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1. This problem will examine the change in population density and its gradient over
time based on Clark’s 1951 study of population density in major metropolitan areas
in Australia, the US and Europe.

(a) Using Table 1 from Clark (1951), calculate the population density of London at
the CBD (x=0), and three miles from the CBD, in 1801, 1841, and 1939.
Population density is given by y = Ae−bx, where A and b are given in the table.
In 1801, y = 290e−1.35x

At x = 0, y = 290e0 = 290.

At x = 3, y = 290e−3∗1.35 = 290e−4.05 ≈ 5.05.

In 1841, y = 800e−1.4x

At x = 0, y = 800e0 = 800.

At x = 3, y = 800e−3∗1.4 = 800e−4.2 ≈ 12.

(Note this implies 800,000 people, or three-quarters of the population of Rhode
Island, lived in the square mile at the London city center).
In 1939, y = 80e−0.2x

At x = 0, y = 80e0 = 80.

At x = 3, y = 80e−3∗0.2 = 80e ∗ −0.6 ≈ 43.9.

(Note how much the population density at the city center dropped in one
century, and how much the population density at x = 3 grew.)

(b) How does the ratio of population density at the CBD to the population density
three miles from the CBD change between 1801 and 1939?
In 1801, the ratio of population densities at the CBD to the population density
three miles from the CBD is

290e0

290e−4.05 = e4.05 ≈ 57.4

In 1939, the relevant ratio of population densities is

80e0

80e−0.6 = e0.6 ≈ 1.82

Quite a decline!
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2. This problem will examine the relationship between population density and trans-
portation costs.

In 1, you saw that the population density gradient flattened out (there is relatively
more population at x = 3 compared to x = 0 over time). This problem examines if
decreased transportation costs could explain this flattening of the density gradient.

Assume we have the setup of the monocentric city model with housing, as in the
lecture. Assume as well that housing production is perfectly competitive. Let u = 3.

(a) Let the household’s problem be given by

max
c,h,x

c1/2h1/2 subject to w = c+ ph+ 2tx

Let w̃ = w − 2tx. Use the first-order condition of the household’s problem
with respect to h to find h∗ in terms of p and w̃.
The household’s problem is:

max
c,h,x

c1/2h1/2 subject to w̃ = c+ ph

Solving the constraint for c, we have c = w̃ − ph. If we plug this into the
expression that we want to maximize, we no longer need to worry about the
constraint, but instead can just solve:

max
h

(w̃− ph)1/2h1/2

We do this, finding the value of h∗ that maximizes the above expression, by
setting the derivative of this expression with respect to h equal to zero.

∂[(w̃− ph)1/2h1/2]

∂h
= 0

−(1/2)p(w̃− ph∗)−1/2h∗1/2 + (1/2)(w̃− ph∗)1/2h−∗1/2 = 0

(1/2)p(w̃− ph∗)−1/2h∗1/2 = (1/2)(w̃− ph∗)1/2h∗−1/2

ph∗ = w̃− ph∗

2ph∗ = w̃

h∗ =
w̃

2p

(b) Use the fact that utility is u = 3 everywhere to solve for p∗ in terms of w̃.
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u = 3

u = (w̃− p∗h∗)1/2h∗1/2

=
(
w̃− p∗

w̃

2p∗
)1/2( w̃

2p∗
)1/2

=
( w̃

2

)1/2( w̃

2p∗
)1/2

=

√
w̃2

22p∗

3 =
w̃

2
√
p∗

√
p∗ =

w̃

2 ∗ 3

p∗ =
w̃2

36

(c) Substitute your expressions for p∗ and w̃ into your expression for h∗ to write
h∗ in terms of w, t, and x.

h∗ =
w̃

2p

=
w̃

w̃2/18

=
18
w̃

=
18

w− 2tx

(d) Let the developer’s problem be given by

max
S

pS2/3 − iS −R

where S is the capital to land ratio, and p, i and R are the costs of housing,
capital, and land, respectively. For the remainder of the problem, let i = 1

33 .
Comment: The technology for producing housing is constant returns to scale
and can be written as hs(S) = S2/3. Here, hs is housing supplied, and is (with
constant returns to scale) units of housing per constant area. This is NOT the
same as h in the household problem, which is housing units per person.
Use the first-order condition of this problem with respect to S to solve for hs

∗

in terms of p.
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∂(pS2/3 − iS −R)

∂S
= (2/3)pS−1/3 − i

(2/3)p∗S∗−1/3 − i = 0

(2/3)p∗S∗−1/3 = i

S∗−1/3 =
1.5i
p∗

S∗ =
( p∗

1.5/33

)3
= (22p∗)3

hs
∗ = (S∗)(2/3) = ((22p∗)3)(2/3) = (22p∗)2

(e) Substitute in your expression for p∗ from earlier to obtain an expression for
population density, hs

∗

h∗ , in terms of w, t and x.

hs
∗

h∗
=

(22p∗)2

18
w−2tx

=
(22(w̃2/36))2

18
w−2tx

=
w̃4(w− 2tx)(11/18)2

18

=
(w− 2tx)5 ∗ 112

183

(f) Solve for the population density at x = 1 and x = 2 for t = 1 and t = 0.5. How
does population density outside of the city center change when transportation
costs fall?

hs
∗

h∗
=

(w− 2tx)5 ∗ 112

183

=
(w− 2)5 ∗ 112

183 for x = 1, t = 1

=
(w− 1)5 ∗ 112

183 for x = 1, t = 0.5

=
(w− 4)5 ∗ 112

183 for x = 2, t = 1

=
(w− 2)5 ∗ 112

183 for x = 2, t = 0.5

Population density outside the city center increases (less is subtracted from w)
when transportation costs fall.
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(g) In order to obtain a more general result about the population density gradient
and transportation costs, take the derivative of your expression for population
density with respect to t.

hs
∗

h∗
=

(w− 2tx)5 ∗ 112

183

∂(hs
∗

h∗ )

∂t
= 5(−2x)(w− 2tx)4 ∗ 112

183

= −10x(w− 2tx)4 ∗ 112

183 < 0

(h) Evaluate the derivative from the previous part at x = 0. Does your expression
for population density at x = 0 depend on t?

∂(hs
∗

h∗ )

∂t
= −10x(w− 2tx)5 ∗ 112

183

∂(hs
∗

h∗ )

∂t

∣∣
x=0 = 0

hs
∗

h∗
=

(w− 2tx)5 ∗ 112

183

hs
∗

h∗
∣∣
x=0 =

w5 ∗ 112

183

The population density at x = 0 does not change when transportation costs
change (intuitively, because the people at x = 0 do not pay the transportation
costs).

(i) Based on your results to the previous two parts, could this model of falling
transportation costs explain the decreasing population density at the center
and flattening of the population density gradient that you examined in the
previous problem?
This model of falling transportation costs could explain the flattening of the
population density gradient, as we saw in the example where we evaluated the
population density at x = 1 and x = 2 as t decreased from 1 to 0.5. However,
this model does not explain the decreasing population density at the center.
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