EC1340 Topic #6

Climate damage III: The Little Ice Age

Matthew A. Turner Brown University Fall 2023

(Updated August 18, 2023)

Copyright 2023, Matthew Turner

Outline

The 'Little Ice Age' was a period of cold from about the late 1500's until about the early 1700's. This is exactly the variation in climate that we need to study the effects of climate change. We look at four studies that do exactly this.

- Zhang et al. PNAS 2007
- 2 Oster, JEP 2004
- 3 Turner, AERPP 2012
- 4 Waldinger JPE 2022

These studies use exactly the right variation, but do so in a much less developed world, and consider cooling not warming.

Zhang et al. PNAS 2007

Global climate change, war and population decline in recent human history

- This paper assembles long time series of data describing temperature, population, and conflict, and plots them next to each other.
- The paper really boils down to a series of figures.
- N.B.: This is a paper by anthropologists, and so it reads a little bit differently than an economics paper.

Temperature anomaly

- This is mean Northern Hemisphere (NH) temperature that has been put through a 'filter'(i.e., moving average) to smooth it out.
- There is a clear cold period from about 1450 to 1720. Dates move around a little with different data sources.
- This was the pre-industrial period when urbanization rates in Europe increased slowly (from about 10%-12%) and productivity increased slowly (until about 1750).

Copyright 2023, Matthew Turner

- Total NH wars (Green), Asia (Pink), Europe (Turquoise), Arid areas (Orange).
- More war in cold times, less in warm times. What is the mechanism?
- Why not make temperature series to match war series, e.g. European temperature?

- Total NH wars (Green), Asia (Pink), Europe (Turquoise), Arid areas (Orange).
- Different data source.
- Same pattern. More wars in cold times, less in warm times.
- Should this increase our confidence? (think measurement

Copyrighe 2029, Watthew Turner

Temperature anomaly vs population

- Pop Growth % Europe (Turquoise), Pink (Asia), NH (blue). NH 50 year fatality index.
- There is no obvious pattern here. What does this suggest about the mechanism behind the conflict result?

Conclusion, Zhang et al., PNAS 2007

- Suggestive evidence for a relationship between temperature and conflict.
- That temperature is not always defined over same geography as conflict is suspicious.
- There were other trends going on in the world during this time, too, e.g., economic growth, urbanization, the Colombian exchange.
- The data does not show the same pattern between climate and population growth. What would it show for population level? This makes the mechanism behind the conflicts unclear.

Oster, JEP 2004

Witchcraft, Weather and Economic Growth in Renaissance Europe

- Compare frequency of witch trials over the course of the little ice age in Europe.
- Why is this interesting? (1) Witch trials are bad and we want fewer of them. (2) We think witch trials are reflection of economic hardship.
- Issues: Same as Zhang et al. Is medieval European cooling informative about the costs of modern warming? There are other trends during this time.
- Also, it would be nice to know the relationship between witch trials and hardship a little more precisely.

Data

- Oster's data records witch trials in 11 European regions: Basel, Essex, Estonia, Finland, Eastern France, Geneva, England, Hungary.
- Data is by decade from 1520–1770. So,
 k = 11, t = 1520 1770. Some are missing, so N = 170 not
 11 × 25 = 275.
- $k \sim$ regions, $t \sim$ decades.
- Let W_{kt} be # trials in region k decade t.

Measuring witch trials I

There are two econometric issues.

- Region specific propensity to try witches that may be correlated with mean climate.
- Some regions are much bigger than others and so tend to dominate regression results.

Response

- 'de-mean' the data. This is *almost* equivalent using a region fixed effect.
- normalize variance. This is almost equivalent to adding copies of small regions to the data set so they count have a bigger effect on the regression. This is called 're-weighting'. This will lead to trouble interpreting the results.
- Comment: non-standard solutions to these problems.

Measuring witch trials II

Let

$$\overline{W}_k = \frac{1}{25} \sum_{t=1}^{25} W_{kt}$$
$$SD(W_k) = \left[\frac{1}{25} \sum_{t=1}^{25} (W_{kt} - \overline{W}_k)^2\right]^{\frac{1}{2}}$$

Define

$$W_{kt}^* = \frac{W_{kt} - \overline{W}_k}{SD(W_k)}$$

This is the dependent variable measuring the incidence of witch trials.

Measuring witch trials III

 W_{kt}^* has mean zero.

$$\frac{1}{25} \sum_{t=1}^{25} W_{kt}^* = \frac{1}{25} \sum_{t=1}^{25} \frac{W_{kt} - \overline{W}_k}{SD(W_k)}$$
$$= \frac{1}{25SD(W_k)} \sum_{t=1}^{25} \left[W_{kt} - \overline{W}_k \right]$$
$$= \frac{1}{25SD(W_k)} \left[\sum_{t=1}^{25} W_{kt} - 25\overline{W}_k \right]$$
$$= \frac{1}{25SD(W_k)} 25 \left[\overline{W}_k - \overline{W}_k \right]$$
$$= 0$$

 W_k^* is 'demeaned'.

Copyright 2023, Matthew Turner

Measuring witch trials IV

 W_k^* has standard deviation 1 for each k.

$$SD(W_{kt}^{*}) = \left(\frac{1}{25}\sum_{t=1}^{25}(W_{kt}^{*}-\overline{W}_{k}^{*})^{2}\right)^{\frac{1}{2}}$$
$$= \left(\frac{1}{25}\sum_{t=1}^{25}[W_{kt}^{*}]^{2}\right)^{\frac{1}{2}}$$
$$= \left(\frac{1}{25}\sum_{t=1}^{25}\left[\frac{W_{kt}-\overline{W}_{k}}{SD(W_{k})}\right]^{2}\right)^{\frac{1}{2}}$$
$$= \frac{1}{SD(W_{kt})}\left(\frac{1}{25}\sum_{t=1}^{25}\left[W_{kt}-\overline{W}_{k}\right]^{2}\right)^{\frac{1}{2}}$$
$$= \frac{1}{SD(W_{kt})}SD(W_{kt}) = 1$$

Copyright 2023, Matthew Turner

14

Climate data

- This period predates the instrumental record.
- But, there is a record of things like; date of first frost, date of ice-free harbor, etc. that allow historians to reconstruct regional climates. NB: Icecores are global.
- This leads to decadal average measures of 'winter severity' by region.
- Denote this index of winter severity by T_{tk} (definition a little opaque).
- Calculate $T_{kt}^* = \frac{T_{kt} \overline{T}_{kt}}{SD(T_{kt})}$. Also mean zero and SD of 1.

Trials vs. Temp I

We want to look at the relationship between T_{kt}^* and W_{kt}^* • First,

$$W_{kt}^* = A_0 + A_1 t + A_2 t^2 + W_{kt}^{**}$$
$$T_{kt}^* = A_0 + A_1 t + A_2 t^2 + T_{kt}^{**}$$

• Why? These variables are now de-trended. We care about this if we think, e.g., there were fewer witch trials as technology improved slowly during the middle ages.

Trials vs. Temp II

• Finally,

$$W_t^{***} = \frac{1}{11} \sum_{k=1}^{11} W_{kt}^{**}$$
$$T_t^{***} = \frac{1}{11} \sum_{k=1}^{11} T_{kt}^{**}$$

- These are mean (across regions) decadal deviations of temperature and trials from a quadratic trend, of the demeaned and normalized variables.
- They should not reflect region specific factors they are demeaned.
- They should not reflect other trends in the data.

Plots of W_t^{***} and T_t^{***}

Figure 1: Temperature and Trials over Time 1520-1770

Trials are high when temperature is low.

Regressions

Estimating equations,

$$W_{kt}^* = A_0 + A_1 t + A_2 t^2 + A_3 T_{kt}^* + \varepsilon_{kt}$$

and

$$W_{kt}^* = A_t + A_3 T_{kt}^* + \varepsilon_{kt},$$

where A_t is 25 year fixed effects. That is, $\sum_{t=1}^{25} A_t \theta_t$ and θ_t is 1 in year *t* and 0 else.

	(1)	(2)	(3)	(4)
Standardized	-0.212***		-0.206**	
Combined Index				
	(2.59)		(2.32)	
Standardized		-0.179**		-0.292***
Winter Severity				
Only				
		(1.96)		(2.84)
Date	0.096	0.233***		
	(1.96)	(3.43)		
Date-Squared	-0.003	-0.011***		
	(1.43)	(3.45)		
Constant	-0.645**	-1.037***	-0.019	-0.059
	(2.39)	(3.16)	(0.26)	(0.71)
Decade Fixed	NO	NO	YES	YES
Effects (1520-				
1770):				
Observations	170	128	170	128
R-squared	0.10	0.15	0.24	0.28

Table 1^a Witchcraft Trials and Temperature Dependent Variable: Witchcraft Trials Standardized by Region

- There is a pretty clear negative relationship between trials and temperature, condition of *t*.
- ... but b/c the variables have been transformed so many times it is hard to know the effect of, e.g, 1 °of cooling.

Urban share vs Trials

- When the economy is most agricultural, if ag. productivity increases, so does urban population.
- Urban population is a measure of economic productivity.
- Use urban share and count of cities> 10,000 to measure urban population.
- Data is available every 50 years.
- Calculate Population growth rates (%) and % growth in big cities.
- This gives growth rates for 5 periods and 11 regions. Aggregate trial data to 50 year periods, to match.

Trials vs population growth

Figure 3: Population Growth and Trials

- There are fewer trials when there is more population growth.
- ... witch trials actually tell us something about the whole state of the economy.

Summary

Long term climate change, cooling, pretty clearly had harmful effects. This is exactly the right sort of variation that we want to understand these effects, but...

- Warming not cooling.
- Pre-industrial Europe, not modern world.
- Funny outcome variable.
- Transformed temperature index is hard to relate to the RCPs we think about now.
- Can we compare these data to Zhang et al? Nope. They have been demeaned and detrended.

Population, adaption and climate in Iceland I

- Look at relationship between climate and population size in pre-industrial Iceland, 1720-1840.
- How do people adapt to climate change ? Is a cold shock worse if it follows a cold period or a warm period?
- Background, 1720-1840, Iceland was
 - Very poor. People mostly lived by raising sheep. There was a little fishing.
 - Very little migration in or out. This was a policy of the Island's feudal rulers who wanted stability.
 - Little technological progress unusually so again, this was a policy choice by feudal rulers who wanted stability.

So,

Population, adaption and climate in Iceland II

- Because so little else changed, if we see a relationship between population and climate, we can be pretty sure it's causal. We don't need to worry about climate shocks being mitigated by technological progress or migration.
- Because Iceland is poor, expect big effects.
- Finally, there is a long series of annual population data for Iceland, constructed from Church records. This is unusual.

Population was pretty stable until well into the industrial revolution. Study the period before 1860.

Climate data

- Between about 1920 and 1970, icecore and measured temperature records overlap.
- We use an icecore taken from nearby Greenland glaciers (see figures) and use them to impute a long time series of temperature.

$$Temp_t = A_0 + A_t Icecore_t + \varepsilon_t, \ t = 1910 - 1970$$
$$\widehat{Temp}_t = \widehat{A}_0 + \widehat{A}_1 Icecore_t, \ t = 1720 - 1860$$

 This leaves us with a long series of both population and imputed temperature.

Icecore locations

Diamond is icecore, circles are weather stations.

Turner, AERPP 2012

Population vs. temperature I

Define,

$$\Delta Pop_t = \frac{Pop_{t+1} - Pop_t}{Pop_t} \times 100$$
$$= \% \text{ change in pop}$$

Now define 'lagged moving averages',

$$\begin{split} \textit{MA2}_t &= \frac{1}{2}(\textit{Temp}_t + \textit{Temp}_{t-1}), \text{ or} \\ \textit{MAj}_{t-1} &= \frac{1}{j}(\textit{Temp}_{t-i} + \textit{Temp}_{t-i-1} + ... + \textit{Temp}_{t-i-j}) \end{split}$$

We are interested in three types of regressions.

Population vs. temperature II

- ΔPop on short run climate. How important is recent climate? How many people starve in a cold year?
- ΔPop on long run climate (10-20 year average temp). How important is longer run climate? After many hard years, how much does the population shrink?
- *△Pop* on long run × short run climate. Does the response to the shock depend on history? How much do people adapt to cold?

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
$MA2_t$	1.143^{***} (0.359)					1.153^{***} (0.355)	1.133^{***} (0.353)	1.084^{***} (0.323)	1.104^{***} (0.298)
$MA5_t$	()	0.582 (0.721)				()	()	()	()
$MA10_t$			(0.971)						
$MA10_{t-4}$				(1.051)	0.007	(1.017)	0.000	(1.044)	0.005
$MA20_{t-4}$					(1.590)		(1.572)	7 000*	(1.544)
$MA2_t \times MA10_{t-4}$								(4.454)	11.10*
$MA2_t \times MA20_{t-4}$									(5.960)
pop_t	-0.089*** (0.027)	-0.091*** (0.025)	-0.086*** (0.026)	· -0.090*** (0.025)	-0.093*** (0.026)	(0.026)	-0.089*** (0.027)	-0.092*** (0.026)	-0.093*** (0.028)

Table 1—Nine regressions	(one per column)	PREDICTING $(\Delta pop)_t$.
--------------------------	------------------	-------------------------------

Control variables in all regressions are: time, time², $(\Delta pop)_t$ and a constant. Newey-West standard errors in parentheses. p-values: *** p<0.01, ** p<0.05, * p<0.1.

Columns 1-7 are regressions of ΔPop on recent on long run climate. Columns 8-9 involve interactions and are a little harder to understand.

- Consider two temperature histories, pink and grey.
- Grey: $MA2_t = -1$ and $MA20_{t-4} = 1/10$
- Pink: $MA2_t = -1$ and $MA20_{t-4} = -1/10$
- From Col 9,

$$\begin{split} \Delta \textit{Pop}_t &= 1.104\textit{MA2}_t + (-0.005)\textit{MA20}_{t-4} \\ &+ 11.1(\textit{MA2}_t \times \textit{MA20}_{t-4}) \\ &\Longrightarrow \Delta \textit{Pop}_t \approx -2.2, \text{ grey} \\ &\Longrightarrow \Delta \textit{Pop}_t \approx 0, \text{ pink} \end{split}$$

- Two cold winters following 20 years of warm causes a 2% decrease in population. Two cold winters following 20 years of cold has almost no effect.
- Icelanders 'adapt' to colder climate over about a generation.
 Issues:
 - Non-linearities mean the magnitude of the adaption process is sensitive to magnitudes.
 - Be suspicious. Data quality is poor.
 - Lagged population should affect current population directly. This would need a model.
 - How relevant is pre-industrial Iceland to anything?
 - If we can really adapt to a new climate in a generation, that seems pretty important. Some of the adaptations are 'getting smaller', and so are pretty costly.

Economic effects of long-term climate change

This is similar to the other little ice-age papers, but

- most of Europe
- sheds more light on mechanisms
- provides nice evidence of adaptation

Data I

- Population of 2191 European cities with Pop>5000 sometime between 800 and 1850, for 1600, 1700, 1750.
- Gridded annual temp from most of Europe for 50km². From many sources, much like Oster's data, but now available in a grid.
- Drop cities in Far Eastern Europe and with missing temp, N = 2120.
- Define temperature as

 $\textit{Temp}_{it} = \left\{ \begin{array}{ll} \frac{1}{100} \sum_{\tau=1}^{100} \textit{Temperature}_{it-\tau} & \text{for 1600 and 1700} \\ \frac{1}{50} \sum_{\tau=1}^{50} \textit{Temperature}_{it-\tau} & \text{for 1750, 1800, 1850} \end{array} \right.$

- main outcome measure is ln(*citypop*).
- Yield Ratio is also important. This is Harvest/Sewn. Annual data from 12 countries from about 1500 to about 1750.

Little Ice Age in Northern Hemisphere

FIG. 1. Temperature over the past 2,000 years. This figure shows the temperature graph "Estimations of Northern Hemisphere Mean Temperature Variations" from Moberg et al. (2005) with some modifications: a vertical black bar "Little Ice Age (LIA) start" and two black bars "study period" (this is the time period for which I have temperature data), and years on the xaxis have been added. In the original article, the graph is part of a larger graphic.

Little Ice Age in 2120 cities

FIG. 2. Temperature variation over the study period. A. Mean temperature (20 year moving average) over the course of the study period (dashed line). The solid line is the tem perature mean from 1900 to 1950, after the end of the Little Ice Age and before the onset of global warming. B. Changes in the long term mean in temperature for three groups of cities: cities with strong cooling (below the 25th percentile in temperature change; solid line) and with weak cooling (above the 75th percentile in temperature change; short dashed line) and cities with moderate cooling (between the 25th and 75th percentile in temperature change; long dashed line) in the svententh century. The solid line is the temperature enar from 1500 to 1529 from which temperature deviations are measured.

Note: 25% in 1700 \approx -.2°C. 75% in 1700 \approx -.4°C.

Copyright 2023, Matthew Turner

	All Cities	Cities with Strong Cooling	Cities with Weak Cooling
	(1)	(2)	(3)
City size in 1600	5.680	4.898	6.471
	(14.617)	(13.977)	(15.195)
Mean temperature in 1600	9.255	6.658	11.850
	(3.589)	(1.635)	(3.098)
City growth, 1600 1850	13.051	17.589	8.514
	(55.198)	(74.928)	(21.001)
Geographic control variables:			
Altitude	238.804	142.622	335.351
	(262.043)	(143.435)	(313.607)
Ruggedness	.126	.069	.183
	(.161)	(.081)	(.197)
Potato suitability	29.724	35.344	24.083
	(16.509)	(18.028)	(12.508)
Wheat suitability	43.273	49.189	37.334
	(22.018)	(22.880)	(19.383)
Historical control variables:			
Protestant Reformation:			
Catholic	.638	.414	.863
	(.481)	(.493)	(.344)
Lutheran	.126	.252	.000
	(.332)	(.434)	(.000)
Calvinist/Huguenot	.121	.110	.132
0	(.326)	(.313)	(.339)

TABLE 1 Summary Statistics

Norts. Data on city size, temperature, and control variables were collected from various sources as described in sec. II, Catius with strong cooling are cities that experienced a rel atively large (above median) decrease in long term mean temperature from the sixteenth to the seventeenth century. Cities with weak cooling are cities that experienced a relatively small (helow median) decrease in long term mean temperature between the sixteenth century (when m data start) and the height of the Little lee Age in the seventeenth century.

Cities that got colder are smaller, colder and grow faster (city size in thousands, growth rate is % change from 1600-1850).

Estimating equation I

 $\ln(\text{City Pop})_{it} = \gamma Temp_{it} + a_t + I_i + x_{it} + \varepsilon_{it}$

Want γ . a_t is year fixed effects, I_i is city fixed effects, x_{it} is control variables.

This is (almost) a difference in difference estimator.

Consider a simpler case where: t = 1, 2; $T_{it} = T^L, T^H$; $E(\varepsilon_{it}) = 0$ and $x_{it} = 0$. Write $Temp_{it} = T_{it}$ and $\ln(\text{City Pop})_{it} = Y_{it}$. Finally, suppose that all units have $T_{i1} = T^L$.

Estimating equation II

Then for observations that don't change temperature,

$$E(Y_{i1}|T_{i2} = T^{L}) = \gamma T^{L} + a_{1} + I_{i}$$
$$E(Y_{i2}|T_{i2} = T^{L}) = \gamma T^{L} + a_{2} + I_{i}$$

so that

$$E(Y_{i2}|T_{i2} = T^{L}) - E(Y_{i1}|T_{i2} = T^{L})$$

= $(\gamma T^{L} + a_{2} + I_{i}) - (\gamma T^{L} + a_{1} + I_{i})$
= $a_{2} - a_{1}$

Estimating equation III

and for observations that get colder,

$$E(Y_{i1}|T_{i2} = T^{H}) = \gamma T^{L} + a_{1} + I_{i}$$
$$E(Y_{i2}|T_{i2} = T^{H}) = \gamma T^{H} + a_{2} + I_{i}$$

so that

$$E(Y_{i2}|T_{i2} = T^{H}) - E(Y_{i1}|T_{i2} = T^{L})$$

= $(\gamma T^{H} + a_{2} + I_{i}) - (\gamma T^{L} + a_{1} + I_{i})$
= $(a_{2} - a_{1}) + \gamma (T^{H} - T^{L})$

Estimating equation IV

Then the difference in these two differences gives us our estimate

$$(E(Y_{i2}|T_{i2} = T^{H}) - E(Y_{i1}|T_{i2} = T^{L})) - (E(Y_{i2}|T_{i2} = T^{L}) - E(Y_{i1}|T_{i2} = T^{L})) = ((a_{2} - a_{1}) + \gamma(T^{H} - T^{L})) - (a_{2} - a_{1}) = \gamma(T^{H} - T^{L})$$

and we know $(T^H - T^L)$, so this difference in differences gives us our estimate of the treatment effect.

This is what Waldingner is doing, except that she has also got x_{it} in the regressions. What does this do?

Estimating equation V

Suppose $x_{it} = 0, 1$. Then we are going through this whole process twice, once for $x_{it} = 1$ and once for $x_{it} = 1$, and averaging the resulting estimates of γ .

City size vs. Temperature I

			log Cri	fy Size		
	(1)	(2)	(3)	(4)	(5)	(6)
Mean temperature	.532	.724	.749	.931	.842	1.17
Standard error clusters:						
Assuming spatial and serial autocorrelation	(.262)**	(.268)***	(.269)***	(.328)***	$(.265)^{***}$	$(.429)^{***}$
Two way (city and region × time period)	(.281)*	(.282)**	(.283)**	(.323)***	$(.276)^{***}$	(.465)**
Temperature grid	(.193)***	(.212)***	(.213)***	(.274)***	(.211)***	(.386)***
Control variables:						
City fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Time period fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Country in 1600 linear time trend					Yes	
Country in 1600 × time period fixed effects						Yes
Historical controls (× time period fixed effects)	Yes	Yes	Yes	Yes	Yes	Yes
Geographic controls (× time period fixed effects)		Yes	Yes	Yes	Yes	Yes
Sample	All	All	Excluding capital cities	Excluding ocean cities	All	All
Observations	10,600	10,600	10,510	8,395	10,600	10,600
R^2	.767	.769	.759	.766	.779	.783

TABLE 2 TEMPERATURE AND CITY SIZE

NOTE. Observations are at the city time period level. Regressions in cols. 1, 2, 5, and 6 use abaseline sample of 2, 120 cites. Capital catine are excluded in G.3, and cites locatel levels than 10 km from an occan are excluded in time periods. This of 100, 100, 1759, 1800, 100, 1800. The dependent variable is the natural log of the number of city inhabitants. Mean temperature is year temperature averaged over the periods 1130 1600, 1000, 1700, 1

 $\ln(\text{City Pop})_{it} = \gamma Temp_{it} + a_t + I_i + x_{it} + \varepsilon_{it}$

^{**} p < .05

^{***} p < .01.

City size vs. Temperature II

How big is this effect?

$$\ln Y^{0} = 0.53T + a_{t} + I_{i} + x_{it}$$
$$\ln Y^{1} = 0.53(T + 0.2) + a_{t} + I_{i} + x_{it}$$
$$\implies \ln Y^{1} - \ln Y^{0} = 0.53 \times 0.2$$
$$\implies \ln (Y^{1} / Y^{0}) = 0.01060$$
$$\implies Y^{1} / Y^{0} = e^{0.0106} = 1.01066$$

So 0.2°C cooler shrinks cities by about 1%.

 $0.2 \,^{\circ}C$ is about half the little ice age effect.

1% of city size is about 1/13 of total growth from 1600-1850.

City size vs. Temperature III

This is a small effect. Cities that get colder, grow a little more slowly.

Plot of residuals I

Suppose we estimate

$$\ln(\text{City Pop})_{it} = a_t + I_i + x_{it} + \varepsilon_{it}$$

and

$$T_{it} = a_t + I_i + x_{it} + \mu_{it}$$

Then ε_{it} and μ_{it} are population and temperature 'corrected' for individual means and annual variation. That is, they should be more 'alike' than the raw data. If we compare them, we should be able to see how city size ad temperature are related. (in fact, the Frisch-Waugh Theorem says the slope of this line will be the same as in our original regression).

Plot of residuals II

FIG. 3. Change in mean temperature versus change in city size. This figure displays a binned scatterpole corresponding to the estimates from column 2 of table 2. I residualize log Gity Size and mean temperature with respect to city fixed effects, time period fixed eff fects, historical, and geographic control variables using an ordinary least squares regres sion. I then divide the sample into 100 equally sized groups and plot the mean of the y residuals against the mean of the x residuals in each bin.

This plot shows corrected city sixe on the y-axis, and corrected temp on the x-axis. The slope should match column 2 of table 2. Cities that cooled more, grew more slowly. This is not what you would have guessed from the raw data in table 1.

Yield ratio vs. Temperature I

- Yield ratio is ratio of harvest to seed.
- Regression equation

Yield Ratio_{*it*} = $A + BT_{it} + year + location + \varepsilon$

Yield ratio vs. Temperature II

Variable	Yield Ratio (1)	Wheat Prices (2)	Yield Ratio (3)	Wheat Prices (4)
Mean temperature	.430***	111^{***}		
	(.115)	(.0283)		
Growing season temperature			.364***	115^{***}
Season 7			(.116)	(.0221)
Nongrowing season temperature			148	.0303*
Season 7			(.0952)	(.0171)
Growing season temperature				0993^{***}
Season $\tau = 1$				(.0191)
Nongrowing season temperature				0151
Season $\tau = 1$				(.0166)
City fixed effects	Yes	Yes	Yes	Yes
Decade fixed effects	Yes		Yes	
Year fixed effects		Yes		Yes
Control variables (× year				
fixed effects)	Yes	Yes	Yes	Yes
Observations	205	2,731	205	2,714
R^2	.231	.684	.217	.682
Number of bootstrap units	12	10	12	10
Number of repetitions	999	999	999	999

TABLE 3 TEMPERATURE, YEARLY YIELD RATIOS, AND WHEAT PRICES

Nort. The outcome writable "kield Ratio" is defined as the ratio of harvested cop grants to the crops usef for sowing. The outcome variable "When thirses" is the natural log of wheat prices." Near temperature is interpretative averaged over the same year. "Growing season temperature is the season temperature of the season and season temperature is the season of the season temperature of the season temperaform the yield data sample with lever than 10 independent data points. The final yield data sample includes 12 cities in four Laropean countries France, Cerranay, Dahar, and Sweden, Wheat price data are for Annetratura (282 years), Ansterp (133 years), Leipzig (215 years), London (351 years), Madrid (274 years), Mattich (235 years), Solositarpped standard errors are (205 years), Paris (354 years), and Stradsong (359 years). Bootstrapped standard errors are instructed as the size of the season of the season of the season of the season of the Tarder 's an indicator variable that is one for all locations in countries engaging in Maturia C. These country outrables are interacted with time period indicator variables.

Yield ratio vs. Temperature III

Note that coefficient in population regressions and yield regressions are about the same. Should we expect this? Hint: about 90% of population was rural/agricultural.

Value of trade vs. Temperature I

- Did cities trade more in response to colder weather?
- To check let Y_{it} be number of ships arriving (and recorded as paying customs taxes). Look at effect of long lagged averages of temperature.

$$Y_{it} = \gamma_0 \frac{1}{25} \sum_{k=0}^{24} \text{Temp}_{it} + a_t + I_i + x_{it} + \varepsilon_{it}$$

Value of trade vs. Temperature II

	IN NUMBER OF SHIPS							
VARIABLE	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Growing season temperature in $t - 1$ to $t - 5$ Nongrowing season temperature in $t - 1$ to $t - 5$	101 (.0774) .0516 (.0505)				159 (.163) .182* (.108)			
Growing season temperature in $t - 1$ to $t - 25$		758*** (.277)				-1.754*** (.569) .537		
Nongrowing season temperature in $t - 1$ to $t - 25$.00971 (.187)				(.406)	-	
Growing season temperature in 1 – 1 to 1 – 50			(.422)				(.843)	
Conditional and a second competition of the second se			(.281)	100488			(.586)	
crossing scassin a injectatate in terror to terror				(.776)				(1.457)
								-

TABLE 5 TEMPERATURE AND TRADE (Number of Ship Arrivals)

Nongrowing season temperature in $t - 1$ to $t - 100$				715				0791	
				(.376)				(1.228)	
Jestination port fixed effects	ICS	Yes	Tes	Yes	res	TCS	res	Tes	
fear fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Distance to other cities	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
City size					Yes	Yes	Yes	Yes	
Control variables (× 50 year period fixed effects)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Observations	202,920	202,920	202,920	202,920	58,740	58,740	58,740	58,740	
R ²	.267	.268		.268	.442	.442	.443	.444	
Number of destination ports	760	760	760	760	220	220	220	220	

Note. Observations are at the elementary on per year level, with data for 700 elementarians pertua data (per 100 elementarians) pertua dat

p < .1.p < .05.

- p < .05.

Value of trade vs. Temperature III

After 25+ years, cities that saw temperature decreases, increased trade. This suggests that trade was an adaptation to deteriorating climate.

It is statistically important. Is it economically important?

City size vs. Temperature/trade I

Estimating equation,

 $\ln(\text{City Pop})_{it} = \gamma_0 \text{Temp}_{it}\beta + \gamma_1 \text{Temp}_{it} \times \text{Trade}_{it} + a_t + I_i + x_{it} + \varepsilon_{it}$

City size vs. Temperature/trade II

		Sound To	oll Trade	HANSEAT	ic Trade
	(1)	(2)	(3)	(4)	(5)
Mean temperature	.724***	.865***	.872***	.740***	.855***
	(.189)	(.210)	(.210)	(.190)	(.208)
Mean temperature × trade		688***		956***	
· · · · · ·		(187)		(174)	
Mean temperature × number of					
trade partners <25th percentile			386		578*
			(328)		(324)
Mean temperature × number of					(
trade partners >25th percentile			-783***		-688***
			(188)		(189)
Observations	10.600	10.600	10.600	10 600	10.600
R2	485	486	486	486	486
Number of sities	9 190	9 190	9.190	9 190	9 1 9 0

TABLE 6 Heterogeneity in the Effect of Temperature

Norm: Column 1 reports ordinary least sparse estimates of the main specification (denical to col. in table 2) for comparison. Column 2 show results when including an interaction term between 'Mean temperature' and 'Sound' Toll Tole', an indicator washing the column of the temperature' and 'Sound' Toll Tole', an indicator washing the sound of the temperature' and the indicator washing the status' and the indicator variable 'number of rande partners "25th precentils, which is one of rail clinis in the Sound oil trade neuros those numbers of trading partners was below or and the indicator variable 'number of trade partners, "25th precentils, "which is one for all clines in the Sound oil trade neurons those numbers of trading partners was below and the indicator variable' number of trade partners, "25th precentils, "andard errors are clustered at the temperature grid level of the underbing temperature data. All specifica etc. Cline and the indicator variable as interacted with ingo temperature data. All specifica etc. Cline and the indicator variable as interacted with ingo temperature data. All specifica etc. Cline and the indicator variable is an interacted with ingo temperature data.

Cities with good access to inland trade experience almost no harm from cooling. Trade allows almost complete adaptation.

This seems really important.

Conclusion I

- Climate change, colder, is bad,

 - Oster => witch trials
 - Turner et al., Waldinger \implies fewer people
- Turner: -1°C for 20 years ⇒ population falls by 9%. Compounding to get a 100 year effect, we have (1 - 0.09)⁵ = 0.62, so after 100 years of cold, population is only 62% of original – not allowing for adaptation.
- Waldinger: -1°C for 100 years \implies city population shrinks by a factor of 0.58 ($e^{-0.53}$). Note close agreement between Waldinger and Turner et al.

Conclusion II

- In Iceland there were few opportunities for adaption. No migration. little trade, little progress. Adaption was probably costly; smaller bodies and living closer to domestic animals.
- Climate change was clearly stressful for humans, but these papers suggest that adaption was possible and pretty quick, even for pre-industrial societies.
- Issues,
 - Did trading cities benefit at the expense of their hinterlands?
 - Does medieval history tell us anything useful about the world today?
 - Beware, data quality is not great in any of these papers.