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A little probability theory

Probability theory I

Uncertainty about climate change is important and pervasive. We
need to be able to think about it precisely. So, we’ll review
probability theory before using it to illustrate a couple of our
problems.
Let M = {m1, ...mK} be a set of events. m ∈ M is a ‘realization’ or
‘outcome’. Events are exclusive, exactly one can happen. One
event must happen. No event can happen that is not in set M.
Let P be a function such that

P(mi) ∈ [0, 1] all i = 1, ...,K

P(mi
⋃

mj) ≥ P(mj) for all i, j

P(
⋃K

i=1 mi) = 1.

Say that P is a probability distribution over M, and that pi = P(mi)
is the probability of event i .
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A little probability theory

Example

For a fair coin toss, M = {H,T} P(m = H) = P(m = T ) = 1/2,
P(m ∈ {H,T}) = 1,P(m ̸∈ {H,T}) = 0.

A random variable is a function that assigns numbers to
events. That is, X : M → R or X (mi) ∈ (−∞,+∞) for all
mi ∈ M.

Let xi = X (mi) to make things easier and call xi a ‘realization
of X ’. Thus, pi = P(xi) = P(mi) and ∑K

i=1 pi = 1.

A bet on a coin toss is a random variable. For example, win 1$
for H and 0$ for T . Here, we have
xH = X (H) = 1, xT = X (T ) = 0 and pT = pH = 1/2.

Write X = (1, 0; 1/2, 1/2). Random variables written this
way are often referred to as ‘lotteries’.
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A little probability theory

Describing random variables I

Random variables are complicated. Each is described by a vector
of probabilities and outcomes.
We’d like to calculate some statistics to describe them more
succinctly.

the expected value of X is E(X ) = ∑K
i=1 pixi

the variance of X is
VAR(X ) = E(X − E(X ))2 = ∑K

i=1 pi(xi − E(X ))2

the standard deviation of X is
√

VAR(X )
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A little probability theory

Describing random variables II

In our coin toss example, X = (1, 0; 1/2, 1/2) we have:

E(X ) =
2

∑
i=1

pixi

=
1
2
× 1 +

1
2
× 0 =

1
2

VAR(X ) =
2

∑
i=1

pi(xi − E(X ))2

=
1
2
(1 − 1

2
)2 +

1
2
(0 − 1

2
)2 =

1
4

SD(X ) =
√

VAR(X ) =
1
2
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A little probability theory

Philosophical aside

This is a ‘formal’ story for probability. Competing stories are
‘frequentist’ and ‘subjective’. In frequentist probability, p is the
share of realizations in many trials that an event occurs. In
subjective probability, probability p is a measure of how likely
you think something is.

Both subjective and frequentist stories are consistent with
formal theory. Frequentist is better for measurement error and
cards, subjective is better for global warming. Why?
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Measurement error

Measurement error I

In ‘Measuring temperature, the 170 year record’ (optional
reading, by climate sceptics) the authors suggest that
measurement error should cast doubt on the observed trend
in measured temperature. Let’s think about this carefully.
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Measurement error

Measurement error II

Suppose the true temperature is T and two thermometers
measure temperature with error,

X1 = (T + 2,T − 2; 1/2, 1/2)

X2 = (T + 2,T − 2; 1/2, 1/2),

so E(Xi) = T , Var(Xi) = 4 and SD(Xi) = 2 for each of them.
Let x1 ∈ {T + 2,T − 2} be a ‘realization of random variable
X1’. Similarly, x2.

Are two noisy thermometers better, worse or the same as
one?
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Measurement error

Measurement error III

Suppose we pick one of the two thermometers at random? This is
a lottery, too

X ∗ = (X1,X2; 1/2, 1/2)

= ((T + 2,T − 2; 1/2, 1/2), (T + 2,T − 2; 1/2, 1/2); 1/2, 1/2)

= (T + 2,T − 2; 1/2, 1/2)

This is exactly what we started with, so this is no better and no
worse than having one thermometer.
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Measurement error

Measurement error IV

What if we average the two draws? This is also a lottery.

X =
1
2
(X1 + X2).

What do we know about this average?

X X1 X2 p0 p1 p2

T + 2 T + 2 T + 2 1/4 1/2 3/8
T T − 2 T + 2 1/4 0 1/8
T T + 2 T − 2 1/4 0 1/8

T − 2 T − 2 T − 2 1/4 1/2 3/8

Each of the three probability distributions p0, p1, p2 is consistent
with what we know. Both X1 and X2 have equal probabilities of too
high or too low a measurement under each.
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Measurement error

Measurement error V

p0 has a special property, for all realizations, we have
P(x1 and x2) = P(x1)P(x2). When a pair of random variables
has this property, say they are ‘independent’.

Intuitively, if X1 and X2 are independent, my ability to predict
X2 is not improved when I learn the realization of X1. This
means that there is a lot of new information in X2, even if I
know X1.

Compare this to p1 where the two thermometers are clones,
and p1 where they are related.
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Measurement error

The Law of Large Numbers I

Now for the big result. Calculate mean, variance and standard
deviation for the average when X1 and X2 are independent:

E(X ) =
1
4
(T + 2) +

1
2
(T ) +

1
4
(T − 2) = T

VAR(X ) =
1
4
(T + 2 − E(X ))2 +

1
4
(T − 2 − E(X ))2 = 2

and

SD(X ) =
√

2 =
2√
2

The variance of our temperature measure goes down with two
thermometers. This is what we get if we average the readings
of both thermometers and the thermometers are independent.
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Measurement error

The Law of Large Numbers II

This illustrates a general principle. The average of mean zero,
independent measurement errors go to zero as you average
more and more observations. This is called the ‘law of large
numbers’. Comparing SD of X to SD of X , we see that SD of
X decreases proportional to the inverse square root of the
number of terms we are averaging. This is general.

Therefore, contrary to the claim in ‘Measuring temperature,
the 170 year record’, the fact that there is measurement error
in individual thermometer readings is probably not a problem
for measurements of mean surface temperature. The law of
large numbers tells us that having lots of noisy independent
measurements (what we have) is as good as having a perfect
measurement.
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Measurement error

Covariance I
Independence of random variables is a particular case in
which the realization of one has no ability to predict the other.

If independence fails, then the realization of one helps predict
the other.

‘Covariance’ is a way of thinking about ‘how much’ information
the realization of one random variable gives about the
distribution of another.

Covariance is defined as:

COV (X ,Y ) = E [(X − E(x))(Y − E(Y ))]

Note that

COV (X ,X ) = E [(X − E(x))(X − E(X ))]

= E(X − E(x))2 = Var(X )
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Measurement error

Covariance II

Recall our example with thermometers,

X X1 X2 p0 p1 p2

T + 2 T + 2 T + 2 1/4 1/2 3/8
T T − 2 T + 2 1/4 0 1/8
T T + 2 T − 2 1/4 0 1/8

T + 2 T − 2 T − 2 1/4 1/2 3/8

Recalling that E(X1) = E(X2) = T in all cases,

COV 0(X1,X2) = E((X1 − T )(X2 − T ))

=
1
4
((T + 2)− T )2 +

1
2
((T + 2)− T )((T − 2)− T )) +

1
4
((T − 2)− T )2 = 0

COV 1(X1,X2) =
1
2
((T + 2)− T )2 +

1
2
((T − 2)− T )2 = 4

COV 2(X1,X2) =
3
8
((T + 2)− T )2 +

1
4
((T + 2)− T )((T − 2)− T )) +

3
8
((T − 2)− T )2 = 2

If p0, then X1 and X2 are independent =⇒ COV 1(X1,X2) = 0. If p1 or p2, X1 and X2 are not
independent =⇒ COV 1(X1,X2) ̸= 0. COV 1(X1,X2) > COV 2(X1,X2) reflects the fact that the
variables are ‘more dependent’ under p1 than p2. (informal)
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Measurement error

Another technical aside: Confidence intervals I

Confidence intervals are one of the main ways that we quantify
uncertainty. How do they work?

Suppose a model is true and generate a distribution of of
realizations that follow from that model or hypothesis.

Find the, say, 95% of outcomes that are most likely to occur.
This is a confidence interval.

If we observe a realization not in the confidence interval, it is
unlikely to have occurred if the model or hypothesis is true.

There are usually lots of ways to make a (e.g.) 95%
confidence interval. The convention is to choose them
symmetric around the mean.
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Measurement error

Another technical aside: Confidence intervals II

Here is an example

Red is mean change in measured temperature from
1988-2012. Grey is the distribution of 114 runs of an IPPC
climate model predicting temperature change during this
period on the basis of 1988 data (from AR4).

Copyright 2023, Matthew Turner 18



Measurement error

Another technical aside: Confidence intervals III

Less than 5% (probably) of model realizations are as small as
observed change.

We can say with 95% confidence that realized temperature
would not have occurred if the model were true.

Copyright 2023, Matthew Turner 19



Model uncertainty

Model uncertainty I

Now suppose our thermometers are

T1 = ϵ1

T2 = k + ϵ2

with ϵ1 = ϵ2 = (−1, 1, 1
2 ,

1
2 ), but we don’t know which

thermometer is biased.
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Model uncertainty

Model uncertainty II

If we rely on one thermometer chosen at random then we face the
following compound lottery:

T ∗ = ((−1, 1, 1/2, 1/2), (k − 1, k + 1, 1/2, 1/2); 1/2, 1/2)

= (−1, 1, k − 1, k + 1; 1/4, 1/4, 1/4, 1/4)

E(T ∗) = k/2

V (T ∗) = 1 + k2
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Model uncertainty

Model uncertainty III

If we average over thermometers, then we get T1+T2
2 no matter

what. If ϵ’s are independent, then each of the four possible
outcomes is equally likely. That is,

T ∗∗ = ((
k − 2

2
,

k
2
,

k
2
,

k + 2
2

; 1/4, 1/4, 1/4, 1/4)

E(T ∗∗) = k/2

V (T ∗∗) = 1/2 < 1 + k2 = V (T ∗)

Therefore, with two thermometers, one biased, averaging is always
better than picking one at random. It gives the same reading on
average, but less uncertainty.
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Model uncertainty

Model uncertainty IV

Suppose instead of two thermometers we have two models
predicting future temperature, i.e., two instruments for measuring
future temperature conditional of future CO2 .
Suppose our two models for predicting temp from CO2 are

T1 = 1CO2 + ϵ1

T2 = 2 + 3CO2 + ϵ2

If CO2 = 0 then this reduces to exactly the same problem as we
just solved with biased thermometers. If CO2 is positive, then we
have a slight variation.
Averaging across models is ‘like’ averaging across thermometers.
If we have no information about which model is right, then we think
both models are equally likely. If we think one is better, then assign
it a higher weight.
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The warming hiatus: a cautionary tale

The warming hiatus

From about 2000 to 2010, the rate of warming slowed to almost
zero.

IPCC 2013 WG1, TS Figure 1

NB: This is GMST, Global Mean Surface Temperature.
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The warming hiatus: a cautionary tale

... was not predicted by AR4

IPCC 2013 WG1, TS.3 Figure 1

Red shows estimated observed temperature. Noise is ‘like’
our example of measuring temperature with two imperfect
thermometers. Warming was about zero during 1998-2012.
Grey shows distribution of predicted temperatures from 114
runs of IPCC ’s favorite climate model. It over predicts
warming for 1998-2012.
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The warming hiatus: a cautionary tale

... even though they got forcing about right

IPCC 2013 WG1, TS.3 Figure 1

Red shows estimated observed forcing. Forcing stayed about
constant over the whole 1951-2012 period.

Grey shows distribution of forcing from 114 runs of IPCC ’s
favorite climate model. It matches pretty closely, at least at the
mean.
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The warming hiatus: a cautionary tale

This was embarassing.

IPCC 2013 WG1, TS. TFE 3.1

There was less warming than predicted by any of the previous
IPCC reports.
This is what happens if you don’t worry about model
uncertainty.
IPCC does not seem to have learned this lesson. Recall
confidence intervals based on ‘structured expert opinion’ for
sea level rise.
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Conclusion

Conclusion

Uncertainty is a central part of the global warming problem.
We have uncertainty around measurements.
We have uncertainty around models.

Statistics lets us think about both problems carefully, but it’s
not easy.

Carelessness about this can lead to fundamental
misunderstandings of the data and to really bad predictions.
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