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Outline I

Recall the BDICE model

max
I,M

u(c1, c2) utility (1)

s.t. W = c1 + I + M budget (2)

c2 = (1 + r)I − γ(T2 − T1)I production (3)

E = (1 − ρ4
M
W

)(ρ5(c1 + I)) emissions (4)

P2 = ρ0E + P1 carbon cycle (5)

T2 = ρ1(P2 − P1) + T1 climate model (6)

We have worked out; carbon cycle, climate model, emmissions per
consumption, rate of return to capital, world income, climate
damage.
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Outline II

Now we want to think about u. This function governs how we trade
off present for future consumption. Trading off comsumption across
time is a famous, and famously difficult, problem in economics, and
one for which no completely satisfactory answer exists.
Topics for the day:

The mathematics of discounting and present value

Micro-economic foundations of the discount rate

A quick calculation of the social cost of current carbon
emissions in current dollars

The role of uncertainty
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Mathematics of discounting

Let r denote the real return to capital, and It the value of an
investment at time t . Then

I1 = (1 + r)I0
I2 = (1 + r)I1

= (1 + r)2I0
...

It = (1 + r)t I0

Conversely, the value of an investment required at 0 to yield It
at t is, obtained by solving the equations above for I0.

So, to get It , save I0 = (1 + r)−t It at t = 0.
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At t you’ll have (1 + r)t I0 = (1 + r)t((1 + r)−t It) = It .

Say that (1 + r)−t It is the ‘discounted present value of It at
t = 0’. r is called the ‘discount rate’.

Because it’s easier, we sometimes write δ = 1
1+r . δ is the

‘discount factor’

We want to compare sequences of utility along different
mitigation/growth/warming paths.
Consider two,

U1 = (u1t)
∞
t=0 ≡ (u11, u12, ...)

U2 = (u2t)
∞
t=0 ≡ (u21, u22, ...)

How can we compare these two paths?
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If u1t > u2t for all t , it’s easy. Chose U1.

If we don’t get lucky, we might try comparing undiscounted sums.

That is, choose U1 if

∞

∑
t=0

u1t >
∞

∑
t=0

u2t

⇔
∞

∑
t=0

(u1t − u2t) > 0

Using undiscounted sums gives rise to three problems.

Problem 1: What does ∑∞
t=0 u1t mean? Infinity is not really a

number. Let’s define it as limk→∞ ∑k
t=0 u1t .
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Problem 2: Suppose

(u1t)
∞
t=0 = (1,−1, 1,−1, 1, ...)

(u2t)
∞
t=0 = (0, 0, 0, ...)

Then

(u1t − u2t)
∞
t=0 = (1,−1, 1,−1, 1, ...).

This means that ∑k
t=0(u1t − u2t) is 1 for k even or zero, and 0

otherwise.

It follows that for this pair of sequences, limk→∞ ∑k
t=0(u1t − u2t)

does not exist.
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Problem 3: More substantively, undiscounted sums give rise to
‘tyranny of the future’.

Consider a pair of utility paths;

(u1t)
∞
t=0 =

{
−1000 if t ≤ 999
1 if t ≥ 1000

(u2t)
∞
t=0 = 0 for all t

Then ∑∞
t=0(u1t − u2t) = ∞. Since this sum is positive, we have to

choose U1 over U2.
More generally, with this decision rule, we accept any finite cost for
any finite number of generations in order to secure any benefit,
however small, for perpetuity, a ‘tyranny of the future’.
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Using discounted present value to choose
utility/consumptions streams

To resolve these problems, rank paths according to their
discounted present value.

Discounted PV of U1 ≡
∞

∑
t=0

δtu1t

= u10 + δu11 + δ2u12 + δ3u13 + ...

Unlike undiscounted sums, this sum almost always converges, so
discounted PV almost always exists.
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Problem 1: How to evaluate constant utility paths like ∑k
t=0 δ

tu and
∑∞

t=0 δ
tu ?

Let V = ∑k
t=0 δ

tu. Then,

(1 − δ)V =
k

∑
t=0

δtu − δ
k

∑
t=0

δtu

= u(1 + δ + δ2 + ...+ δk )− δu(1 + δ + δ2 + ...+ δk )

= u(1 + δ + δ2 + ...+ δk )− u(δ + δ2 + ...+ δk + δk+1)

= u(1 − δk+1)

=⇒

V = u
1 − δk+1

1 − δ

Thus, ∑k
t=0 δ

tu = u 1−δk+1

1−δ . It follows that ∑∞
t=0 δ

tu = u 1
1−δ .

Since δ = 1
1+r , we have ∑∞

t=0(
1

1+r )
tu = u 1+r

r = u(1 + 1
r ).
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Problem 2: Tyranny of the present.
Consider two utility paths:

(u1t)
∞
t=0 =

{
1 if t ≤ 99
−k if t ≥ 100

(u2t)
∞
t=0 = 0 for all t

Choose (u1t)∞
t=0 if ∑∞

t=0 δ
t(u1t − u2t) > 0.

Evaluate this discounted sum,

∞

∑
t=0

δt(u1t − u2t) =
99

∑
t=0

δt +
∞

∑
t=100

−kδt

=
99

∑
t=0

δt − kδ100
∞

∑
t=0

δt

=
1 − δ100

1 − δ
− kδ100 1

1 − δ
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This is positive if.

1 − δ100

1 − δ
− kδ100 1

1 − δ
> 0

1 − δ100 − kδ100 > 0

1 − δ100(1 + k) > 0
1

δ100 − (1 + k) > 0

1
δ100 − 1 > k
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Recalling that δ = 1
1+r ,

1( 1
1+r

)100 − 1 > k

(1 + r)100 − 1 > k

That is, we need r ‘big enough’ that we don’t care about the
penalty that happens in the far future.

If r = 0.013, choose U1 if k < 2.64. If r = 0.055 then choose U1 if
k < 210.47.

If k is the cost of warming 100 years from now, and 1 is the benefit
from not pursuing mitigation, then our willingness to undertake
mitigation (path U2) depends crucially on the discount rate.
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Another way to see the importance of the discount rate is to
calculate the discounted present value of one dollar in 100
and 200 years,

( 1
1+r

)100
and

( 1
1+r

)200
as r varies ..

Nordhaus bases his analysis on r = 5.5%. Stern bases his on
r = 1.3%.

This difference results in about a 100 fold difference in the
present value that they assign to 1 dollar of harm in 100 years.

The choice of discount rate is as important to our analysis as
is resolution of uncertainty about the contemporaneous
damages associated with 3 degrees of warming.

What discount rate should we use? NOBODY KNOWS!
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Here are some discount rates we observe:
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Nordhaus is in the middle of this range, Stern is at the bottom.
Nordhaus 2008, fig 3.2, from Arrow et al 1995
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A very interesting recent study Schmelzing (2020) documents a
ling run decline in interest rates. Note that recent rates are closer
to Stern than Nordhaus.

Copyright 2023, Matthew Turner 17



Copyright 2023, Matthew Turner 18



Foundations of the discount rate

Given the importance of the discount rate, we should take the
time to understand where it comes from.

Here is the BDICE model, but without the global warming part,

max
s,c1

u(c1, c2)

s.t. W = c1 + I

c2 = (1 + r)I

r > 0 is the rate of return to capital. s > 0 is savings.

This is just a problem about optimal saving.

Copyright 2023, Matthew Turner 19



To investigate the determinants of the discount rate, assume
‘Constant Relative Risk Aversion’ (CRRA) utility function

u(c1, c2) =
c1−α

1

1 − α
+

1
1 + ρ

c1−α
2

1 − α

ρ > 0 is ‘the pure rate of time preference’. As ρ increases, the
utility from future consumption decreases. ρ reflects
impatience.

α ∈ (0, 1] measures inequality or risk aversion.

Nordhaus and Stern both base their analysis on CRRA utility
because (1) it’s easy to work with (2) provides a transparent
description of preferences with risk aversion and decreasing
marginal utility of consumption.
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Here is what c1−α
1

1−α looks like for different values of α. Note that
people usually use α > 1, so 1 − α < 0.

If α = 0, then U is linear (so maximize U at a ‘corner’ where
consumption in one period is zero)

U becomes ‘more concave’ as α approaches one. This makes
our agent more averse to risk within a period and inequality in
consumption across periods.
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Putting it all together,

max
s,c1

c1−α
1

1 − α
+

1
1 + ρ

c1−α
2

1 − α

s.t. W = c1 + I

c2 = (1 + r)I

Now, reorganize the two constraints to get

max
s,c1

c1−α
1

1 − α
+

1
1 + ρ

c1−α
2

1 − α

s.t. c2 = (1 + r)(W − c1)
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Next, substitute our constraint into the utility function,

max
c1

c1−α
1

1 − α
+

1
1 + ρ

((1 + r)(W − c1))1−α

1 − α

The first order condition for this (complicated) unconstrained
maximization problem in one variable is

0 = (1 − α)

(
c−α

1

1 − α

)
+

1
1 + ρ

(1 − α)
((1 + r)(W − c1))−α(−(1 + r))

1 − α

0 = c−α
1 +

−(1 + r)
1 + ρ

((1 + r)(W − c1))
−α

Copyright 2023, Matthew Turner 23



c−α
1 +

−(1 + r)
1 + ρ

c−α
2 = 0(

c1

c2

)−α

=
(1 + r)
1 + ρ(

c2

c1

)α

(1 + ρ) = (1 + r)

If we let g be the ‘rate of consumption growth’, g = c2
c1
− 1,

then this is

(1 + g)α(1 + ρ) = 1 + r
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Recall the that, for x small

ln(1 + x) ≈ ln(1) + x
d
dx

ln(x)|x=1

= ln(1) + x
1
1

≈ x

Taking logs and using this approximation, we have

ln((1 + g)α(1 + ρ)) = ln(1 + r)

α ln(1 + g) + ln(1 + ρ)) = ln(1 + r)

αg + ρ = r

This equation appears in Nordhaus on p173, and something
close in Stern on p 183-5.
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This gets us a little closer to knowing what the discount rate
should be.

That is, in equilibrium, the rate of return to capital (which is the
discount rate) is going to be the sum of the pure rate of time
preference and the product of the aversion to inequality and
the growth rate of consumption.
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Stern wants ρ = 0.001, α = 1, g = 0.013, so that r = 1.3%

Nordhaus wants ρ = 0.02, α = 2, g ≈ 0.015 so that
r = 5.5%

This is crucial, both because it affects the present value
calculations, as we have seen, but because the choice of α
affects risk aversion, which we’ll turn to soon.

Copyright 2023, Matthew Turner 27



Aside: Expected utility and risk aversion

Consider a consumer with utility u with u′′ < 0 who faces a gamble
x = (x1, x2, p, 1 − p). Then,

The expected value of x , E(x) = px1 + (1 − p)x2.

The utility of certain payoff x1 is u(x1). The utility of certain
payoff E(x) is u(E(x)).

The expected utility of gamble x is
E(u(x)) = pu(x1) + (1 − p)u(x2).

Say that a consumer is ‘risk averse’ if u(E(x)) > E(u(x)). That is,
if they prefer the expected value of a gamble to the gamble.
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x x1 2

u(x)

x

u

E(u(x))

u(E(x))

Risk aversion means: E(u(x))<u(E(x))<=> u’’<0

E(x)
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x x1 2

u(x)

x

u

E(
u(x)

)=
E(

v(x
))

u(E(x))

E(x)

v(x)
v(E(x))

As u is `more concave’ E(u(x))-u(E(x) increases
and consumer is `more risk averse’. 
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x x1 2

u(x)

x

u

E(
u(x)

)=
E(

v(
x))

u(E(x))

E(x)

v(x)
v(E(x))

Inequality aversion is similar to risk aversion,
but instead of di�erent states of the world, di�erent days/years
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Discounting is problematic. So is every other way of
comparing present and future consumption.

We could have a philosophical discussion of this problem for
the rest of the term and (1) not resolve anything or (2) learn
anything about global warming.

In order to organize the global warming problem in a way that
treats costs and benefits consistently across time, we have to
something. Discounting is it.

If you are interested in an alternative, read the optional Solow
paper on the website.
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Social cost of current emissions

With discounting, we can relate current and future consumption.
This lets us finish our calculation of the cost of emissions.

Let Y0 denote current world gdp. With consumption growth g
of 1.5%/year (≈ g), Y100 = (1.015)100Y0 = 4.4Y0

Doubling CO2 concentrations costs 3/100 of Y100 starting in
t = 100 and each year afterwards.
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The PV of this stream of costs is:

∞

∑
t=100

δt0.03Y100

=δ100
∞

∑
t=0

δt0.03Y100

=
δ100

1 − δ
0.03(4.4Y0)

=
δ100

1 − δ
0.13Y0
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Dividing by Gt of C needed to get to CO2 concentration of
560ppm, gives

Cost per Gt C =
1

1064
δ100

1 − δ
0.13Y0

=
0.13
1064

δ100

1 − δ
(7.7 × 1013)

= 9.4 × 10−4 × 1013 δ100

1 − δ

= (9.4 × 109)
δ100

1 − δ

Dividing by 109 gives cost per ton of C emissions of 9.4 × δ100

1−δ

Evaluating at r = 0.013 and 0.055 we have the cost per ton of
C emissions in current dollars of about 200$ 2010 and 0.8$
2010.
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This calculation is very sensitive to the rate of growth of gdp and to
the choice of discount rate. These are the factors that enter
exponentially. Others (just) enter multiplicatively. This is why the
results in Dell et al. are so important.
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Uncertainty I

We would like to incorporate uncertainty into our model of savings,
and ultimately into our model of global warming.
Recall, our simple model of savings is:

max
s,c1

c1−α
1

1 − α
+

1
1 + ρ

c1−α
2

1 − α

s.t. W = c1 + I

c2 = (1 + r)I

and recall that the CRRA function looks like...
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so that our consumer is more risk averse as α → 1. To incorporate
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uncertainty about the return to savings (the benefits of mitigation)
into our model, we must first describe this uncertainty.
To do this, let x be a random variable that affects the returns to
savings, with x = (1 − ϵ, 1 + ϵ, 1

2 ,
1
2 ), so that E(x) = 1 and write

our consumer’s problem as

max
s,c1

E

(
c1−α

1

1 − α
+

1
1 + ρ

c1−α
2

1 − α

)
s.t. W = c1 + I

c2 = x(1 + r)I

This is ‘like’ global warming. We are uncertain about the impact
that mitigation, ‘savings’, has on future consumption.
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Combining the constraints this becomes

max
c1,c2

E

(
c1−α

1

1 − α
+

1
1 + ρ

c1−α
2

1 − α

)
s.t. c2 = x(1 + r)(W − c1)

Substituting the constraint into the objective, we have

max
c1

E

(
c1−α

1

1 − α
+

1
1 + ρ

(x(1 + r)(W − c1))1−α

1 − α

)

Recall that for random variable x and constants a and b,
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E(a) = a

E(ax) = aE(x)

E(a + x) = a + E(x)

E(a + bx) = a + bE(x)
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Using the basic facts about E ,

max
c1

E

(
c1−α

1

1 − α
+

1
1 + ρ

(x(1 + r)(W − c1))1−α

1 − α

)

becomes

max
c1

c1−α
1

1 − α
+

((1 + r)(W − c1))1−α

(1 + ρ)(1 − α)
E
[
(x)1−α

]
or

max
c1

c1−α
1

1 − α
+

E
[
(x)1−α

]
(1 + ρ)

(c2)1−α

(1 − α)

Given that x = (1 − ϵ, 1 + ϵ, 1
2 ,

1
2 ), uncertainty increases as ϵ
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increases. Therefore, if we want to know how behavior changes as
‘uncertainty increases’, look at what happens as ϵ increases.

1-e x

u(x)

1+e

u

E(u(x))

E(x)=1

E(x’)1-e’ 1+e’

as e increases, E(u(x) decreases

E(u(x’))
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Since (x)1−α is a concave function, it follows that E((x)1−α)
decreases as ϵ increases.

This means that in

max
c1

c1−α
1

1 − α
+

E
[
(x)1−α

]
(1 + ρ)

(c2)1−α

(1 − α)

an increase in uncertainty ‘increases the price’ of future
consumption, or ‘increases impatience’.
Thus, if we are risk averse (α > 0), more uncertainty leads us to
save less. In the context of our problem, the return to mitigation is
lower as we are more uncertain about its affects.
This suggests that Stern’s insistence that we engage in MORE
mitigation because we have a lot of uncertainty is one we should
regard with suspicion.
Notice that if we are risk averse uncertainty also makes us poorer,
which is our next topic.
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Uncertainty II

Since uncertainty makes us poorer, shouldn’t we be willing to pay
to avoid it?
Yes. To see this analytically, we need a model in which we can
consider the way that savings responds to changes in how
uncertain are future costs.
Let x be a random variable

x = (1 − (ϵ− s), 1 + (ϵ− s),
1
2
,

1
2
)

= (1 − ϵ+ s, 1 + ϵ− s,
1
2
,

1
2
).

So that uncertainty increases as ϵ increases and decreases as s
increases (for s ≤ ϵ).
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Consider the following simpler variant of our savings problem,

max
s,c1

E

(
c1 +

c1−α
2

1 − α

)
s.t. W = c1 + I

c2 = xc

s ≤ ϵ

We would like to know whether optimal savings increases with
uncertainty. That is, will we save more as uncertainty about future
income increases? (This is what Stern wants us to do).
To do this, we want to evaluate ds/dϵ. This is complicated.
Substituting from the constraint and using basic facts about
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expectations,

max
s,c1

E

(
c1 +

c1−α
2

1 − α

)
s.t. W = c1 + I

c2 = xc

=⇒ max
s

E
(

W − s +
x1−αc1−α

1 − α

)
=⇒ max

s
W − s +

c1−α

1 − α
E
(
x1−α

)
=⇒ max

s,c1
W − s +

c1−α

1 − α

(
1
2
(1 − ϵ+ s)1−α +

1
2
(1 + ϵ− s)1−α

)
The first order necessary condition for
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max
s

W − s +
c1−α

1 − α

(
1
2
(1 − ϵ+ s)1−α +

1
2
(1 + ϵ− s)1−α

)
is,

0 =
d(.)
ds

0 = −1 +
c1−α

2(1 − α)

(
(1 − α)(1 − ϵ+ s)−α + (1 − α)(1 + ϵ− s)−α(−1)

)
0 = −1 +

c1−α

2

(
(1 − ϵ+ s)−α − (1 + ϵ− s)−α

)
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Technical aside: Implicit differentiation

Say we have a function, y = f (x) which is ‘implicitly’ defined by
F (x , y) = 0. Then dy

dx = − ∂F /∂x
∂F /∂y , if ∂F /∂y ̸= 0.

For example, if F (x , y) = y − x2 = 0

dy
dx

= −∂(y − x2)/∂x
∂(y − x2)/∂y

dy
dx

= −−2x
1

dy
dx

= 2x

But, if we solve F for y , we get y = x2 and hence that dy
dx = 2x .

Implicit differentiation is a trick for finding derivatives when it’s hard
to solve for y = f (x) explicitly, a trick we really need...
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Our first order condition is,

0 = −1 +
c1−α

2

(
(1 − ϵ+ s)−α − (1 + ϵ− s)−α

)
This condition describes the optimal choice of s for given ϵ. We’d
like to know if utility maximizing savings goes up as uncertainty
goes up, that is, if ds

dϵ > 0
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To differentiate implicitly, note that since

0 = F (s, ϵ) = −1 +
c1−α

2

(
(1 − ϵ+ s)−α − (1 + ϵ− s)−α

)
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we have

∂F
∂ϵ

=
c1−α

2

(
−α(1 − ϵ+ s)−α−1(−1)−−α(1 + ϵ− s)−α−1)

=
c1−α

2

(
α(1 − ϵ+ s)−α−1 + α(1 + ϵ− s)−α−1)

> 0

∂F
∂s

=
c1−α

2

(
−α(1 − ϵ+ s)−α−1 −−α(1 + ϵ− s)−α−1(−1)

)
=

c1−α

2

(
−α(1 − ϵ+ s)−α−1 − α(1 + ϵ− s)−α−1)

< 0

So we have
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ds
dϵ

=
−∂F

∂ϵ
∂F
∂s

= −1 × (−)

(+)

> 0

Thus, ds
dϵ > 0 and we optimally save more when doing so can

reduce future uncertainty.
That is, Stern is half right.
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Conclusion

The last step in calculating the cost of carbon emissions was
to relate future costs to current costs. We solve this problem
with discounting and present value calculations.
The details of this calculation are crucial, and there is not
satisfactory way to choose a discount rate. At the end of the
day, I suspect that this problem will be resolved by choosing a
price of future consumption, e.g., 1$ today for 10$ in 100
years, an backing out the implied discount rate.
Uncertainty about future damages reduces willingness to save
by reducing the value of future consumption.
Increasing uncertainty about future damages increases the
willingness to save to reduce uncertainty.
It is not clear whether the total effect of uncertainty should be
to increase or decrease savings (hence mitigation).

Copyright 2023, Matthew Turner 54


