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Some stylized facts

Stylized facts about cities

What does the size distribution of cities look like? How does it
change over time? Do cities change their position?

What are patterns of sectoral specialization? Does this
change over time?

Can we explain these patterns as a consequence of spatial
equilibrium?

This discussion draws on Duranton and Puga (2000).
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Some stylized facts

To begin, we need to define ‘specialized’ and ‘diversified’ cities. Let

sij ∼ Share of industry j employment in city i

ZIi ≡ max
j
(sij) ∼ specialization

Tthe specialization of a city is the share of employment in its
largest sector. Its also useful to think about relative specialization,

sj ∼ Share of industry j national employment.

RZIi ≡ max
j
(sij /sj) ∼ relative specialization

Providence is relatively specialized in the manufacture of
submarines, even though it is a small share of overall employment.

Copyright 2025, Matthew Turner 4



Some stylized facts

Measuring diversity is a little trickier. What does it mean to say that
one set of jobs is ‘less different than another’?

Consider, the two sets of jobs,

{2 mechanics, 1 brain surgeon}
{1 Banker, 1 Baker, 1 Carpenter}

Which is more diverse?

The industry standard for answering this question is the ‘Herfindahl
Index’,

DIi =

(
∑

j
s2

ij

)−1

For sij the share of industry j in city i ’s employment.
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Some stylized facts

To see how this works, suppose j = 1, 2 and drop the i subscript.

Then we have s2 = 1 − s2 and

DIi = (s2
1 + s2

2)
−1 = (s2

1 + (1 − s1)
2)−1

= (s2
1 + (1 − 2s1 + s2

1))
−1 = (2s2

1 + 1 − 2s1)
−1

If we plot this as s1 ranges from 0 to 1, we get something like this,

1

2

0 1 s1

DI(s )1

1/2
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Some stylized facts

So ‘most diverse’ means employment is uniformly distributed
across all alternatives.

The corresponding relative diversity index is also sometimes
useful,

RDIi =

(
∑

j
(sij − sj)

2

)−1

Most of the literature is based on indexes like those defined
here.

A city can be relatively specialized and relatively diverse!
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Some stylized facts

With definitions of specialization and diversity in place, we can
state our first two stylized facts.

FACT 1: specialized and diversified cities coexist.

Table 1. Most and least specialised and diversi� ed US cities in 1992

Specialisation Diversity

Rank City (sector) RZI City RDI

1 Richmond, VA (tobacco) 64.4 Cincinnati, OH 166.6
2 Macon, GA (tobacco) 55.0 Oakland, CA 161.2
3 Lewiston, ME (leather) 49.6 Atlanta, GA 159.4
4 Galveston, TX (petroleum) 49.1 Philadelphia, PA 151.4
5 Bangor, ME (leather) 45.6 Salt Lake City, UT 120.8
6 Owensboro, KY (tobacco) 44.4 Buffalo, NY 110.1
7 Corpus Christi, TX (petroleum) 37.6 Columbus, OH 108.3
8 Cheyenne, WY (petroleum) 33.4 Portland, OR 94.1

315 Buffalo, NY (rubber and plastics) 1.6 Lawton, OK 2.4
316 Cincinnati, OH (chemicals) 1.5 Richland, WA 2.4
317 Chicago, IL (metal products) 1.5 Steubenville, OH 2.4

Source: Black and Henderson data set.

         

Duranton and Puga (2000)
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Some stylized facts

Fact 2: Larger cities are more diversified than small cities.

Figure 1. The size–diversity relation for US cities in 1992. Source: Black and Henderson (1998) data set.

         

Duranton and Puga (2000)

All cities have a large share of employment is non-traded
sectors, e.g., services, so all cities are pretty diversified.
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Some stylized facts

Cities > 500k are more specialized in business services;
Finance, Insurance, Real Estate (FIRE), less in
manufacturing.

Cities 50-500k are more specialized in ‘mature industries’ like
‘textiles’, less in ‘new industries’, like ‘instruments’.

Big cities are relatively specialized in ‘new industries’.

All together, there is evidence for cities as nurseries of new
industrial processes. New processes start in large diverse
congested places and once the process is established, migrate to
smaller, less congested and less diverse cities.
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Some stylized facts

Fact 3: The distribution of city sizes is stable over time (more
soon), the ranking of cities by size is less stable, and the sectoral
specialization is still less stable.

       

              

         
        

        
          

        
         
         

         
       

          
        

         
       

                    
                       
                      

                
       

         

       
   

  
 

    
    

  
 

 
 

        
        

        
     

        
        

       
       

      
       

         
          

  
 

     
        

         
        
        

    
       

       
        

        
       

        
    

         
        
       

    

  

  
 

  
 

      
         

          
       

          
     

       
      

          
      

        
        

      
      

       

        
           

       
          

        
        

       

           
       

Duranton (2007). When thinking about sectoral stability, it matters
how aggregated are the sectors. Employment in ‘furniture making’
is less stable that employment in ‘manufacturing’.
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Some stylized facts

Fact 4: City employment and population are related to
specialization and diversity.

Fact 5abc: Plants/firms have short half-lives, about 5 years. Most
innovations occur in big diversified cities. Most firm relocations are
from big diversified cities to smaller less diversified cities.

A subset of the literature on agglomeration investigates the
relationship between diversity, specialization and productivity.
Short answer: knowledge intensive activities tend to better in
diverse cities, established processes do better in specialized cities
(i.e., factory towns).

Copyright 2025, Matthew Turner 12



Zipf’s law

Zipf’s Law/Rank-Size Rule, Gibrat’s law

Zipf’s law is an extraordinary feature of the size distribution of
cities.

Formally, Zipf’s law is that the size distribution of cities follows a
Pareto distribution with exponent equal to 1.

Less obscurely, it implies a rank size rule (in expectation). If city
size is N and the rank of the city in the set of cities under
consideration (usually a country) is r(N), then

ln r(N) = lnA − ζ lnN

ζ = 1
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Zipf’s law

Reorganizing and using ζ = 1, we have

ln r(N) = ln (A/N)

=⇒ r = A/N

=⇒ N = A/r

Consider the first and second and third ranked cities, N1,N2,N3.
Then

N2

N1
=

A/2
A/1

= 1/2 and
N3

N1
=

A/3
A/1

= 1/3.

That is, the largest city is twice as large as the second, three times
as large as the third, and so on.
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Zipf’s law

This is an odd property, and not one that we would expect to be
true. We can test it with the regression

ln r(N) = lnA − ζ lnN + ε

and see if we get ζ = 1.
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Zipf’s law

(1) ln Rank 5 10.53 2 1.005 ln Size,
(.010)

FIGURE I
Log Size versus Log Rank of the 135 largest U. S. Metropolitan Areas in 1991
Source: Statistical Abstract of the United States [1993].
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Gabaix (1999), 135 US MSAs in 1990 Holmes and Lee (2010), 135 US MSAs in 2000

This looks pretty good for Zipf’s law.

These figures are showing the same data, 10 years apart, but
the x-axes are a lot different. Can you explain this? Hint
ln(1000) ≈ 6.9.
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Zipf’s law

This figure is remarkable, and it must be telling us something
important about how cities grow.

Since urban growth is pretty clearly central to the process of
economic growth and development, this means that Zipf’s law is
telling us something important about the process of economic
growth and development.

Another way to say this, we can reject any model of the
development process that does not give us a city size distribution
that satisfies Zipf’s law. Since Zipf’s law is such a specific
prediction, this lets us eliminate a lot of models.

This has led to two questions.

Does Zipf’s law really hold?

Why might we expect Zipf’s law to hold?
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Zipf’s law

Why should Zipf’s law hold? I

In a remarkable paper, Gabaix (1999) shows that Zipf’s law is ‘like’
the central limit theorem.

The Central Limit Theorem is one of the most important results in
statistics. It says that if you take many draws from an arbitrary
distribution and average them, and repeat this many times, then
the distribution of the averages will be Normal, that is, a ‘bell curve’.

Here is an animation demonstrating this,
https://www.youtube.com/watch?v=XAuMfxWg6eI.

Gabaix’s argument rests on two assumptions and a theorem.
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Zipf’s law

The assumptions are that,

Cities grow by a random multiplicative share each year. This
share can be drawn from more-or-less any distribution.

The size of cities has a strictly positive lower bound (with
multiplicative growth, once a city hits zero, it stays there. This
assumption stops that.)

To state the theorem, let N be an arbitrary size threshold, and N ′

be the size of a city drawn at random from the sample of cities,
then

Pr(N ′ > N) = A/Nζ .

This is called a Pareto distribution. The theorem Gabaix appeals to
is that such a Pareto distribution implies the rank size rule (in
expectation).
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Zipf’s law

Recalling the Central limit theorem, what should happen if the
growth rate of cities is random in each year?

Over time, the distribution of city sizes should approach a Normal
distribution (really log Normal because the shocks are
multiplicative).

What Gabaix shows is that with the lower bound on city sizes, the
city size distribution converges to a Pareto distribution with
parameter one, which implies the rank size rule the rank size rule
in expectation.

This means that if city growth rates are unrelated to city size, a
claim known as ‘Gibrat’s law’, then Zipf’s law is implied.

Not that the opposite implication probably does not hold. That is,
Zipf’s law probably does not imply Gibrat’s law.
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Zipf’s law

Does Zipf’s law really hold? I

There has been a lot of research checking whether Zipf’s law
holds. This research has taken three basic approaches.

More careful analysis of the 135 largest US cities shown
earlier

Expansion of the set of cities.

Extension to other countries.
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Zipf’s law

As Gabaix (1999) points out, even in the set of 135 cities, the data
deviates slightly from a perfectly straight line.

There is often an outlier, often a capital.

Also, the middle size cities often decrease in size ‘too fast’.
This is visible in our figure as the plot being a little flatter than
1 as it approaches zero. Looking at the figure very closely, the
plot of points looks slightly concave.

Holmes and Lee (2010) investigate whether Zipf’s law holds more
broadly in the US.

The city size distribution depends in large part on how the
boundaries of MSAs are drawn. Thus, the dramatic figures we
have seen above may reflect the rules used for drawing MSA
boundaries rather than important economic fundamentals.
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Zipf’s law

To address this issue, Holmes and Lee (2010) check whether the
rank size rule applies to 85,287 6 × 6 mile squares drawn on a
regular grid covering the continental US in 2000.
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Zipf’s law

Fig. 3.5  Square- level Zipf plot for continental United States (all 23,974 squares 
with population at least 1,000)
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Table 3.5 Six- by- six- square- level Zipf regression results (squares with population 1,000 
and above)

Piecewise linear Linear

Sample of squares  N  Kink  Slope1  Slope2  R2  Slope  R2

All squares with population � 1,000 23,974 10.89 .747 1.937 .998 .833 .969
By Census division
  New England 1,027 9.96 .569 1.521 .996 .763 .930
  Middle Atlantic 2,184 10.28 .669 1.249 .997 .759 .965
  East North Central 4,313 10.92 .784 1.982 .999 .861 .975
  West North Central 2,337 11.04 .886 2.607 .999 .941 .984
  South Atlantic 4,977 10.72 .756 2.175 .995 .857 .959
  East South Central 2,898 10.48 1.010 2.357 .997 1.072 .983
  West South Central 3,078 11.17 .786 2.834 .997 .857 .969
  Mountain 1,383 11.55 .723 3.662 .997 .791 .964
  Pacifi c  1,777  11.21  .521  1.872  .992  .646 .922

Here, the ‘piecewise linear regression allows the slope of the
regression line to change at log population 11.

This does not look as good for Zipf’s law.
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Zipf’s law

Fig. 1. Values of the OLS estimate of the Pareto exponent with the 95% confidence interval, for the full sample of

73 countries for the latest available period, sorted according to the Pareto exponent.

Soo (2005) estimates Zipf’s law for a sample of 73 countries.

y -axis in figure is Zipf coefficient and confidence interval. There is
clearly some noise around a slope of one in the rank-size rule.
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Zipf’s law

Since Zipf’s law is implied by a model of random growth and scale
invariant growth rates, it is interesting to check if city growth rates
are invariant to city size.558 QUARTERLY JOURNAL OF ECONOMICS

FIGURE I

Stylized Facts

This figure shows the six stylized facts for our baseline sample of MCDs
from the A and B states. The x-axes are population density bins (or in Panel
D, employment density bins), defined by rounding down log initial population
density for each MCD to the nearest single digit after the decimal point. For
example, all MCDs with log population density greater than or equal to 0.1
and less than 0.2 are grouped together in bin 0.1. The y-axes show means
for each population density bin. In Panels B, C, E, and F, dashed lines show
95% confidence intervals, computed using robust standard errors clustered by
county. Since population density bins at the extreme ends of the distribu-
tion typically contain few observations, the figures in these panels (but not
the estimations) omit the 1% most and least dense MCDs in 1880. See the
text and the Online Appendix for further discussion of the construction of the
figures.

Michaels et al. (2012) do exactly this using 120 years of US data.
This does not look like scale invariant growth rates, though in the
upper range of densities, i.e. in the big cities, it looks OK.
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Zipf’s law

Summing up,

The Zipf’s law figures are very dramatic, and surely tell us
something about the process governing city growth.

There has been a lot of research on this.

It’s pretty clear that Zipf’s law applies pretty well to the upper
tail of city size distributions, and not very well otherwise.

Gabaix’s result that Zipf’s law is a consequence of a random
growth process is a big step forward, but...

Gibrat’s law is more problematic than Zipf’s law empirically,
and probably holds only in the upper tail of the size
distribution, if at all.

The ‘random growth model’ is not very satisfying as an
explanation for how the world works.
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Zipf’s law

Probably the most definitive statement we can make is that Zipf’s
law describes the upper tail of the city size distribution, and that in
this region, Gibrat’s law looks OK, too, and so we should take
seriously the model of random growth for large cities.
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Systems of Cities

Costs and Benefits of Cities

We now have several facts about cities. One relating to the overall
distribution, Zipf’s law, a number describing patterns of diversity
and specialization, and a few describing changes in sizes and
sectoral composition.

We’d like to develop a theory that let’s us organize all of this. The
first step is a model of ‘systems of cities’, which lets us think about
how a population chooses cities. One of the first formal statements
of this problem is due to Henderson (1974), and this discussion
loosely follows this paper.

To start, we need a simple description of how the costs and
benefits of cities vary with their size.
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Systems of Cities

For this purpose, ‘benefits’ are ‘output’ and are subject to
increasing returns to scale in production, ‘costs’ are only
commuting costs and the opportunity cost of labor.

Use the same notation as for agglomeration effects; Production, Y ;
labor/population, N. Also following the earlier analysis, let

Yi = AN1+σ

be total output, and

wi = (ANσ)

be the market wage.

Recall, agents ignore their effect on aggregate output and firms
are small, so a competitive labor market leads to wi being the
average product of labor, not its marginal product.

Copyright 2025, Matthew Turner 30



Systems of Cities

To describe commuting costs, we recall the monocentric city model
and make the following assumptions:

No housing, everyone consumes one unit of land.
Commute costs are 2t per unit distance.
Agricultural land rent is zero.

This means that the length of the city is equal to its population,
N = 2x .

We want to calculate total and average commuting costs.

N/20

w

R(0)=2t(N/2)

_
-

_

N/2
_
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Systems of Cities

Total commute cost is the shaded area. Calculate this by,

Integrating,

TC(N) = 2
∫ N/2

0
2txdx =

t
2

N2

or recalling that the area of a triangle is 1/2× width × height.
This gives TC(N) = 2 × 1

2 × N
2 × 2t(N

2 ) =
t
2N2.

It follows that average commuting cost is

AC(N) = TC(N)/N =
t
2

N
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Systems of Cities

We want to consider two processes for assigning people to cities.

Spatial equilibrium: (i) no one wants to move (ii) wages are
determined competitively.

Planner’s solution: The planner chooses people’s locations.

Start with spatial equilibrium. Suppose

Reservation consumption is c and reservation utility is
u = u(c). This is what a rural household gets.

All urban households have the average commute cost for their
city.

Land rents are divided uniformly between city residents
(instead of going to absentee landlords).
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Systems of Cities

The first of these means that there is a large pool of rural locations
that are not subject to crowding. The next two relieve us of having
to keep track of individual incomes, rents and commute distances.
They are simplifying assumptions.

Using the second two assumptions, we calculate household
consumption as a function of city size for a city resident. This is the
difference between wages and average commute costs.

cE (N) = w(N)− TC(N)

N

= ANσ − 1
N

tN2

2

= ANσ − t
2

N.
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Systems of Cities

That is, average product of labor minus average commute cost.
Note that land rent nets out.

In a spatial equilibrium, we are going to need to choose N so that

cE (N) = c (1)

=⇒ ANσ − t
2

N = c

We’ll see below that cE (N) is concave and this equation can have
two solutions. Call the smaller one NE and the larger one N∗

E . We
will mainly be interested in N∗

E .
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Systems of Cities

A candidate for ‘optimal city size’ is going to be the N∗∗
E that

maximizes cE (N). To find this, solve,

0 =
dcE (N)

dN

=⇒ 0 = σANσ−1 − t
2

=⇒ N∗∗
E =

(
t

2σA

)1/(σ−1)

.

N∗∗
E is the city size that maximizes equilibrium land rent (why?).
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Systems of Cities

To check that this is a maximum, note that

d2c∗(N)

dN2 =
d

dN

(
dcE (N)

dN

)
d2c∗(N)

dN2 =
d

dN

(
σANσ−1 − t

2

)
= (σ− 1)σANσ−2

< 0.

Where the inequality follows because the data indicates that σ is in
the neighborhood of 0.05 and much smaller than 1.
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Systems of Cities

A

Wage

Average Commute

N ** N1

c

E N ** N1

c

E

Components of cE (N) cE (N)
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Systems of Cities

Figure: Illustration of spatial equilibrium for a single city

c

c  (N **)

N *E

_E E

N_E N ** N1

c

E
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Systems of Cities

What happens in equilibrium?

For any given city, there are two levels of population where
urban consumption equals rural consumption, NE and N∗

E .
NE is ‘unstable’. For any small displacement ε > 0,

cE (NE − ε) < c. If the city experiences such a displacement,
everyone will want to emmigrate and the city will depopulate.
cE (NE + ε) > c. If the city experiences such a displacement,
everyone will want to immigrate to the city until N = N∗

E .

We rule out the unstable equilibrium. By a similar argument,
N∗

E is stable.

Except in the special case where c = cE (N∗∗
E ), this is going to

lead us to equilibrium city sizes that are ‘too large’ in the
sense that they are bigger than N∗∗

E .
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Systems of Cities

This argument requires a number of comments.

The reliance on ‘stability’ to resolve problems with multiple
equilibria is common and problematic. Implicitly, notions of
stability are dynamic and our agents are not forward looking.
Justifying this requires logical gymnastics.

In this context, it is common to describe commute costs as
‘congestion’. As the city grows, access to the center becomes
congested and it requires longer average commutes for the
city to function.

Recall that in the competitive labor market, agents ignore their
impact on aggregate productivity. This should lead to cities
that are ‘too small’. It is striking that this is not what happens.
People also ignore their effect on other people’s commute
costs, and this effect leads to cities that are too big. The
second effect dominates.
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Systems of Cities

This model gives us way to think about the size and number of
cities, but the model is plagued by multiple equilibrium. That
is, it is missing some mechanism to winnow the set of
possible spatial equilibria.

If there are initially zero cities, what does this model suggest
will happen? Nothing. The first individual who migrates to a
city receives zero wage, so no individual can start a city. We
need some form of collective action to get cities.
If the pool of rural people is arbitrarily large, then any number
of cities can exist in equilibrium.
If the pool of rural people is finite, then any number of cities
can exist such that all rural people urbanize, the size of all
cities is the same, and this size is in the interval [N∗∗

E ,N∗
E ].

So far, this is really a model of one city and one sector, so it is
not useful for explaining the stylized facts presented earlier.
More on this later.
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Systems of Cities

Now consider the planner’s problem. The planner would like to
maximize the ‘surplus’ created by the city. This is the value of
output minus the cost of commuting and the opportunity cost of
labor. In math,

W (N) = Y (N)− TC(N)− cN

= AN1+σ − tN2

2
− cN
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Systems of Cities

To optimize, the planner wants to choose N∗
P to satisfy

0 =
dW (N)

dN

=
d

dN
(AN1+σ − tN2

2
− cN)

= (1 + σ)ANσ − tN − c

=⇒ c = (1 + σ)ANσ
P − tN ≡ cP(N)
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Systems of Cities

By inspection, cP(N) is positive for small N and concave.
Comparing it to cE (N) it is steeper at zero.

Is the equilibrium city ever the same size as the optimal city? A
natural guess would be ‘no’. In the equilibrium city, households
choose their location without thinking about how their decision
affects the productivity or commute of other residents, while the
optimal decision requires making these marginal trade-offs.

In fact, this intution is not quite right, to see this, check if we can
find any values of N where the levels of consumption in the
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Systems of Cities

optimum and the equilibrium coincide. That is, solve the following
for N,

cE (N) = cP(N)

=⇒ ANσ − t
2

N = (1 + σ)ANσ − tN

=⇒ ANσ−1 − t
2
= (1 + σ)ANσ−1 − t

=⇒ N =

(
t

2σA

)1/(σ−1)

= N∗∗
E

What is going one here? The optimum and the equilibrium agree
at a single point, when the size of the equilibrium city is N∗∗

E . This
is much easier with a picture ...
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Systems of Cities

N **=P

c
_

c  (N **)E E

N ** N

c

E

There are generally two values of N that solve the planner’s
problem. The smaller will be ‘unstable’ and so we ignore it.

In the special case where c = cE (N∗∗
E ) equilibrium and

optimum coincide.
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Systems of Cities

Otherwise, equilibrium cities are always larger than the
optimum, but the gap between them decreases as the rural
area is more attractive.
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Systems of Cities

Extension: Allowing cities of size zero

Suppose that cE (N) is shifted up so that cE (0) = c. This seems
pretty sensible. A single person city gets the same payoff as the
countryside, not less, as we have implicitly assumed up to now.

In this case, the equilibrium picture looks like this,

Figure: Planner’s problem for a single city

c

c  (N **)

N *E

_

E E

N_E N ** N

c

E
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Systems of Cities

This seems a little more realistic.

It suggests dynamics for growth of a system of cities. Once a
city reaches size N∗

E , the next person starts a new city. Once
this happens, the existing city spilts and people divide
themselves between the two cites. This requires that more
than half the city population live to the right of N∗∗

E , as drawn.

This process repeats when both cities are full.

Earlier caveat about dynamics applies here, too.
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Systems of Cities

Extension: Real estate developers

It is common to think of cities as being created by real estate
developers. These agents are entrepreneurs who start cities,
collect all land rent, and can exclude residents. They will solve
the planner’s problem and lead to cities of the optimal size.

This actually happens, sometimes. For example, Irvine Ca.,
with population almost 300k, was planned by the Irvine
company.

City councils sometimes seem to act in much the same way.
They do lots of things to stop people from moving into their
jurisdiction, mainly by making it hard to build things. If this
model is right, should we discourage this sort of activity?
Recall, there can be big wage differences across cities.
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Systems of Cities

Conclusion I

We know a lot about patterns of diversity and specialization
that occur in any population of cities. These things are pretty
easy to observe. Similarly, about patterns of change.

We also observe striking and almost conclusive evidence for
the rank size rule. It holds pretty well for large cities, not very
well for small cities.

We have a number of theories to explain the rank size rule. In
particular, Gabaix (1999) proposes a theory of random growth.
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Systems of Cities

Conclusion II

The basic intuition for the systems of cities problem was first
laid out in Henderson (1974). This paper remains relevant 50
years after it was published. It provides a framework for
thinking about the problem, but there are multiple equilibria
and no very satisfactory way of choosing between them. It
also does not provide much basis for thinking about patterns
of sectoral specialization.

There has been important work on the second set of problems
since, Rossi-Hansberg and Wright (2007) and Duranton and
Puga (2001) are noteworthy, but the problem of multiple
equilibria is still unresolved. That is, we still lack a complete
model of systems of cities.
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