE
ij x

m21
1,j x

m22
2,j x

m23
3,j x

m24
4,j x

m25
5,j

and similarly for

Tk (x) k = 3, 4, 5 where mij = (BΓ−1)ij.

Denote a1 =
∑

i

∑
jK

rR
ij x

m11
1,j x

m12
2,j x

m13
3,j x

m14
4,j x

m15
5,j , a2 =

∑
i

∑
jK

LE
ij x

m21
1,j x

m22
2,j x

m23
3,j x

m24
4,j x

m25
5,j

and similarly for ak k = 3, 4, 5

Denote


rR0

LE0

p0

P 0

A0

 = exp

Γ−1


x1

x2

x3

x4

x5



. In the following, we will show that there exists

“scale” variables b =


b1

b2

b3

b4

b5

(bi is a constant) and


rR

LE

p

P

A

 that satisfies


rR0

LE0

p0

P 0

A0

 =


b1r

R

b2L
E

b3p

b4P

b5A

 such that


rR

LE

p

P

A

 is the solution of F1. It is equivalent by showing the the

following “level” equations has a solution of ln b and lnλ.



(1− β) θ + 1 − (α− 1) (θ + 1) −θ − 1 βθ −θ − 1

(1− β) θ 1 + θ (1− α) −θ βθ −1− θ
−1 α σ 1− σ 0

0 0 σ − 1 1− σ 0

0 −ηε̃ 0 0 ε̃

θ (1− β) θ (1− α) −θ θβ −θ


ln


b1

b2

b3

b4

b5

 = ln



a1

a2

a3

a4

a5

a6


+ln



λ

λ

1

1

1

λ


(61)

where a6 = 1/
∑∑

(1 + βl + µ)θ(1+µ+βl) (e− tij)θ(1+µ+βl)

(
ūiAjwj

Pβi (rRi )
1−β

)θ
.

It is a linear equation, but the corresponding matrix of ln b and lnλ happen to singular.

So we have to show it has a solution by solving. Actually, the following expression solves the

above equation( to keep the proof of Theorem 2 concise, we leave the solving in the end of
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this section) 

b1

b2

b3

b4

b5

λ


=



a1

a2

(
a2

a6
a

1
ε̃
5

) α
1−η(

a2

a6
a

1
ε̃
5

) 1
1−η

1

a
1

1−σ
4

a6

a2

(
a2

a6
a

1
ε̃
5

) 1
1−η

b
(1−β)θ
1 b

θ(1−α)
2 bβθ4 b

−θ
5 a−1

6


Part ii): In the following, we are going to verify the spectra radius of |BΓ−1| to establish

the uniqueness.

It is obvious that Γ = Pε̃Γ̃ and B = Pε̃B̃ where

Γ̃ =


(1− β) θ + 1 0 0 βθ 0

0 1 + θ (1− α) −θ 0 −1− θ
0 α σ 0 0

0 0 0 1− σ 0

0 0 0 0 1

 ,

B̃ =


0 (α− 1) (θ + 1) θ + 1 0 θ + 1

(β − 1) θ 0 0 −βθ 0

1 0 0 σ − 1 0

0 0 1− σ 0 0

0 η 0 0 0

 ,

and

Pε̃ =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ε̃

 .

Notice that ρ (|BΓ−1|) = ρ
(∣∣∣Pε̃B̃Γ̃−1P−1

ε̃

∣∣∣) = ρ
(
P|ε̃|

∣∣∣B̃Γ̃−1
∣∣∣P−1
|ε̃|

)
= ρ

(∣∣∣B̃Γ̃−1
∣∣∣) where

P|ε̃| =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 |ε̃|

. Also P−1
|ε̃| =

∣∣P−1
ε̃

∣∣.
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After some calculation by hand and computer, we get

∣∣∣B̃Γ̃−1
∣∣∣ =



0 (α+σ−ασ)(θ+1)
−αθσ+θσ+σ+αθ

θ+1
−αθσ+θσ+σ+αθ

0 α(σ−1)(θ+1)
−αθσ+θσ+σ+αθ

(1−β)θ
(1−β)θ+1

0 0 βθ
[(1−β)θ+1](σ−1)

0
1

(1−β)θ+1
0 0 |βθ−((1−β)θ+1)(σ−1)|

[(1−β)θ+1](σ−1)
0

0 α(σ−1)
−αθσ+θσ+σ+αθ

(σ−1)((1−α)θ+1)
−αθσ+θσ+σ+αθ

0 α(σ−1)(θ+1)
−αθσ+θσ+σ+αθ

0 |η|σ
−αθσ+θσ+σ+αθ

|η|θ
−αθσ+θσ+σ+αθ

0 |η|σ(θ+1)
−αθσ+θσ+σ+αθ


.

If β ≤ θ+1
θ

σ−1
σ

, obviously
(

1 1 1 1 2α(σ−1)(θ+1)
−αθσ+θσ+σ+αθ

) ∣∣∣B̃Γ̃−1
∣∣∣ =

(
1 1 1 1 2α(σ−1)(θ+1)

−αθσ+θσ+σ+αθ

)
which means 1 is its largest eigenvalue. Proof is done for this part.

In fact, we also know about the spectra radius when |η| 6= 0. From the Perron-Frobenius

theorem, we know that there exists a left positive eigenvector vL and vR corresponding the

largest eigenvalue ρ
(∣∣∣B̃Γ̃−1

∣∣∣). Besides, from corollary 2.4 on page 185 of Stewart and Sun

(1990), we have
∂ρ(|B̃Γ̃−1|)

∂mij
=

vLivRj
vTLvR

where mij is the (i, j)th element of
∣∣∣B̃Γ̃−1

∣∣∣. ρ(∣∣∣B̃Γ̃−1
∣∣∣)

is always increasing with respect to |η|. Furthermore, notice that when |η| > 0, M̃K is

non-negative irreducible, again according to Perron-Frobenius theorem, vL and vR are pos-

itive. Thus ρ
(∣∣∣B̃Γ̃−1

∣∣∣) is increasing with respect to |η|. So for |η| 6= 0, we always have

ρ
(∣∣∣B̃Γ̃−1

∣∣∣) > 1, we are not sure about the uniqueness only from the parameter coefficient.

However, we impose some restrictions on kernels we can get the uniqueness for |η| 6= 0, an

example is part iii.

Part iii: Similarly with part ii, in the following, we also prove the uniquness by verifying

the spectra radius of corresponding coefficient matrix.

If τij = 1, normalize Pi ≡ 1 for all i(we have
∑N

k=1 p
1−σ
k = 1). The equation (28) can be

transformed into

Yip
σ−1
i = βE ⇒

pσi L
α
EiH

1−α
Fi = βE

where E =
∑

j Ej.

Thus pi =
(
L−αEi H

α−1
Fi βE

) 1
σ = β

1
σE

1
σL
−α
σ

Ei H
α−1
σ

Fi . Equilibrium conditions can be written as

(
rRi
)(1−β)θ+1

= λβ
θ+1
σ E

θ+1
σ

∑
j

KrR
ij H

(α−1)(θ+1)
σ

Fj

(
LEj
)−σ−σα+α

σ
(θ+1)

Aθ+1
j (62)

(
LEi
)1+θ(σ−σα+α

σ )
A−1−θ
i = λβ

θ
σE

θ
σ

∑
j

KLE
ij H

θ(α−1)
σ

Fi

(
rRj
)−(1−β)θ

, (63)
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Aε̃i =
∑
j

KA
ij

(
LEj
)ηε̃

(64)

combined with two normalized conditions: total labor constraint and price condition
∑N

k=1 p
1−σ
k =

1.

Thus the corresponding coefficient matrix are (without causing ambiguity, we are using

the same matrix notation with above.)

Γ =

 (1− β) θ + 1 0 0

0 1 + θ
(
σ−σα+α

σ

)
−1− θ

0 0 ε̃

B =

 0 −σ−σα+α
σ

(θ + 1) θ + 1

(β − 1) θ 0 0

0 ηε̃ 0

 ,

Similarly with part ii, the eigenvalues of |BΓ−1| are the same with (ε̃ does not matter

here)

M =


0 (σ−σα+α)(θ+1)

σ+αθ+σθ−ασθ
α(σ−1)(θ+1)

(σ+αθ+σθ−ασθ)∣∣∣ θ(β−1)
θ−βθ+1

∣∣∣ 0 0

0 |η|σ
σ+αθ+σθ−ασθ

|η|σ(θ+1)
σ+αθ+σθ−ασθ


As long as |η| > 0, M is irreducible. According to Facts 7 of Section 9.2 in Hogben (2006),

as long as there exists some x ≥ 0 such that Here we user a test vector
(

1 1 x
)

M ≤(
1 1 x

)
. The spectra radius of M is no bigger than 1. A sufficient condition to make

the spectral radius be no bigger than 1 is
(

1 1 x
)

M ≤
(

1 1 x
)
. Thus we get

inequalities x ≤ α(σ−1)
|η|σ and 0 ≤ α(σ−1)(θ+1)

σ+αθ+σθ−ασθ−|η|σ(θ+1)
≤ x. To make there exists some x ≥ 0

we only need 0 ≤ α(σ−1)(θ+1)
σ+αθ+σθ−ασθ−|η|σ(θ+1)

≤ α(σ−1)
|η|σ . Thus, |η| ≤ σ+αθ+σθ−ασθ

2σ(θ+1)
guarantees the

spectra radius of M no bigger than 1, thus from Theorem 1 of Allen, Arkolakis, and Li

(2015)) holds.

Solving level equation (61)

(1− β) θ + 1 − (α− 1) (θ + 1) −θ − 1 βθ −θ − 1

(1− β) θ 1 + θ (1− α) −θ βθ −1− θ
−1 α σ 1− σ 0

0 0 σ − 1 1− σ 0

0 −ηε̃ 0 0 ε̃

θ (1− β) θ (1− α) −θ θβ −θ


ln


b1

b2

b3

b4

b5

 = ln



a1

a2

a3

a4

a5

a6


+ln



λ

λ

1

1

1

λ


The first row minus the second and the third row minus the fourth row we get
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

1 −α −1 0 0

(1− β) θ 1 + θ (1− α) −θ βθ −1− θ
−1 α 1 0 0

0 0 σ − 1 1− σ 0

0 −ηε̃ 0 0 ε̃

θ (1− β) θ (1− α) −θ θβ −θ


ln


b1

b2

b3

b4

b5

 = ln



a1/a2

a2

a3/a4

a4

a5

a6


+ln



1

λ

1

1

1

λ


Add the first onto the third, we get



1 −α −1 0 0

(1− β) θ 1 + θ (1− α) −θ βθ −1− θ
0 0 0 0 0

0 0 σ − 1 1− σ 0

0 −ηε̃ 0 0 ε̃

θ (1− β) θ (1− α) −θ θβ −θ


ln


b1

b2

b3

b4

b5

 = ln



a1

a2

a2

a1a3

a2a4

a4

a5

a6


+ ln



1

λ

1

1

1

λ


Minus the second row from the sixth row



1 −α −1 0 0

0 1 0 0 −1

0 0 0 0 0

0 0 σ − 1 1− σ 0

0 −ηε̃ 0 0 ε̃

θ (1− β) θ (1− α) −θ θβ −θ


ln


b1

b2

b3

b4

b5

 = ln



a1

a2

a2

a6

a1a3

a2a4

a4

a5

a6


+ ln



1

1

1

1

1

λ


One can verify that the following solves the 1-2, 4-6 equations,



b1

b2

b3

b4

b5

λ


=



a1

a2

(
a2

a6
a

1
ε̃
5

) α
1−η(

a2

a6
a

1
ε̃
5

) 1
1−η

1

a
1

1−σ
4

a6

a2

(
a2

a6
a

1
ε̃
5

) 1
1−η

b
(1−β)θ
1 b

θ(1−α)
2 bβθ4 b

−θ
5 a−1

6


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Also one can also show that a1a3

a2a4
= 1 thus the 3rd equation also holds. Details of proving

a1a3

a2a4
= 1 is as follows

We will first solve


b1

b2

b3

b4

b5

 = and λ from the rest 5 non-redundant equations (we set

b3 = 1 due to the price normalization) and then show that a1a3

a2a4
= 1.

Notice that by definition of


rR0

LE0

p0

P 0

A0

 and


x1

x2

x3

x4

x5

, we have the following equations

a1

(
rR0
i

)(1−β)θ+1 (
P 0
i

)βθ
=
∑
j

KrR
ij

(
p0
j

)θ+1 (
LE0
j

)(α−1)(θ+1) (
A0
j

)θ+1
(65)

a2

(
LE0
i

)1+θ(1−α) (
p0
i

)−θ (
A0
i

)−θ−1
= λ

∑
j

KLE
ij

(
P 0
j

)−βθ (
rR0
j

)−(1−β)θ
, (66)

a3

(
p0
i

)σ (
LE0
i

)α
=
∑
j

Kp
ijr

R0
j

(
P 0
j

)σ−1
, (67)

a4

(
P 0
i

)1−σ
=
∑
j

KP
ij

(
p0
j

)1−σ
, (68)

Multiply both sides of equation 67 by(p0
i )

1−σ
Hα−1
Fi and sum over all i ∈ S, we get

a3

∑
i

Y 0
i =

∑
j

βHRjr
R0
j

1− β
∑
i

(τijp
0
i )

1−σ

P 1−σ
j

= a4

∑
j

βHRjr
R0
j

1− β

where Y 0
i = p0

i

(
LE0
i

)α
Hα−1
Fi and the last equality comes from equation68.

Multiply both sides of equation 65 by
(
rR0
i

)−(1−β)θ+1
HR
i and sum over all i ∈ S, we get

a1

∑
i

HR
i r

R0
i

1− β
=

1

αβ

∑
i

∑
j

w0
jL

E0
ij = a2

1

αβ

∑
j

w0
jL

E0
j

where w0
i = αp0

i

(
LE0
i

)α−1 (
HF0
i

)1−α
, LE0

ij = ewij
(
eAij
)µ
A0
j

(
ūiA

0
jw

0
j

dij(P 0
i )

β
(rR0
i )

1−β

)θ
. The last

equality comes from multiplying both sides of equation 66 by
(
LE0
i

)−θ(1−α)
(p0
i )
θ

(A0
i )
θ+1

.
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Sum up, a1 = a2

1
αβ

∑
j w

0
jL

E0
j∑

i

HR
i
rR0
i

1−β

, a3 =
a4

∑
j

βHRjr
R0
j

1−β∑
i Y

0
i

. Thus,

a1a3

a2a4

=

1
αβ

∑
j w

0
jL

E0
j∑

i Y
0
i

= 1.

A.5 Analytical results

Derivation of equation (35)

Without trade cost, the same with the above part (iii) proof of theorem (2), equilibrium

conditions can be written as

(
rRi
)(1−β)θ+1

= λβ
θ+1
σ E

θ+1
σ

∑
j

KrR
ij H

(α−1)(θ+1)
σ

Fj

(
LEj
)−σ−σα+α

σ
(θ+1)

Aθ+1
j

(
LEi
)1+θ(σ−σα+α

σ )
A−1−θ
i = λβ

θ
σE

θ
σ

∑
j

KLE
ij H

θ(α−1)
σ

Fi

(
rRj
)−(1−β)θ

,

Aε̃i =
∑
j

KA
ij

(
LEj
)ηε̃

Furthermore, we assume β = 1, i.e. there is no residential market, the second equation

can be simplified to

(
LEi
)1+θ(σ−σα+α

σ )
A−1−θ
i = λE

θ
σ

∑
j

KLE
ij H

θ(α−1)
σ

Fi

Thus Ai =
(
LEi
)−αθσ+θσ+σ+αθ

σ(1+θ)

(
λβ

θ
σE

θ
σ

∑
jK

LE
ij H

θ(α−1)
σ

Fi

)− 1
1+θ

it into the third equation,

we get

li = λ̃
∑
j

K̃A
ij (lj)

η
σ1

where li =
(
LEi
)σ1ε̃, σ1 = −αθσ+θσ+σ+αθ

σ(1+θ)
, λ̃ =

(
λE

θ
σ

) 1
1+θ

, and

K̃A
ij = β

θ
σ(1+θ) Āit

−µε̃
ij

(∑
k

KLE
ik

(
HF
k

) θ(α−1)
σ

)− 1
1+θ

is exogenous under F1 (in which KLE
ij = αθewije

A
ijū

θ
j

(
HF
i

)(1−α)θ
d−θij ).
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City in the circle

To solve the analytic solution of li in the circle, it is equivalent to solve the following equation

y (x) =

ˆ π

−π
C cos2

(
x− s

2

)
y (s)κ ds

y′ (x) = −
ˆ π

−π

1

2
C sin (x− s) y (s)κ ds

y′′ (x) = −
ˆ π

−π

1

2
cos (x− s) y (s)κ ds

= −
ˆ π

−π

(
cos2

(
x− s

2

)
− 1

2

)
y (s)κ ds

= −y + Y

where Y = τ
´ π
−π y (s)κ ds a constant. Like above it is equivalent with equation

ww′y = −y + Y =⇒

w2

2
= −y

2

2
+ Y y +

C1

2
= −(y − Y )2

2
+
C1 + Y 2

2
=⇒

where C1 is a constant.

y′x = ±
√
−y2 + 2Y y + C1 =⇒

For the time being only consider the case of y′x ≥ 0

ˆ
1√

−y2 + 2Y y + C1

dy = x+ C2 =⇒

− sin−1 −2y + 2Y√
4Y 2 + 4C1

= x+ C2 =⇒

(see 5.4.13 of book Zwillinger, Daniel, ed. CRC standard mathematical tables and formulae.

CRC press, 2002. )

y = Y +
√
Y 2 + C1 sin (x+ C2)

We show that when 0 ≤ |κ| ≤ 1 (it is the same for −1 ≤ κ < 0), Ymax = Ymin i.e. y = Y

a constant. Obviously, the maximum of y is Ymax = Y +
√
Y 2 + C1 and minimum is Ymin =
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Y −
√
Y 2 + C1. Notice that Ymax ≤ Y κ

max max
´ π
−π τ cos2

(
x−s

2

)
ds and

´ π
−π τ cos2

(
x−s

2

)
ds =

πτthus Y 1−κ
max ≤ πτ , also Y κ

min minx
´ π
−π τ cos2

(
x−s

2

)
ds ≤ Ymin i.e. πτ ≤ Y 1−κ

min . Thus, it has

to be that Ymin = Ymax i.e.
√
Y 2 + C1.

City in the infinite line

To solve the analytic solution of li in the infinite line, it is equivalent to solve the following

equation

y (x) =
´∞
−∞C exp

(
−γ (x− s)2) y (s)κ ds

Guess the solution is the form of y (x) = b exp (−ax2) where a > 0. Substitute it into

above equation,

b exp
(
−ax2

)
= bκ

ˆ ∞
−∞

C exp
(
−γ (x− s)2) exp

(
−aκs2

)
ds

= bκ
ˆ ∞
−∞

C exp
(
− (aκ+ γ) s2 + 2γxs− γx2

)
ds

= bκ
ˆ ∞
−∞

C exp

(
− (aκ+ γ)

(
s− τ

aκ+ τ
x

)2

+

(
τ 2

aκ+ τ
− τ
)
x2

)
ds⇒

bκ−1 exp

((
γ − γ2

aκ+ γ
− a
)
x2

)
= C

ˆ ∞
−∞

exp
(
− (aκ+ γ) s2

)
ds⇒

a =
γ (κ− 1)

κ
.

B Data Appendix

B.1 Constructing Time Use Data

Using the Census (2011) we find that the average commuting time from and to work for

a U.S. citizen is about 50 minutes. We divide this by two to account for days off-work

and unemployed people. The BLS (2013) times spend in working, work-related meetings

and education, and leisure and civic/religious activities. Working and work-related activities

(e.g. business meetings, time spend playing gold with clients etc) include required commuting

time (but do not report the specific) so we subtract the commuting times off these two uses
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split according to the relative fraction of time they represent.16 We use the reminder of the

working time as the working time of an average agent in the model. The remaining work-

related activities spent together with time spent on education gives us the time spend for

productivity improvement. Finally, we consider as leisure time and civic/religious activities

as time spent in leisure in the model.

16We exclude the other categories as we do not model time for shopping and we consider personal care
and sleep as taking care of basic indispensable needs.
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